
introduction
IN 5400— Training convolutional networks for classification

Anne Solberg
27.02.2019

University of Oslo



Plan for today

∙ Activation functions
∙ Weight initialization
∙ Data normalization
∙ Optimization algorithms
∙ Learning rates
∙ Batch normalization
∙ Review well-known architectures for classification
∙ Hyperparameter optimization
∙ Overview of training
∙ Continued next week with topics related to generalization/regularization

1



Reading material and relevant video links:

∙ Sections on weight initialization, data normalization, and batch normalization see
http://cs231n.github.io/neural-networks-2/f

∙ About the learning process and optimization
http://cs231n.github.io/neural-networks-3/

∙ Relevant video links: Lecture 6, 7 and 9 from CS 231n at Stanford, link here

2

http://cs231n.github.io/neural-networks-2/f
http://cs231n.github.io/neural-networks-3/
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv


The core of backpropagation

Monitor the range of inputs, weights, and outputs to make sure gradients behave well!

3



activation functions



Activation functions overview

∙ Still an active area of research
∙ Sigmoid activation
∙ Tanh activation
∙ ReLU activation
∙ Mention briefly:

∙ Leaky ReLU
∙ Maxout
∙ ELU

∙ Goal: understand the pro’s and con’s of each type

5



Sigmoid activation

g(z) =
1

1 + e−z

g′(z) = g(z)(1− g(z)

∙ Output between 0 and 1
∙ Historically popular
∙ Has some shortcomings

6



What happens to the gradients during backpropagation?

∙ Sigmoids kill gradients - why?
∙ Sigmoids are currently rarely used.

7



Tanh activation

g(z) = tanh(z)

∂g

∂z
= 1− tanh2(z)

∙ Output between -1 and 1
∙ Will saturate and kill gradients (called
vanishing gradients)

∙ Not used for convolutional layers, but
used in recurrent nets where the node
gets a new input for each stage (see
later lecture)

8



Rectified Linear Unit (ReLU) activation

g(z) = max(0, z)

∂g

∂z
= 0 if z ≤ 0,

otherwise 1

∙ Does not saturate
∙ Can sometimes ‘die’ during training (if
input negative, output is 0)

∙ Can sometimes result in exploding
gradients, but this can be limited by
using Batch Normalization

∙ Be careful with the learning rate
∙ Best overall recommendation for
convolutional layers

9



Leaky ReLU activation

g(z) = max(0.01z, z)

∙ Does not saturate
∙ Less prone to die
∙ Results are not consistently better than
ReLU, and computation slighly slower

∙ Do the basic experiments with ReLU, but
consider trying Leaky ReLU as part of
the hyperparameter grid optimization

∙

10



ELU activation

g(z) = z if z ≥ 0,

otherwise α(exp(z)− 1)

∙ Does not saturate or die
∙ Benefits of ReLU, but more expensive to
compute

∙
∙ Do the basic experiments with ReLU, but
consider trying ELU as part of the
hyperparameter grid optimization

∙

11



data normalization



Input data scaling and gradient descent

∙ If the input channels or features have equal
scaling, the criterion function can ideally locally
look like a circle, making gradient descent
behave well

∙ If the input channels have different scaling, the
criterion function can locally look like an ellipse,
making gradient descent updates overshoot and
converge slow.

13



Common data normalization

∙ Most common normalization: normalize to zero mean, unit variance data by scaling
each feature individually as x = (x− µ)/σ.

∙ µ is the mean over the training data set, and σ the standard deviation (can be
updated iteratively for each minibatch).

∙ For images, compute the mean and standard deviation along each channel of the
data (e.g. R,G,B)

∙ For other types of data, consider whitening them by applying e.g. PCA if they are
highly correlated

∙ Store the values used on the normalization, so you can apply the same
normalization to the test data

14



weigth initialization



Weight initialization - first principle

∙ Do not initialize the weigths to the same value! If you do, all gradients will be equal,
and all nodes will learn the same

∙ Break the symmetry by initializing the weights to have small random numbers.
∙ For deep networks, initialization should be properly scaled.

∙ Too small weights, gradients die.
∙ Too large weights, gradients explode.

16



Xavier and He initialization

∙ Main idea: normalize the weights in a layer to a region where gradient updates work.
Normalization factor depends on the activation function.

∙ Consider a neuron with n inputs and z =
∑n

i=1 wjxj (n is called the fan-in of the
node).

