IN5400 / in9400 - Machine Learning for Image Analysis Department of Informatics, University of Oslo

Dense neural network classifiers

1 Linear algebra

Consider the arrays

$$
\begin{gathered}
a=\binom{1}{2}, \quad b=\binom{4}{2} \\
P=\left(\begin{array}{ll}
3 & 6 \\
2 & 4
\end{array}\right), \quad Q=\left(\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right)
\end{gathered}
$$

Compute x in the following cases (if it is not possible, state why).
a

$$
x=a^{\top} b
$$

b

$$
x=P a
$$

c

$$
x=P Q
$$

d

$$
P x=a
$$

e

$$
Q x=b
$$

2 Derivatives in higher dimensions

The gradient of a scalar-valued, multi-variable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
\nabla_{x} f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right) .
$$

For the same function, we can state the Hessian matrix of f w.r.t. x as

$$
\mathscr{H}_{x}(f(x))=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} x_{1}} & \frac{\partial^{2} f}{\partial x_{1} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{2} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} x_{1}} & \frac{\partial^{2} f}{\partial x_{n} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} x_{n}}
\end{array}\right) .
$$

For a vector-valued, multi-variable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the Jacobian matrix of g w.r.t. x is given by ${ }^{1}$

$$
\mathscr{J}_{x}(g(x))=\left(\begin{array}{cccc}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{1}} & \ldots & \frac{\partial g_{m}}{\partial x_{1}} \\
\frac{\partial g_{1}}{\partial x_{2}} & \frac{\partial g_{2}}{\partial x_{2}} & \ldots & \frac{\partial g_{m}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_{1}}{\partial x_{n}} & \frac{\partial g_{2}}{\partial x_{n}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}}
\end{array}\right) .
$$

a

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by

$$
f(x)=x^{\top} A x+b^{\top} x+c
$$

where $A \in \mathbb{R}^{n \times n}, b, x \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$. Give the expression of the gradient of f w.r.t. $x, \nabla_{x} f(x)$.
b

Compute the Hessian matrix of f w.r.t. $x, \mathscr{H}_{x}(f(x))$.

[^0]
C

Compute the Jacobian matrix of the gradient of f w.r.t. $x, \mathscr{J}_{x}\left(\nabla_{x} f(x)\right)$.

d

Show how, in general, the Hessian matrix relates to the Jacobian matrix.

3 Chain rule

For single-variable, scalar-valued functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, the derivative of the composition $(f \circ g)(x)=f(g(x))$ w.r.t. x is given by the so-called chain rule of differentiation

$$
\frac{\partial}{\partial x} f(g(x))=\frac{\partial f}{\partial g} \frac{\partial g}{\partial x}
$$

Compute the derivative $\frac{\partial f}{\partial x}$ on the following expressions.
a

$$
f(x)=\sin \left(x^{2}\right)
$$

b

$$
f(x)=e^{\sin \left(x^{2}\right)}
$$

c
In the case where $f: \mathbb{R}^{m} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and $x \in \mathbb{R}^{n}$, the derivative of f

$$
\begin{aligned}
f(g(x)) & =f\left(g_{1}(x), \ldots, g_{m}(x)\right) \\
& =f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

w.r.t. one of the components of x, can be given by a generalisation of the above chain rule

$$
\frac{\partial f}{\partial x_{i}}=\sum_{j=1}^{m} \frac{\partial f}{\partial g_{j}} \frac{\partial g_{j}}{\partial x_{i}}
$$

Compute the derivatives $\frac{\partial f}{\partial x_{1}}$ and $\frac{\partial f}{\partial x_{2}}$ when

$$
\begin{cases}f & =\sin g_{1}+g_{2}^{2} \\ g_{1} & =x_{1} e^{x_{2}} \\ g_{2} & =x_{1}+x_{2}^{2}\end{cases}
$$

Figure 1: A small dense neural network

4 Forward propagation

Suppose we have a small dense neural network as is shown in fig. 1. The input vector is

$$
\binom{x_{1}}{x_{2}}=\binom{1}{3}
$$

In the first layer we have the following weight and bias parameters ${ }^{1}$

$$
\left(\begin{array}{lll}
w_{11}^{1} & w_{12}^{1} & w_{13}^{1} \\
w_{21}^{1} & w_{22}^{1} & w_{23}^{1}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 3 \\
2 & -1 & 1
\end{array}\right), \quad\left(\begin{array}{c}
b_{1}^{1} \\
b_{2}^{1} \\
b_{3}^{1}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) .
$$

In the second layer we have the following weight and bias parameters

$$
\left(\begin{array}{l}
w_{11}^{2} \\
w_{21}^{2} \\
w_{31}^{2}
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right), \quad\left(b_{1}^{2}\right)=(1)
$$

a
Compute the value of the activation in the second layer, \hat{y}, when the activation functions in the first and second layer are identity functions.

[^1]
b

Compute the value of the activation in the second layer, \hat{y}, when the activation functions in the first layer are ReLU functions, and in the second layer is the identity function.

5 Cost functions and optimization

Let $\theta^{k}=[1,3]^{\top}$ be the value of some parameter $\theta=\left[\theta_{1}, \theta_{2}\right]^{\top}$ at iteration k of a gradient descent method. Let the loss function be

$$
L(\theta)=2\left(\theta_{1}-2\right)^{2}+\theta_{2}
$$

With a step length of 2 , find the value of θ^{k+1} when it has been updated with the gradient descent method.

6 Optimizing a convex objective function

Let the loss function L be convex and quadratic

$$
L(\theta)=\frac{1}{2} \theta^{\top} Q \theta-b^{\top} \theta
$$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, $b \in \mathbb{R}^{n}$ is a constant vector, and $\theta \in \mathbb{R}^{n}$ is a vector of parameters.

a

Find an expression for the unique minimizer θ^{*} of L.

b

Instead of solving the optimization problem analytically, we want to take an iterative approach using gradient descent. Let ∇L_{k} be the gradient of L w.r.t. θ evaluated at θ_{k}. Show that the optimal step length at this iteration is given by

$$
\lambda_{k}=\frac{\nabla L_{k}^{\top} \nabla L_{k}}{\nabla L_{k}^{\top} Q \nabla L_{k}}
$$

By optimal we mean the step length that yields the smallest value of L at step $k+1$.

[^0]: ${ }^{1}$ It is also common to define the Jacobian as the transpose version of our definition.

[^1]: ${ }^{1}$ Note that we drop the superscript bracket notation for layers, [$\left.l\right]$, for convenience, as there should be no risk of confusion.

