

UiO **Department of Informatics** University of Oslo

IN5400 Machine learning for image classificationLecture 7: GeneralizationTollef JahrenMarch 6 , 2019

ifi

UiO **Department of Informatics** University of Oslo

Outline

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets
- Part 3: Miscellaneous
 - Rethinking generalization
 - Capacity of dense neural networks

UiO **Department of Informatics**

University of Oslo

Readings

• Optional:

- Learning theory (caltech course):
 - <u>https://work.caltech.edu/lectures.html</u>
 - Lecture (Videos): 2,5,6,7,8,11
- Read: CS231n: section "Dropouts"
 - <u>http://cs231n.github.io/neural-networks-2/</u>
- Read: Multitask learning
 - <u>http://ruder.io/multi-task/</u>
- Read: The Curse of Dimensionality in classification
 - <u>http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/</u>
- Read: Rethinking generalization
 - <u>https://arxiv.org/pdf/1611.03530.pdf</u>

UiO **Department of Informatics**

University of Oslo

IN5400 Page 4 06.03.2019

Progress

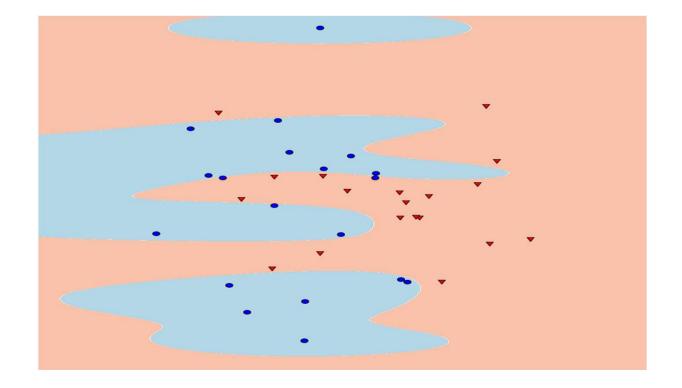
- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets

• Part 3: Miscellaneous

- Rethinking generalization
- Capacity of dense neural networks

Is learning feasible?

• A pattern need to exist!



IN5400

06.03.2019

Page 5

UiO **Department of Informatics** University of Oslo

Notation

- Formalization supervised learning:
 - Input: *x*
 - Output: *y*
 - Target function: $f : X \rightarrow Y$
 - Data: $(x_1, y_1), (x_2, y_2) \cdots, (x_N, y_N)$
 - $\downarrow \qquad \downarrow \qquad \downarrow$
 - Final hypothesis: g: $\mathcal{X} \rightarrow \mathcal{Y}$

Example:

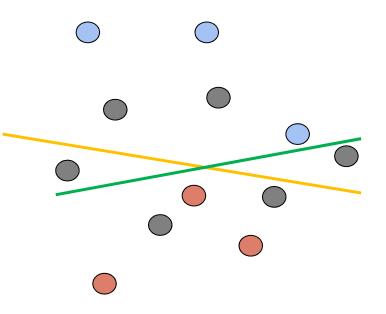
Hypothesis set (\mathcal{H}): { $y_1 = w_1 x + w_0$, $y_2 = w_2 x^2 + w_1 x + w_0$, NN, ... } A hypothesis (h): y = 2x + 1

IN5400

UiO **Department of Informatics** University of Oslo

More notation

- **In-sample** (colored): Training data available to find your solution.
- **Out-of-sample** (gray): Data from the real world, the hypothesis will be used for.
- Final hypothesis (g):
- Target hypothesis (f):
- **Generalization:** Difference between the in-sample error and the out-of-sample error



IN5400

06.03.2019

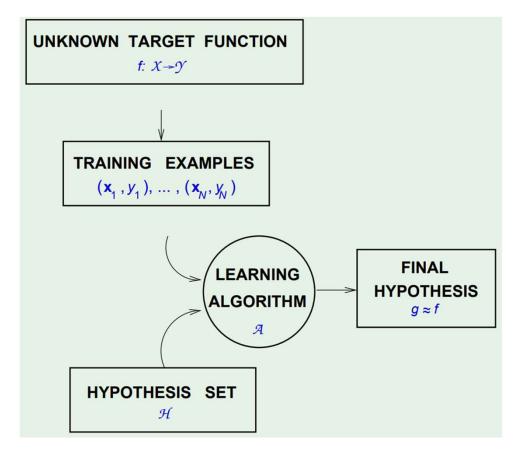
Page 7

UiO **Department of Informatics** University of Oslo

Learning diagram

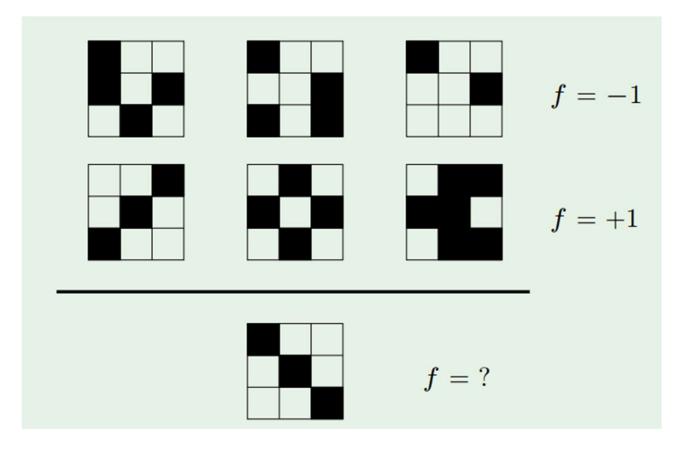
- The Hypothesis Set $\mathcal{H} = \{h\}, g \in \mathcal{H}$
- The Learning Algorithm
 - e.g. Gradient descent

