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Dense neural network classifiers

1 Linear algebra

Consider the arrays
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Compute x in the following cases (if it is not possible, state why).
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P is a singular matrix (or non-invertible), and therefore there is no solution x sat-
isfying the equation. This can be checked by verifying that the determinant of P is
zero (a matrix is invertible iff its determinant is non-zero).



2 Derivatives in higher dimensions

The gradient of a scalar-valued, multi-variable function f : R — R is given by
of
dx1
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For the same function, we can state the Hessian matrix of f w.r.t. x as
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For a vector-valued, multi-variable function g : R” — R™, the Jacobian matrix of g
w.r.t. X is given by!
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Let f:R" — R be given by
fx)=x"Ax+b"x+c,

where A€ R"*", b, x € R", and c € R. Give the expression of the gradient of f w.r.t.
x, Vi f(x).

Vifx)=(A+ AN x+Db

Lt is also common to define the Jacobian as the transpose version of our definition.



b

Compute the Hessian matrix of f w.r.t. x, /& (f(x)).

F(f(0)) = A+ AT

C

Compute the Jacobian matrix of the gradient of f w.r.t. x, _# (Vi f(x)).

I (Vif(x) = AT+ A

d

Show how, in general, the Hessian matrix relates to the Jacobian matrix.

In general

Hx(f(0) = Fx(Vif(x)

3 Chainrule

For single-variable, scalar-valued functions f, g : R — R, the derivative of the com-
position (f o g)(x) = f(g(x)) w.r.t. x is given by the so-called chain rule of differen-

tiation 3 af o
_019o8
axf(g(x)) = dgox

Compute the derivative % on the following expressions.

f(x) =sin(x?)



Let u = x?, then
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0x Oudx
=cos(u)2x
:2xcos(x2)

f(x) — esin(xz)

Let u =sinv and v = x2, then

o _of ouov

0x Oudv dx
=e"cos(v)2x
=2x cos(xz)esm(xz)

c
In the case where f: R — R, g:R" — R™, and x € R", the derivative of f
F(gx) =f(g1(x),...,8m(x))
= f(gl(xl;---;xn);---;gm(xl;---rxn))
w.r.t. one of the components of x, can be given by a generalisation of the above
chain rule
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=cos(g1)e™ +2g

=e*2cos(x;e™) +2(x; + xg)
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=cos(g)x1e™ +2g22xp

=x1e*2 cos(x1e?) +4xy(x1 + x%)

4 Forward propagation

Figure 1: A small dense neural network
Suppose we have a small dense neural network as is shown in fig. 1. The input

vector is
X1 1
X2 3

In the first layer we have the following weight and bias parameters?
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In the second layer we have the following weight and bias parameters
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a

Compute the value of the activation in the second layer, j, when the activation
functions in the first and second layer are identity functions.

For the activations in the first layer, with g as the identity function, we have

al = g(w}, - x1 + w}, - xo + bl)
=g(2-1+2:3+1)
=9

ay = g(wi,- X1+ Wy, Xp + b})
=g(1-1-1-3+0)
==-2

ay = g(wiy- X1+ Wyy - Xp + b3)
=gBB-1+1-3-1)
=5

We then get the following activation in the second layer
5 2 2. 2 1.2 1, 12
y=wyy-ay + wy - ay + w3y - ag + by
=3-9-1-2+2-5+1
=36

b

Compute the value of the activation in the second layer, y, when the activation
functions in the first layer are ReLU functions, and in the second layer is the identity
function.

2Note that we drop the superscript bracket notation for layers, [I], for convenience, as there should
be no risk of confusion.



For the activations in the first layer, with g as the ReLU function, we have
a} = g(w%1 SX1 + wzl1 X + b%)
=g(2-1+2-3+1)
=9
aé = g(w}z-xl + w%z-xg + b%)
=g(1-1-1-3+0)

=0

a% :g(w113-x1+w53~x2+bé)
=gB3-1+1-3-1)
=5

We then get the following activation in the second layer
. 2 2 2 1.2 1. 2
y=wyy-ay+wy - ay + w3y - az + by
=3-9+1-0+2-5+1
=38

5 Cost functions and optimization
Let 0% = [1,3]7 be the value of some parameter 6 = [0,0,]" at iteration k of a gradi-
ent descent method. Let the loss function be

LO)=2(0,-2)%+0,

With a step length of 2, find the value of 9¥*! when it has been updated with the
gradient descent method.

With gradient descent, the update rule for the parameters 0 is
Okl =6, — AVyL(©O%)

where A is the scalar step length (learning rate). From the given expression, the
gradient of L w.r.t. 6 is

Vol = (4(91 - 2))

1
The updated value of 6 is then

o1 = gk — AvyL(6%)
e 4(1-2)
- (s)-2(" )
(9
1



6 Optimizing a convex objective function

Let the loss function L be convex and quadratic
1o T
L(H):EQ Q6-b'0
where Q € R™*" is a symmetric and positive definite matrix, b € R” is a constant
vector, and 6 € R" is a vector of parameters.
a

Find an expression for the unique minimizer 6* of L.

The gradient is given by Vg L(0) = Q0 — b, and setting this equal to zero reveals that
0* is the unique solution to the system of equations

0*=Q7'p

b

Instead of solving the optimization problem analytically, we want to take an itera-
tive approach using gradient descent. Let VL be the gradient of L w.r.t. f evaluated
at Oy. Show that the optimal step length at this iteration is given by

VL VL

Ap= —k %
*TVLIQVL,

By optimal we mean the step length that yields the smallest value of L at step k + 1.

The value of L at step k+ 1 is
1
L@k —AVLy) = 5(ek —AVLY)TQOr —AVLE) — b (0 — AVLy)
1 1
- Engchk — A0, QVL; + EAZVL;QVL,C — b0 +ADTVL;

Differentiating this w.r.t. A

dL©O) - AVLy)

a =AVLQVLy—60, QVLy+b"VL;

=AVL QVL;—(60;Q—-b")VLy
=AVLQVL;—-VL_VL;

Setting this equal to zero gives the desired result.
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