∙ The variance of z is

V ar(z) = V ar(
n∑

i=1

wjxj)

∙ It can be shown that
V ar(z) = (n(V ar(w))V ar(x)

∙ If we make sure that V ar(wj) = 1/n for all j, by scaling each weight by
√

1/n, the
variance of the output will be 1. This works best for tanh activations.

∙ He showed that for ReLU, the adding a factor or
√
2 works better, so each weight is

scaled by
√
2/n

17



Activation histogram - Xavier initalization and tanh-activation

∙ Network with 8 layers
∙ Shows histograms of the activations
during training

∙ Activations are in a range where
backpropagation works.

18



Activation histogram - He initalization and ReLU-activation

19



Initalization the bias terms

∙ When W is initalized to small random numbers, symmetry is broken and b can be
initialized with 0.

∙ It is also common to initialize all b’s to a common constant, e.g. 0.01

20



batch normalization



Introduction to batch normalization

∙ As training progresses, the and variance of the weights will typically change, and at a
certain point make convergence slow. This is called an internal covariance shift.

∙ Batch normalization https://arxiv.org/abs/1502.03167 countereffects this.
∙ Batch normalization layer are typically inserted after fully connected (or
convolutional) layers, before nonlinearity.

∙ The normalization makes the result (z − values) gaussian with zero mean and unit
variance.

22



Batch normalization algorithm - training

∙ For a given node and a given minibatch, compute the mean µk and σk .
∙ First, create zero mean, unit variance: ẑk = (zk − µk)/σk

∙ Experiments have shown that we should allow a scaling to avoid limiting what the
node can express:

z̃k = γẑk + β

∙ γ andβ are learned using backpropagation, and they are specific to the layer.
∙ Using this scaling normally speeds up the convergence by getting more effective
gradients.

∙ Batch normalization significantly speeds up gradient descent and even improves
performance, try it!

∙ Store γ and β.

23



Batch normalization - what to do at test time

∙ At test time: we need mean and standard deviation should we use to normalize.
∙ The best is to use the mean and standard deviation over the entire training data set.
∙ This can be efficiently computed using moving average estimates over the mini
batches, apply this during traning and store µk andσk .

24



Other types of normalization

∙ Normalization is important for efficient gradient flow
∙ Batch norm normalize across a batch, but we can also normalize across channels,
instances, or groups of channels.

∙ A good reference is https://arxiv.org/pdf/1803.08494.pdf

25

https://arxiv.org/pdf/1803.08494.pdf


gradient descent updates



Problems with stochastic/minibatch gradient descent

∙ In low dimensions, local minima are
common

∙ In high dimensions, saddle points are
more common.

27



Gradient descent with momentum

∙ A few variations of weight updates in minibatch gradient descent are worth
considering.

∙ Regular gradient descent updates:

w = w − λ∂w

∙ Momentum updates:

v = ρv − λ∂w

w = w + v

∙ ρ is the momentum parameter (common value 0.9)
∙ Analogy to a ball sliding down a hill. At a given point the ball has velocity v. ∂w is
the local slope, and the step is determined by a combination of slope and velocity. ρ
acts like friction.

∙ Initialize with v = 0.
28



Gradient descent with Nesterov momentum

∙ Idea: if we are at point w, with momentum the next estimate is w + ρ ∗ v due to
velocity from previous iterations.

∙ Momentum update has two parts. One due to velocity, and one due to current
gradient.

∙ Since velocity is pushing us to w + ρ ∗ v, why not compute the gradient at point
w + ρ ∗ v, not point w? (Look ahead)

∙ Nesterov momentum updates:

wahead = w + µv

v = µv − λ∂wahead

w = w + v

29



Implementing Nesterov

∙ Notice that Nesterov creates the gradient at wahead, while we go directly from w to
w + v.

∙ It is more convenient to avoid computing the gradient at a different location by
rewriting as:

vprev = v

v = ρv − λ∂wahead

w = w + (1− ρ)v − ρvprev

30



Learning rate decay

∙ Setting the learning rate is difficult, convergence is sensitive to it.
∙ Using a decay scheme is often effective:

λ = 0.95epochnumλ0

λ =
k√

epochnum
λ0

∙ This typically helps to get away from saddle point and the loss function often looks
like a staircase:

31



Parameter-specific update schemes

∙ SGD and SGD with momentum updates all weight/parameters using the same
scheme

∙ Other methods scale the update by the size of the weights/parameters:
∙ We will look at ADAM, but other choices are AdaGrad or RMSprop.

