Weekly exersices

IN5400 / in9400 - Machine Learning for Image Analysis Department of Informatics, University of Oslo

Dense neural network classifiers

1 Linear algebra

Consider the arrays

$$
\begin{gathered}
a=\binom{1}{2}, \quad b=\binom{4}{2} \\
P=\left(\begin{array}{ll}
3 & 6 \\
2 & 4
\end{array}\right), \quad Q=\left(\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right)
\end{gathered}
$$

Compute x in the following cases (if it is not possible, state why).
a

$$
x=a^{\top} b
$$

$$
x=8
$$

b

$$
\begin{gathered}
x=P a \\
x=\binom{15}{10}
\end{gathered}
$$

C

$$
\begin{gathered}
x=P Q \\
x=\left(\begin{array}{ll}
18 & 30 \\
12 & 20
\end{array}\right)
\end{gathered}
$$

d

$$
P x=a
$$

P is a singular matrix (or non-invertible), and therefore there is no solution x satisfying the equation. This can be checked by verifying that the determinant of P is zero (a matrix is invertible iff its determinant is non-zero).
e

$$
\begin{aligned}
& Q x=b \\
& x=\binom{3}{-1}
\end{aligned}
$$

2 Derivatives in higher dimensions

The gradient of a scalar-valued, multi-variable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
\nabla_{x} f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right) .
$$

For the same function, we can state the Hessian matrix of f w.r.t. x as

$$
\mathscr{H}_{x}(f(x))=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} x_{1}} & \frac{\partial^{2} f}{\partial x_{1} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{2} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} x_{1}} & \frac{\partial^{2} f}{\partial x_{n} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} x_{n}}
\end{array}\right) .
$$

For a vector-valued, multi-variable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the Jacobian matrix of g w.r.t. x is given by ${ }^{1}$

$$
\mathscr{J}_{x}(g(x))=\left(\begin{array}{cccc}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{1}} \\
\frac{\partial g_{1}}{\partial x_{2}} & \frac{\partial g_{2}}{\partial x_{2}} & \cdots & \frac{\partial g_{m}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_{1}}{\partial x_{n}} & \frac{\partial g_{2}}{\partial x_{n}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}}
\end{array}\right) .
$$

a
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by

$$
f(x)=x^{\top} A x+b^{\top} x+c,
$$

where $A \in \mathbb{R}^{n \times n}, b, x \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$. Give the expression of the gradient of f w.r.t. $x, \nabla_{x} f(x)$.

$$
\nabla_{x} f(x)=\left(A+A^{\top}\right) x+b
$$

[^0]b
Compute the Hessian matrix of f w.r.t. $x, \mathscr{H}_{x}(f(x))$.
$$
\mathscr{H}_{x}(f(x))=A+A^{\top}
$$

C
Compute the Jacobian matrix of the gradient of f w.r.t. $x, \mathscr{J}_{x}\left(\nabla_{x} f(x)\right)$.

$$
\mathscr{J}_{x}\left(\nabla_{x} f(x)\right)=A^{\top}+A
$$

d
Show how, in general, the Hessian matrix relates to the Jacobian matrix.

In general

$$
\mathscr{H}_{x}(f(x))=\mathscr{J}_{x}\left(\nabla_{x} f(x)\right)
$$

3 Chain rule

For single-variable, scalar-valued functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, the derivative of the composition $(f \circ g)(x)=f(g(x))$ w.r.t. x is given by the so-called chain rule of differentiation

$$
\frac{\partial}{\partial x} f(g(x))=\frac{\partial f}{\partial g} \frac{\partial g}{\partial x}
$$

Compute the derivative $\frac{\partial f}{\partial x}$ on the following expressions.
a

$$
f(x)=\sin \left(x^{2}\right)
$$

Let $u=x^{2}$, then

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial x} \\
& =\cos (u) 2 x \\
& =2 x \cos \left(x^{2}\right)
\end{aligned}
$$

b

$$
f(x)=e^{\sin \left(x^{2}\right)}
$$

Let $u=\sin v$ and $v=x^{2}$, then

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial v} \frac{\partial v}{\partial x} \\
& =e^{u} \cos (v) 2 x \\
& =2 x \cos \left(x^{2}\right) e^{\sin \left(x^{2}\right)}
\end{aligned}
$$

c
In the case where $f: \mathbb{R}^{m} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and $x \in \mathbb{R}^{n}$, the derivative of f

$$
\begin{aligned}
f(g(x)) & =f\left(g_{1}(x), \ldots, g_{m}(x)\right) \\
& =f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

w.r.t. one of the components of x, can be given by a generalisation of the above chain rule

$$
\frac{\partial f}{\partial x_{i}}=\sum_{j=1}^{m} \frac{\partial f}{\partial g_{j}} \frac{\partial g_{j}}{\partial x_{i}}
$$

