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About today

• Naming convention: Convolutional neural network, ConvNet, CNN

• What is a convolutional neural network?

• The required computation in a convolutional neural network

• Considerations when designing an convolution neural network architecture
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Outline

• Challenges with image classification

• Benchmark: ImageNet

• Fully connected neural network on images

• Convolutional layer

• Convolutional layer hyperparameters

• Convolutional layer example

• Receptive field (Field of View) 

• Dilated convolutions

• Pooling

• Depthwise Separable Convolution

• Last layer 

• Visualizing and Understanding CNN

• Applications were CNN are used

• Alternative to ConvNet
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Readings

• Text:

• http://cs231n.github.io/convolutional-networks/

• Video:

• https://www.youtube.com/watch?v=bNb2fEVKeEo&index=5&list=PLC1qU-LWwrF64f4QKQT-
Vg5Wr4qEE1Zxk

• Optional text:

– Receptive field: http://www.cs.toronto.edu/~wenjie/papers/nips16/top.pdf

– Visualizing and Understanding CNN: https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

– Dilated convolutions: https://arxiv.org/abs/1511.07122

• Optional videos:

• https://www.youtube.com/watch?v=ghEmQSxT6tw

• https://www.youtube.com/watch?v=SQ67NBCLV98
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• Challenges with image classification

• Benchmark: ImageNet

• Fully connected neural network on images
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• Convolutional layer hyperparameters

• Convolutional layer example

• Receptive field (Field of View) 

• Dilated convolutions

• Pooling

• Depthwise Separable Convolution

• Last layer 

• Visualizing and Understanding CNN

• Applications were CNN are used

• Alternative to ConvNet
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Challenges with image classification

• Build invariance:
– Translation

– Occlusion

– Illumination

– View angle variations

– Deformation

– Background Clutter

– Interclass variation
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The ImageNet challenge

• The images classification challenge

• Dataset

• 1,431,167 images

• 1,000 classes
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Fully connected neural network on 
images
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• Most image applications are absolute position 
invariant.

• A fully connected network will have too many 
parameters and not able to scale to normal 
size images and generalize

𝑧 = 𝑊 𝑥
𝑎 = 𝑔(𝑧 )
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Convolutional vs correlation

• Note: We will be using cross correlation, although we will call it convolution. 
As the network weights are learned there is no real difference. 

• 2D cross correlation:

𝑧 𝑝, 𝑞 = w ⋆ 𝑥 = 𝑤 𝑟, 𝑠 ⋅ 𝑥 𝑝 + 𝑟, 𝑞 + 𝑠

• 2D convolution:

𝑧 𝑝, 𝑞 = w∗𝑥 = 𝑤 𝑟, 𝑠 ⋅ 𝑥 𝑝 − 𝑟, 𝑞 − 𝑠
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https://www.youtube.com/watch?v=C3EEy8adxvc



IN 5400
13.02.2019

Convolution example: 

𝑧 𝑝, 𝑞 = w ⋆ 𝑥 = 𝑤 𝑟, 𝑠 ⋅ 𝑥 𝑝 + 𝑟, 𝑞 + 𝑠
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• Input image 𝑥 with shape [4, 4]

• Weight matrix 𝑤 with shape 3, 3

• Output feature map 𝑧 with shape [2, 2]



IN 5400
13.02.2019

Convolution example: 
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Convolutional layer
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Convolutional layer

• We are convolving /sliding 
the filter spatially across the 
input image and computing 
the dot product. 
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Convolutional layer

• The input volume and the 
filer has always the same 
depth (blue value).
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Convolutional layer

• The activation from a local 
region is computed:

• 𝑧 = 𝑤 𝑥 + 𝑏
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Convolutional layer
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Convolutional layer
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Convolutional layer

• If we filter the input volume 6 times using 5x5x3 
filters, we get an output volume with 6 channels 
(depth)
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Activations

• We use an activation function separately on all elements of the output volume  
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Convolution neural network hyper-
parameters

• Stride

• Padding

• Kernel (filter/weights) size
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Stride

• Stride is the spatial step length in the convolution operation.

• Example: Input volume 7x7x1, kernel (filter) size 3x3x1

• The stride is an important parameter for determining the spatial size of the 
output volume
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Stride

• What about stride equal to 3?
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Using a 3x3x1 filter on the 
7x7x1 volume with stride 3 
does not fit!S
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Padding

• The output volume can get a lower spatial 
dimension compared to the input volume. We can 
solve this by padding the input volume. Common 
to use zero padding.

