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Dense neural network classifiers

1 Linear algebra

Consider the arrays

a =
(
1
2

)
, b =

(
4
2

)

P =
(
3 6
2 4

)
, Q =

(
2 2
2 4

)
Compute x in the following cases (if it is not possible, state why).

a

x = a⊺b

b

x = Pa

c

x = PQ

d

P x = a
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e

Qx = b

2 Derivatives in higher dimensions

The gradient of a scalar-valued, multi-variable function f : Rn →R is given by

∇x f (x) =


∂ f
∂x1

...
∂ f
∂xn

 .

For the same function, we can state the Hessian matrix of f w.r.t. x as

Hx ( f (x)) =



∂2 f
∂x1x1

∂2 f
∂x1x2

· · · ∂2 f
∂x1xn

∂2 f
∂x2x1

∂2 f
∂x2x2

· · · ∂2 f
∂x2xn

...
...

. . .
...

∂2 f
∂xn x1

∂2 f
∂xn x2

· · · ∂2 f
∂xn xn


.

For a vector-valued, multi-variable function g : Rn → Rm , the Jacobian matrix of g
w.r.t. x is given by1

Jx (g (x)) =



∂g1
∂x1

∂g2
∂x1

· · · ∂gm
∂x1

∂g1
∂x2

∂g2
∂x2

· · · ∂gm
∂x2

...
...

. . .
...

∂g1
∂xn

∂g2
∂xn

· · · ∂gm
∂xn


.

a

Let f : Rn →R be given by
f (x) = x⊺Ax +b⊺x + c,

where A ∈ Rn×n , b, x ∈ Rn , and c ∈ R. Give the expression of the gradient of f w.r.t.
x, ∇x f (x).

b

Compute the Hessian matrix of f w.r.t. x, Hx ( f (x)).

1It is also common to define the Jacobian as the transpose version of our definition.
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c

Compute the Jacobian matrix of the gradient of f w.r.t. x, Jx (∇x f (x)).

d

Show how, in general, the Hessian matrix relates to the Jacobian matrix.

3 Chain rule

For single-variable, scalar-valued functions f , g : R→ R, the derivative of the com-
position ( f ◦ g )(x) = f (g (x)) w.r.t. x is given by the so-called chain rule of differen-
tiation

∂

∂x
f (g (x)) = ∂ f

∂g

∂g

∂x
.

Compute the derivative ∂ f
∂x on the following expressions.

a

f (x) = sin(x2)

b

f (x) = esin(x2)

c

In the case where f : Rm →R, g : Rn →Rm , and x ∈Rn , the derivative of f

f (g (x)) = f (g1(x), . . . , gm(x))

= f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

w.r.t. one of the components of x, can be given by a generalisation of the above
chain rule

∂ f

∂xi
=

m∑
j=1

∂ f

∂g j

∂g j

∂xi
.

Compute the derivatives ∂ f
∂x1

and ∂ f
∂x2

when


f = sin g1 + g 2

2

g1 = x1ex2

g2 = x1 +x2
2 .
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Figure 1: A small dense neural network

4 Forward propagation

Suppose we have a small dense neural network as is shown in fig. 1. The input
vector is x1

x2

=
1

3

 .

In the first layer we have the following weight and bias parameters1

w1
11 w1

12 w1
13

w1
21 w1

22 w1
23

=
2 1 3

2 −1 1

 ,


b1

1

b1
2

b1
3

=


1

0

−1

 .

In the second layer we have the following weight and bias parameters
w2

11

w2
21

w2
31

=


3

1

2

 ,
(
b2

1

)
=

(
1
)

.

a

Compute the value of the activation in the second layer, ŷ , when the activation
functions in the first and second layer are identity functions.

1Note that we drop the superscript bracket notation for layers, [l ], for convenience, as there should
be no risk of confusion.
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b

Compute the value of the activation in the second layer, ŷ , when the activation
functions in the first layer are ReLU functions, and in the second layer is the identity
function.

5 Cost functions and optimization

Let θk = [1,3]⊺ be the value of some parameter θ = [θ1,θ2]⊺ at iteration k of a gradi-
ent descent method. Let the loss function be

L(θ) = 2(θ1 −2)2 +θ2

With a step length of 2, find the value of θk+1 when it has been updated with the
gradient descent method.

6 Optimizing a convex objective function

Let the loss function L be convex and quadratic

L(θ) = 1

2
θ⊺Qθ−b⊺θ

where Q ∈ Rn×n is a symmetric and positive definite matrix, b ∈ Rn is a constant
vector, and θ ∈Rn is a vector of parameters.

a

Find an expression for the unique minimizer θ∗ of L.

b

Instead of solving the optimization problem analytically, we want to take an itera-
tive approach using gradient descent. Let ∇Lk be the gradient of L w.r.t. θ evaluated
at θk . Show that the optimal step length at this iteration is given by

λk =
∇L⊺

k∇Lk

∇L⊺
kQ∇Lk

.

By optimal we mean the step length that yields the smallest value of L at step k +1.
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