∙ AdaGrad http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
∙ Accumulates weight gradients, these can build up and is not so often used.

∙ RMSprop
∙ Introduce a cache of moving average of the gradients of each weight

∙ ADAM https://arxiv.org/abs/1412.6980
∙ Combines both momentum and a moving average of the gradients of each weight

32



ADAM - main idea without fix for the first iterations

ADAM update, all variables are vectors
1. Set ρ1 = 0.9, ρ2 = 0.999, ϵ = 1e− 8.
2. Update the mean (first order moment) µ∂w and the non-centered variance (second
order moment) var∂w of ∂w.

µ∂w = ρ1µ∂w + (1− ρ1)∂w

var∂w = ρ2var∂w + (1− ρ2)(∂w)
2

3. Take a scaled step:
w = w − λ

µ∂w

(
√
var∂w + ϵ)

33



ADAM - algorithm

ADAM update with bias correction for the first iterations:
∙ Set ρ1 = 0.9, ρ2 = 0.999, ϵ = 1e− 8.
∙ For t = 1 : maxiter

lµ∂w = ρ1µ∂w + (1− ρ1)∂w

µt = µ∂w/(1− ρt1)

var∂w = ρ2var∂w + (1− ρ2)(∂w)
2

vt = var∂w/(1− ρt2)

w = w − λ
µt

(
√
vt + ϵ)

34



Recommendations for weigth updates

∙ SGD with momentum, try learning rate decay too.
∙ Also used weigth decay - covered in next lecture

∙ ADAM also works well
∙ If using weigth decay, be aware that this a currently a matter of discussion
https://www.fast.ai/2018/07/02/adam-weight-decay/

35



Optimizing hyperparameters

∙ Training data: part of the data set used to estimate the weights during
backpropagation. For large networks, 80% of the data can be used for training.

∙ Validation data: part of the data used for finding hyperparameters (typically 10%).
∙ Test data: part of the data used for estimating the accuracy. Used ONCE after fitting
all parameters and architectures.

∙ If you split your data set yourself, take care to avoid domain shift. Also take care not
to be tempted to try the test set too early, finish all training before using it.

36



Training strategies

∙ Check if you model work on the training data set. A good idea can be to verify that
you can overfit to a smaller portion of the training data. If not, your model is not
working, you might have an error somewhere, or your data might not be trainable.

∙ Run a few epochs (iterations through all traning samples) using varying learning rate
and inspect plots of the loss function and the accuracy.

∙ Check your amount of data compared to the model complexity: should you consider
traning from scratch or using pretrained model/transfer learning (next week).

∙ Check preprocessing/data standardization.
∙ Check the quality of your labels (sometimes needed for new data sets).
∙ Hyperparameter search is something you start after a good set of experiments, when
you have confidence that your model is working.

∙ Watch out for NaN! Error? Too high learning rate?
∙ Use regularization/dropout (learn about this next week)!
∙ Experience helps!

37



Monitor the loss and accuracy for each run

38



Loss functions and learning rate

39



Hyperparameters: network architecture

∙ Number of layers
∙ Number of filters in each layer
∙ Filter kernel size

40



Grid search

∙ Use a random grid!

41



Scale for hyperparameters

Parameter Initial Value Scale
Learning rate 0.001 or 0.01 Log
Momentum 0.9 Log
Mini-batch size 32, 64, 128 Linear
Number of layers Linear
Number of hidden units Linear
Filter kernel size 3× 3 Linear

∙ Hyperparameters are not orthogonal
∙ They can have different sensitivity
∙ Next week: add Dropout, weight decay and other regularization parameters to the
parameter list

42



Typical results after traning using these methods

∙ Gap between training error and validation error .
∙ Need regularization to avoid overfitting (next lecture).

43



cnn architectures for classification



Why look at previous architectures?

∙ Understand how the basic parts of a successful CNN work together
∙ Understand how the shape of the output changes
∙ Understand the new ideas introduced in central architectures
∙ These architectures are the starting point for your training on new classification
applications.

∙ Many works refer to these.
∙ Remembering details not essential!