• Abbreviations: Stride (𝑆), spatial filter size (𝐹), 
input spatial size (𝑁 ), output spatial size (𝑁 )
and padding (𝑃)

• For 𝑆 = 1, we can achieve 𝑁 = 𝑁 by selecting 
𝑃 equal to:

𝑃 =

• Calculation of the spatial output size:

𝑁 =
𝑁 − 𝐹 + 2𝑃

𝑆
+ 1
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Padding examples

• Remember:   𝑁 = + 1

• Parameters: 

– 𝑁 = 7

– 𝑃 = 0

– 𝐹 = 3

• Stride 1     
 

→     
⋅

+ 1 = 5

• Stride 2     
 

→     
⋅

+ 1 = 3

• Stride 3     
 

→     
⋅

+ 1 = 2.33
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Padding examples

• Remember, to keep 𝑁 = 𝑁 with 𝑆 = 1 use:         

𝑃 =
𝐹 − 1

2

• 𝐹 = 3     
 

→    zero pad with 1

• 𝐹 = 5     
 

→    zero pad with 2

• 𝐹 = 7     
 

→    zero pad with 3
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Kernel size (filter bank)

• Each filter has a size of[F , 𝐹 ,  𝐹 ] e.g. 
[3, 5, 5]

• Multiple filters (𝐹 ) can be applied at 
each layer and the filter bank are 
represented by a 4-D tensor

• [𝐹 , 𝐹 , 𝐹 ,  𝐹 ]

• 𝐹  corresponds to the depth of the 
next layer 

• This is a practical representation and 
used by many deep learning 
frameworks.
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A one-layer, two-filter network
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Receptive field (Field of View)

• How much of the input image 
is available for a particular 
neuron?
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How large area influence the end 
result?

• With a convolutional network the 
receptive field increase with each 
layer

• 3 inputs influence each node in 
the first hidden layer
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How large area influence the end 
result?
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• With a convolutional network 
the receptive field increase with 
each layer

• 3 inputs influence each node in 
the first hidden layer

• 5 influence the next

INF 5860
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How large area influence the end 
result?

Page 46

INF 5860

• With a convolutional network 
the receptive field increase with 
each layer

• 3 inputs influence each node in 
the first hidden layer

• 5 influence the next

• 7 influence the next
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The receptive field grow with k-1 for 
each layer

• Two 3x3 filters give equal 
receptive field as one 5x5 filer

• Should we use 3x3 or 5x5?
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Parameter efficiency

• Two 3x3 filters give equal receptive field as one 5x5 filter

• Should we use 3x3 or 5x5 filters?

• Assumption: 

– The filter count in all layers are (𝐹 = 𝐹 = 𝐹 ) and we don’t account for 
biases.

• Number of parameters:

– 3x3 filter 
 

→ (3 ⋅ 3 ⋅ 𝐹 ) ⋅ 𝐹 + (3 ⋅ 3 ⋅ 𝐹 ) ⋅ 𝐹 = 18𝐹

– 5x5 filter 
 

→ (5 ⋅ 5 ⋅ 𝐹 ) ⋅ 𝐹 = 25𝐹

• Note: Many 3x3 filters will lead to a larger memory footprint during training as 
the system must store the values for backpropagation. 
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Smaller spatial filter size is more 
parameter efficient

Page 49

• A network with many parameters 
generally need more training data and 
computation time

• A larger receptive field per parameter is 
good

• More layers can give more reuse
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Strided convolutions

Page 50

• By skipping positions we can cover a 
larger area with less computation

• The effect of the receptive field for the 
next layer is important
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The effect of strided convolutions 
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• We still cover the whole input

• With stride of two we have increased the receptive field from 5
 

→7 in 
layer 2
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The effect of strided convolutions

Page 52

• Receptive field : 𝑅

• Spatial filter size: 𝐹

• Stride: 𝑆

• Layer index: k ∈ 1,2,3, … , 𝑛

𝑅 = 𝑅 + 𝐹 − 1 ⋅ 𝑆  

• Essentially all the following layers will 
have a receptive field multiplied by 𝑆
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Theoretical vs effective receptive field
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• “Effective receptive field 
only takes up a fraction of 
the full theoretical receptive 
field”



IN 5400
13.02.2019

With strides, spatial dimensions will 
become smaller
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• Usually some of the of the network 
capacity is preserved through an 
increasing number of channels
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Can the network still remember 
positions?
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• Yes, the network can still 
encode positional 
information in the depth
dimension

• A network can pass 
positional information (right, 
left etc.) to different 
channels
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Dilated convolutions
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• Larger receptive field, without 
reducing spatial dimension or 
increasing the parameters
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Dilated convolutions
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• Skipping values in the kernel

• Same as filling the kernel with every 
other value as zero

• Still cover all inputs

• Larger kernel with no extra 
parameters



IN 5400
13.02.2019

A growing dilation factor can give 
similar effect as stride

Page 59

• With a constant dilation factor you get the similar effect as using a larger kernel

• With growing dilation factor you can get an even larger receptive field, while still 
covering all inputs

Fisher Yu, Vladlen Koltun (2016) Multi-scale Context Aggregation by Dilated Convolutions
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Growing dilation factor

