WEEKLY EXERSICES

IN5400 / IN9400 — MACHINE LEARNING FOR IMAGE ANALYSIS DEPARTMENT OF INFORMATICS, UNIVERSITY OF OSLO

Dense neural network classifiers

1 Linear algebra

Consider the arrays

$$a = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
$$P = \begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix}, \quad Q = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}$$

Compute *x* in the following cases (if it is not possible, state why).

Qx = b

2 Derivatives in higher dimensions

The gradient of a *scalar-valued*, *multi-variable* function $f : \mathbb{R}^n \to \mathbb{R}$ is given by

$$\nabla_x f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}.$$

For the same function, we can state the *Hessian* matrix of *f* w.r.t. *x* as

$$\mathcal{H}_{x}(f(x)) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} x_{1}} & \frac{\partial^{2} f}{\partial x_{1} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{2} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} x_{1}} & \frac{\partial^{2} f}{\partial x_{n} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} x_{n}} \end{pmatrix}.$$

For a *vector-valued*, multi-variable function $g : \mathbb{R}^n \to \mathbb{R}^m$, the *Jacobian* matrix of g w.r.t. x is given by¹

$$\mathscr{J}_{x}(g(x)) = \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{1}} \\ \frac{\partial g_{1}}{\partial x_{2}} & \frac{\partial g_{2}}{\partial x_{2}} & \cdots & \frac{\partial g_{m}}{\partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{1}}{\partial x_{n}} & \frac{\partial g_{2}}{\partial x_{n}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}} \end{pmatrix}.$$

a

Let $f : \mathbb{R}^n \to \mathbb{R}$ be given by

$$f(x) = x^{\mathsf{T}} A x + b^{\mathsf{T}} x + c,$$

where $A \in \mathbb{R}^{n \times n}$, $b, x \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Give the expression of the gradient of f w.r.t. $x, \nabla_x f(x)$.

b

Compute the Hessian matrix of f w.r.t. x, $\mathcal{H}_x(f(x))$.

¹It is also common to define the Jacobian as the transpose version of our definition.

Compute the Jacobian matrix of the gradient of f w.r.t. x, $\mathcal{J}_x(\nabla_x f(x))$.

d

Show how, in general, the Hessian matrix relates to the Jacobian matrix.

3 Chain rule

For single-variable, scalar-valued functions $f, g : \mathbb{R} \to \mathbb{R}$, the derivative of the composition $(f \circ g)(x) = f(g(x))$ w.r.t. *x* is given by the so-called *chain rule* of differentiation

$$\frac{\partial}{\partial x}f(g(x)) = \frac{\partial f}{\partial g}\frac{\partial g}{\partial x}.$$

Compute the derivative $\frac{\partial f}{\partial x}$ on the following expressions.

a

$$f(x) = \sin(x^2)$$

b

 $f(x) = e^{\sin(x^2)}$

С

In the case where $f : \mathbb{R}^m \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, and $x \in \mathbb{R}^n$, the derivative of f

$$f(g(x)) = f(g_1(x), \dots, g_m(x))$$

= $f(g_1(x_1, \dots, x_n), \dots, g_m(x_1, \dots, x_n))$

w.r.t. one of the components of x, can be given by a generalisation of the above chain rule

$$\frac{\partial f}{\partial x_i} = \sum_{j=1}^m \frac{\partial f}{\partial g_j} \frac{\partial g_j}{\partial x_i}.$$

Compute the derivatives $\frac{\partial f}{\partial x_1}$ and $\frac{\partial f}{\partial x_2}$ when

$$\begin{cases} f &= \sin g_1 + g_2^2 \\ g_1 &= x_1 e^{x_2} \\ g_2 &= x_1 + x_2^2. \end{cases}$$

3

C

Figure 1: A small dense neural network

4 Forward propagation

Suppose we have a small dense neural network as is shown in fig. 1. The input vector is

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

In the first layer we have the following weight and bias parameters¹

$$\begin{pmatrix} w_{11}^1 & w_{12}^1 & w_{13}^1 \\ w_{21}^1 & w_{22}^1 & w_{23}^1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 \\ 2 & -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} b_1^1 \\ b_2^1 \\ b_3^1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

In the second layer we have the following weight and bias parameters

$$\begin{pmatrix} w_{11}^2 \\ w_{21}^2 \\ w_{31}^2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \quad (b_1^2) = (1).$$

а

Compute the value of the activation in the second layer, \hat{y} , when the activation functions in the first and second layer are identity functions.

 $^{^1}$ Note that we drop the superscript bracket notation for layers, [l], for convenience, as there should be no risk of confusion.

Compute the value of the activation in the second layer, \hat{y} , when the activation functions in the first layer are ReLU functions, and in the second layer is the identity function.

5 Cost functions and optimization

Let $\theta^k = [1,3]^{\top}$ be the value of some parameter $\theta = [\theta_1, \theta_2]^{\top}$ at iteration *k* of a gradient descent method. Let the loss function be

$$L(\theta) = 2(\theta_1 - 2)^2 + \theta_2$$

With a step length of 2, find the value of θ^{k+1} when it has been updated with the gradient descent method.

6 Optimizing a convex objective function

Let the loss function *L* be convex and quadratic

$$L(\theta) = \frac{1}{2}\theta^{\mathsf{T}}Q\theta - b^{\mathsf{T}}\theta$$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, $b \in \mathbb{R}^n$ is a constant vector, and $\theta \in \mathbb{R}^n$ is a vector of parameters.

a

Find an expression for the unique minimizer θ^* of *L*.

b

Instead of solving the optimization problem analytically, we want to take an iterative approach using gradient descent. Let ∇L_k be the gradient of *L* w.r.t. θ evaluated at θ_k . Show that the optimal step length at this iteration is given by

$$\lambda_k = \frac{\nabla L_k^{\mathsf{T}} \nabla L_k}{\nabla L_k^{\mathsf{T}} Q \nabla L_k}.$$

By optimal we mean the step length that yields the smallest value of *L* at step k + 1.

b