Compute the derivatives $\frac{\partial f}{\partial x_{1}}$ and $\frac{\partial f}{\partial x_{2}}$ when

$$
\begin{cases}f & =\sin g_{1}+g_{2}^{2} \\ g_{1} & =x_{1} e^{x_{2}} \\ g_{2} & =x_{1}+x_{2}^{2}\end{cases}
$$

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}} & =\frac{\partial f}{\partial g_{1}} \frac{\partial g_{1}}{\partial x_{1}}+\frac{\partial f}{\partial g_{2}} \frac{\partial g_{2}}{\partial x_{1}} \\
& =\cos \left(g_{1}\right) e^{x_{2}}+2 g_{2} \\
& =e^{x_{2}} \cos \left(x_{1} e^{x_{2}}\right)+2\left(x_{1}+x_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial f}{\partial x_{2}} & =\frac{\partial f}{\partial g_{1}} \frac{\partial g_{1}}{\partial x_{2}}+\frac{\partial f}{\partial g_{2}} \frac{\partial g_{2}}{\partial x_{2}} \\
& =\cos \left(g_{1}\right) x_{1} e^{x_{2}}+2 g_{2} 2 x_{2} \\
& =x_{1} e^{x_{2}} \cos \left(x_{1} e^{x_{2}}\right)+4 x_{2}\left(x_{1}+x_{2}^{2}\right)
\end{aligned}
$$

4 Forward propagation

Figure 1: A small dense neural network

Suppose we have a small dense neural network as is shown in fig. 1. The input vector is

$$
\binom{x_{1}}{x_{2}}=\binom{1}{3} .
$$

In the first layer we have the following weight and bias parameters ${ }^{2}$

$$
\left(\begin{array}{lll}
w_{11}^{1} & w_{12}^{1} & w_{13}^{1} \\
w_{21}^{1} & w_{22}^{1} & w_{23}^{1}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 3 \\
2 & -1 & 1
\end{array}\right), \quad\left(\begin{array}{c}
b_{1}^{1} \\
b_{2}^{1} \\
b_{3}^{1}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) .
$$

In the second layer we have the following weight and bias parameters

$$
\left(\begin{array}{l}
w_{11}^{2} \\
w_{21}^{2} \\
w_{31}^{2}
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right), \quad\left(b_{1}^{2}\right)=(1)
$$

a

Compute the value of the activation in the second layer, \hat{y}, when the activation functions in the first and second layer are identity functions.

For the activations in the first layer, with g as the identity function, we have

$$
\begin{aligned}
a_{1}^{1} & =g\left(w_{11}^{1} \cdot x_{1}+w_{21}^{1} \cdot x_{2}+b_{1}^{1}\right) \\
& =g(2 \cdot 1+2 \cdot 3+1) \\
& =9 \\
a_{2}^{1} & =g\left(w_{12}^{1} \cdot x_{1}+w_{22}^{1} \cdot x_{2}+b_{2}^{1}\right) \\
& =g(1 \cdot 1-1 \cdot 3+0) \\
& =-2 \\
a_{3}^{1} & =g\left(w_{13}^{1} \cdot x_{1}+w_{23}^{1} \cdot x_{2}+b_{3}^{1}\right) \\
& =g(3 \cdot 1+1 \cdot 3-1) \\
& =5
\end{aligned}
$$

We then get the following activation in the second layer

$$
\begin{aligned}
\hat{y} & =w_{11}^{2} \cdot a_{1}^{2}+w_{21}^{2} \cdot a_{2}^{1}+w_{31}^{2} \cdot a_{3}^{1}+b_{1}^{2} \\
& =3 \cdot 9-1 \cdot 2+2 \cdot 5+1 \\
& =36
\end{aligned}
$$

b

Compute the value of the activation in the second layer, \hat{y}, when the activation functions in the first layer are ReLU functions, and in the second layer is the identity function.