Page 60

• 1-D example: 

– Filter size: F = 3

– Layer: k ∈ 1,2,3, … , 𝑛

– Receptive field : 𝑅 = 2 − 1

– Dilation factor: 𝑙 = 2

𝑘 = 1

𝑘 = 2

𝑘 = 3
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Pooling
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• Spatial reduction and forcing invariance

• Operates over each activation map (channel) independently

• No learnable weights

• Two methods:

– Max pooling

– Average pooling



IN 5400
13.02.2019

Max pooling

Page 63

• A strided maximum filtering

• Choosing the maximum value 
inside the kernel



IN 5400
13.02.2019

Max-pooling: invariance built-in
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• With max-pooling you explicitly 
remove some spatial information

• This can help both position and 
rotation invariance
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Max-pooling have some important 
problems

Page 65

• Even if we want our final 
results to be positional 
invariant, we may need 
positional information in the 
earlier representations

• Only a small part of the 
network is updated with 
gradients each step (learning 
slower)

• We calculate a lot of values 
that is not “used”
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Depthwise Separable Convolution

• Depthwise separable convolution is an efficient convolutional layer. It is 
composed of two steps:

– Depthwise convolution

– Pointwise convolution
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𝑁

𝑁

𝑁

𝑁

𝑁

𝑁

𝑁

𝑁

𝑁

• Depthwise convolution :

– Input volume of shape [𝑁 , 𝑁 , 𝑁 ,]

– We use 𝑁 different kernels of shape [F = 1, 𝐹 , 𝐹 ] on the input channels 
individually

– Output volume [𝑁 , 𝑁 , 𝑁 ,]
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Pointwise convolution

• Pointwise convolutions are ordinary convolutions with :

– kernels of shape: [𝐹 , 𝐹 = 1, 𝐹 = 1] 

– Filter bank: [𝐹 , 𝐹 , 1, 1]
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𝑁
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𝑁

𝑁 𝑁
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Depthwise Separable Convolution –
Summary

• Depthwise separable convolution = Depthwise convolution + Pointwise convolutions 

• Lets compare the number of parameters in a depthwise separable convolution and a 
convolutional layer: 

[𝐹 = 512, 𝐹 = 256, 𝐹 = 3, 𝐹 = 3]

• Parameters in a depthwise separable convolution: 

– 𝐹 ⋅ 1 ⋅ 𝐹 ⋅ 𝐹  + 𝐹 ⋅ 𝐹 ⋅ 1 ⋅ 1 = 133,376

• Parameters in a convolutional layer:

– 𝐹 ⋅ 𝐹 ⋅ 𝐹 ⋅ 𝐹 = 1,179,648
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• Alternative to ConvNet
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Structure of the last layer(s) –
dense layer
• At the end we normally have a feature map of some spatial size and channels 

(𝑁 , 𝑁 , 𝑁 ).
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𝑁
𝑁

𝑁

1

𝑁 ⋅ 𝑁 ⋅ 𝑁  

• Assume we have a 3 class classification problem and 
want our output to be a vector of length 3.

• We can flatten the input feature map and stack dense layers 
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Structure of the last layer(s) – fully 
convolutional

Page 72

• We can make sure the last layer has the same number of channels as we have 
classes.

• A 3 class problem yields 𝑁 = 3

𝑁 = 3
𝑁

𝑁

𝑁 = 3
𝑁 = 1
𝑁 = 1

• Average over the spatial dimensions 𝑁 and 𝑁
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Visualizing and Understanding 
ConvNets
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• AlexNet, the winner of the 
ImageNet classification challenge 
2012.

• Filter bank of size (11x11x3)x96 
for the first convolutional layer: 

• Visualizing the learnt weights
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Visualizing and Understanding deeper 
layers

Page 75

• Looking at the filer coefficient directly at deeper layer is not meaningful. 

• Visualization with Deconvnet

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks
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Hierarchical learning
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• A convolution neural network is built up as a hierarchy were the 
complexity (abstraction) is increased by depth.

• A hierarchical structure is parameter efficient
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Reuse of features
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• Each filter kernel is applied at all spatial 
positions

• Features are reused:

– edges, fur, eye, grass

• Reuse instead of retraining many times 
over
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Data driven
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• A convolutional neural network still “remembers” shapes, rotation, size.

• No fundamental understanding of the concept “cat”
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Application of convolutional neural 
network 
• Classification

• Detection

• Segmentation 

• Reinforcement learning (game playing)

• Image captioning
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Classification

Page 81

• Images for ImageNet
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Detection
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Segmentation
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Reinforcement learning (game playing)
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Image captioning
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Alternative to ConvNet

Note: Not part of curriculum

• Rotation equivariant vector field networks

– https://arxiv.org/abs/1612.09346

• Capsule Network

– https://arxiv.org/abs/1710.09829
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CNN vs dense net on cifar10
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