45



LeNet - Short introduction

Paper Gradient Based Learning Applied to Document Recognition
Authors Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

Year 1998
Citations 11 135
Link to pdf

46

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


Initial notes

∙ Very influential, and successful in its time
∙ First “modern” cnn
∙ We start to see tendencies of the familiar cnn composition, but it is not the first cnn
∙ The paper discusses a lot of central aspects
∙ Also uses a lot of deprecated techniques:

∙ Originally uses a stochastic diagonal Levenberg-Marquardt optimization routine
∙ Originally uses distance from an “ideal” set of ASCII characters as loss
∙ The “idea” of the method holds with SGD and softmax
∙ Originally a complicated scheme of which filters to apply on which feature maps
∙ Also uses non-linearity after pooling

47



Activation functions

∙ Convolution nodes uses a scaled tanh non-linearity

g(z) = A tanh(Sz) (1)

∙ Sets A = 1.7259, and S = 2/3

∙ This makes g(−1) = −1 and g(1) = 1, which is chosen for convenience

48



LeNet — Input

∙ 32× 32× 1

∙ Used for character recognition
∙ Normalized to zero mean and unit
variance

49



LeNet — First convolutional layer

∙ Input shape: 32× 32× 1

∙ 6 convolutions with kernel shape
5× 5× 1, no padding

∙ 5 · 5 · 6+ 1 · 6 = 156 trainable parameters
∙ Output shape: 28× 28× 6

50



LeNet — First subsample (pooling) layer

∙ Input shape: 28× 28× 6

∙ Window shape: 2× 2 with stride 2

∙ Output shape: 14× 14× 6

∙ Activation for a unit:
a = g

(
x1+x2+x3+x4

w + b
)

∙ w and b is shared by all units in a
feature map

∙ w and b are trainable, resulting in
6 · (1 + 1) = 12 parameters

∙ Very similar to an average pool layer

51



LeNet — Second convolutional layer

∙ Input shape: 14× 14× 6

∙ 16 convolutions with shape 5× 5× 6, no
padding

∙ Output shape: 10× 10× 16

∙ In total
25 · (6 · 3 + 6 · 4 + 3 · 4 + 6) + 16 = 1516

trainable parameters

52



LeNet — Second subsample (pooling) layer

∙ Input shape: 10× 10× 16

∙ Window shape: 2× 2 with stride 2

∙ Output shape: 5× 5× 16

∙ Activation for a unit:
a = g

(
x1+x2+x3+x4

w + b
)

∙ w and b is shared by all units in a
feature map

∙ w and b are trainable, resulting in
16 · (1 + 1) = 32 parameters

53



LeNet — Third convolutional layer

∙ Input shape: 5× 5× 16

∙ 120 convolutions with shape 5× 5× 16,
no padding

∙ Output shape: 1× 1× 120

∙ In total 5 · 5 · 16 · 120 + 1 · 120 = 48120

trainable parameters

54



LeNet — Fully connected layer

∙ Input nodes: 120
∙ Output nodes: 84
∙ In total 120 · 84+ 84 = 10164 parameters

55



LeNet — Fully connected output layer

∙ Input nodes: 84
∙ Output nodes: 10 (number of classes in
MNIST)

∙ In total 84 · 10 + 10 = 850 parameters

56



Architecture — summary

∙ Alternates between convolution and pooling layers, finishing with dense layers
∙ Propagating through the network:

∙ Number of channels (feature maps) increase
∙ Feature map dimensions reduce

∙ Number of trainable parameters: 60 850

57



AlexNet - Short introduction

Paper ImageNet Classification with Deep Convolutional Neural Networks
Authors Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton

Year 2012
Citations 20 340
Link to pdf

58

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


Initial notes

∙ At the time superior performance on the ImageNet challenge
∙ Kick-started the machine-learning renaissance
∙ Hinted at the importance of depth
∙ Successful use of dropout and ReLU
∙ Very efficient convolution implementation
∙ Distributed the network over 2 GPU’s

59



Architecture — First convolution

∙ Input shape: 227× 227× 3

∙ On each gpu: 48 11× 11× 3

convolutions with stride 4

∙ Response normalization
∙ 3× 3 max pool with stride 2

∙ Output shape: 27× 27× 48 on each gpu

60



Architecture — Second convolution

∙ Input shape: 27× 27× 48

∙ On each gpu: 128 5× 5× 256

convolutions
∙ Notice the communication between
gpus

∙ Response normalization
∙ 3× 3 max pool with stride 2

∙ Output shape: 13× 13× 128 on each
gpu

61



Architecture — last convolution layers

∙ On each gpu:
∙ Input shape: 13× 13× 128

∙ Conv3: 192 3× 3× 128 convolutions
∙ Conv4: 192 3× 3× 192 convolutions
∙ Conv5: 128 3× 3× 192 convolutions