[^1]For the activations in the first layer, with g as the ReLU function, we have

$$
\begin{aligned}
a_{1}^{1} & =g\left(w_{11}^{1} \cdot x_{1}+w_{21}^{1} \cdot x_{2}+b_{1}^{1}\right) \\
& =g(2 \cdot 1+2 \cdot 3+1) \\
& =9 \\
a_{2}^{1} & =g\left(w_{12}^{1} \cdot x_{1}+w_{22}^{1} \cdot x_{2}+b_{2}^{1}\right) \\
& =g(1 \cdot 1-1 \cdot 3+0) \\
& =0 \\
a_{3}^{1} & =g\left(w_{13}^{1} \cdot x_{1}+w_{23}^{1} \cdot x_{2}+b_{3}^{1}\right) \\
& =g(3 \cdot 1+1 \cdot 3-1) \\
& =5
\end{aligned}
$$

We then get the following activation in the second layer

$$
\begin{aligned}
\hat{y} & =w_{11}^{2} \cdot a_{1}^{2}+w_{21}^{2} \cdot a_{2}^{1}+w_{31}^{2} \cdot a_{3}^{1}+b_{1}^{2} \\
& =3 \cdot 9+1 \cdot 0+2 \cdot 5+1 \\
& =38
\end{aligned}
$$

5 Cost functions and optimization

Let $\theta^{k}=[1,3]^{\top}$ be the value of some parameter $\theta=\left[\theta_{1}, \theta_{2}\right]^{\top}$ at iteration k of a gradient descent method. Let the loss function be

$$
L(\theta)=2\left(\theta_{1}-2\right)^{2}+\theta_{2}
$$

With a step length of 2 , find the value of θ^{k+1} when it has been updated with the gradient descent method.

With gradient descent, the update rule for the parameters θ is

$$
\theta^{k+1}=\theta_{k}-\lambda \nabla_{\theta} L\left(\theta^{k}\right)
$$

where λ is the scalar step length (learning rate). From the given expression, the gradient of L w.r.t. θ is

$$
\nabla_{\theta} L=\binom{4\left(\theta_{1}-2\right)}{1}
$$

The updated value of θ is then

$$
\begin{aligned}
\theta^{k+1} & =\theta^{k}-\lambda \nabla_{\theta} L\left(\theta^{k}\right) \\
& =\binom{1}{3}-2\binom{4(1-2)}{1} \\
& =\binom{9}{1}
\end{aligned}
$$

6 Optimizing a convex objective function

Let the loss function L be convex and quadratic

$$
L(\theta)=\frac{1}{2} \theta^{\top} Q \theta-b^{\top} \theta
$$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, $b \in \mathbb{R}^{n}$ is a constant vector, and $\theta \in \mathbb{R}^{n}$ is a vector of parameters.

a

Find an expression for the unique minimizer θ^{*} of L.

The gradient is given by $\nabla_{\theta} L(\theta)=Q \theta-b$, and setting this equal to zero reveals that θ^{*} is the unique solution to the system of equations

$$
\theta^{*}=Q^{-1} b
$$

b
Instead of solving the optimization problem analytically, we want to take an iterative approach using gradient descent. Let ∇L_{k} be the gradient of L w.r.t. θ evaluated at θ_{k}. Show that the optimal step length at this iteration is given by

$$
\lambda_{k}=\frac{\nabla L_{k}^{\top} \nabla L_{k}}{\nabla L_{k}^{\top} Q \nabla L_{k}} .
$$

By optimal we mean the step length that yields the smallest value of L at step $k+1$.

The value of L at step $k+1$ is

$$
\begin{aligned}
L\left(\theta_{k}-\lambda \nabla L_{k}\right) & =\frac{1}{2}\left(\theta_{k}-\lambda \nabla L_{k}\right)^{\top} Q\left(\theta_{k}-\lambda \nabla L_{k}\right)-b^{\top}\left(\theta_{k}-\lambda \nabla L_{k}\right) \\
& =\frac{1}{2} \theta_{k}^{\top} Q \theta_{k}-\lambda \theta_{k}^{\top} Q \nabla L_{k}+\frac{1}{2} \lambda^{2} \nabla L_{k}^{\top} Q \nabla L_{k}-b^{\top} \theta_{k}+\lambda b^{\top} \nabla L_{k}
\end{aligned}
$$

Differentiating this w.r.t. λ

$$
\begin{aligned}
\frac{\mathrm{d} L\left(\theta_{k}-\lambda \nabla L_{k}\right)}{\mathrm{d} \lambda} & =\lambda \nabla L_{k}^{\top} Q \nabla L_{k}-\theta_{k}^{\top} Q \nabla L_{k}+b^{\top} \nabla L_{k} \\
& =\lambda \nabla L_{k}^{\top} Q \nabla L_{k}-\left(\theta_{k}^{\top} Q-b^{\top}\right) \nabla L_{k} \\
& =\lambda \nabla L_{k}^{\top} Q \nabla L_{k}-\nabla L_{k}^{\top} \nabla L_{k}
\end{aligned}
$$

Setting this equal to zero gives the desired result.

[^0]: ${ }^{1}$ It is also common to define the Jacobian as the transpose version of our definition.

[^1]: ${ }^{2}$ Note that we drop the superscript bracket notation for layers, $[l]$, for convenience, as there should be no risk of confusion.