∙ 3× 3 max pool with stride 2

∙ Output shape: 6× 6× 128 on each gpu

62



Architecture — dense output layers

∙ On each gpu:
∙ Input shape: 6× 6× 128

∙ Dense1: 9216(= 2 · 6 · 6 · 128) → 4096

∙ Dense2: 2048 → 4096

∙ Dense3: 2048 → 1000

∙ Notice communication between gpus
∙ Final output (1000) is the number of
classes

63



Summary

∙ Alternating convolution and pooling, finalizing with dense layers
∙ Reducing spatial dimension, and increasing number of feature maps
∙ Uses ReLU
∙ Uses data augmentation, weight decay, and dropout
∙ Very many parameters compared to LeNet, about 60 million

64



VGG - Short introduction

Paper Very Deep Convolutional Networks for Large-Scale Image Recognition
Authors Karen Simonyan, and Andrew Zisserman

Year 2014
Citations 9428
Link to pdf

65

https://arxiv.org/pdf/1409.1556.pdf


Initial notes

∙ Simple and elegant design
∙ Further investigates the importance of deep nets
∙ Very good performance on ImageNet
∙ Very large

66



VGG16 — First convolution

67



VGG16 — First downsampling

68



VGG16 — Second downsampling

69



VGG16 — Third downsampling

70



VGG16 — Fourth downsampling

71



VGG16 — Output layers

72



Inception / GoogLeNet - Short introduction

Paper Going deeper with convolutions
Authors Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich

Year 2014
Citations 6282
Link to pdf

73

https://arxiv.org/pdf/1409.4842.pdf


Initial notes

∙ Impressive ImageNet result
∙ Complex structure with few parameters (anti-thesis of VGG networks)
∙ 12 times fewer parameters than AlexNet

74



GoogLeNet — Stacking inception modules

∙ The inception module controls the
number of feature maps

∙ Can stack multiple inception modules
∙ Put max-pool layers in between
occasionally

75



ResNet - Short introduction

Paper Deep Residual Learning for Image Recognition
Authors Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

Year 2015
Citations 6598
Link to pdf

76

https://arxiv.org/pdf/1512.03385.pdf


Initial notes

∙ “Solved” ImageNet
∙ Elegant solution to a concrete problem

77



Problem

∙ Deeper models seems to be better
∙ However, very deep models perform worse
∙ Not due to overtraining
∙ Degradation problem

78



Deep models should be at least as good as shallow

∙ A deeper model should not have higher training error
∙ “Proof” by construction

∙ Take a shallow model
∙ Insert extra layers as identity mappings
∙ This deeper mode should have at least as good training error

∙ How to solve this is the key

79



Residual learning

∙ Stack a couple of layers
∙ Input x
∙ Let H(x) be the desired mapping to be
learned

∙ Explicitly compose the output as
H(x) = F (x) + x, by adding the input x

∙ This means that what has been learnt is
the residual F (x) = H(x)− x

∙ This should make identities H(x) = x

easier to learn
∙ Easier to train very deep networks

80



Base architecture

81



Revolution of depth

Figure 1: Source: An analysis of Deep Neural Network Models for Practical Applications. Canziani, A., Paszke, A., Culurciello, E., 2016

82



Imagenet accuracy and size

Figure 2: Size and accuracy comparison. Blob size reflects the number of parameters. Source: An analysis of Deep Neural Network Models for Practical Applications. Canziani, A.,
Paszke, A., Culurciello, E., 2016

83



Thoughts about architecture

∙ As with everything: choose the tool best
suited for your problem

∙ ImageNet top accuracy is not
necessarily your ideal metric

∙ Some things (non-exhaustive) to take
into account, in addition to accuracy

∙ Training time
∙ Inference time
∙ Power consumption
∙ Memory consumption
∙ Processing power consumption
∙ Amount of training data

∙ Hard constraints on the above have
shaped current models

Figure 3: Source: An analysis of Deep Neural Network Models for Practical Applications.
Canziani, A., Paszke, A., Culurciello, E., 2016

84



Learning goals

∙ Pro’s and con’s for differnet activation functions.
∙ How weights should be initialized and scaled given the activation function.
∙ How batch norm works at traning and test time.
∙ How momentum SGD and ADAM works.
∙ Know how to optimize the hyperparameters, including scale and sensitivity.
∙ Know the most characteristic features of central architectures.

85



Questions?

86


	Activation functions
	Data normalization
	Weigth initialization
	Batch normalization
	Gradient descent updates
	 CNN architectures for classification