The hypothesis set and the learning algorithm are referred to as the **Learning model**



IN5400

Learning puzzle



Page 9

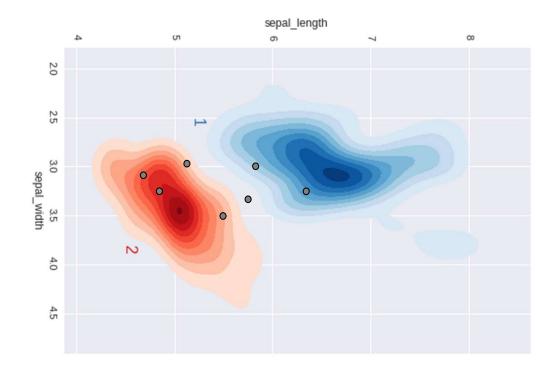
IN5400

The target function is UNKNOWN

- We cannot know what we have not seen!
- What can save us?
 - Answer: **Probability**

Drawing from the same distribution

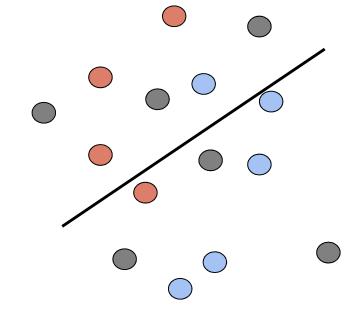
- Requirement:
 - The in-sample and out-of-sample data must be drawn from the same distribution (process)



IN5400

What is the expected out-of-sample error?

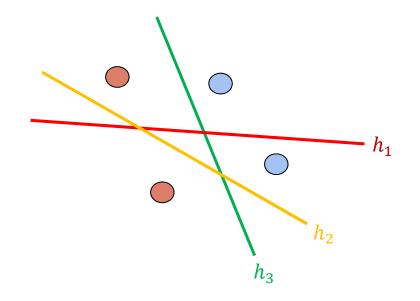
- For a randomly selected hypothesis
- The closest error approximation is the **in-sample** error



IN5400

What is training?

- A general view of training:
 - Training is a search through possible hypothesis
 - Use in-sample data to find the best hypothesis



IN5400

What is the effect of choosing the best hypothesis?

- Smaller **in-sample** error
- Increasing the probability that the result is a coincidence
- The expected **out-of-sample** error is greater or equal to the **in-sample** error

h ₁
h ₂

Searching through all possibilities

- The extreme case search through all possibilities
- Then you are guaranteed 0% in-sample error rate
- No information about the out-of-sample error

IN5400

UiO **Department of Informatics**

University of Oslo

IN5400 Page 16 06.03.2019

Progress

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets

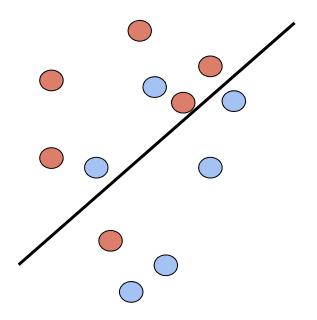
Part 3: Miscellaneous

- Rethinking generalization
- Capacity of dense neural networks

Capacity of the model (hypothesis set)

- The model restrict the number of hypothesis you can find
- Model capacity is a reference to how many possible hypothesis you have available
- A linear model has a set of all linear functions as its hypothesis

$$\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$$

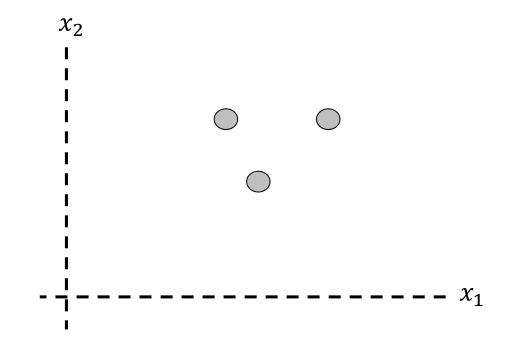


UiO **Department of Informatics** University of Oslo

Measuring capacity

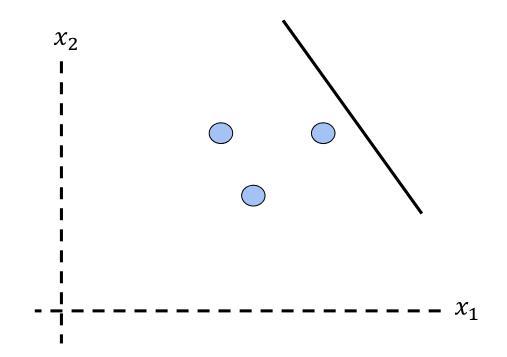
- Vapnik-Chervonenkis (VC) dimension
 - Denoted: $d_{VC}(\mathcal{H})$
 - Definition:
 - The maximum number of points that can be arrange such that ${\mathcal H}$ can shatter them.

- (2D) Linear model $\hat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 3)

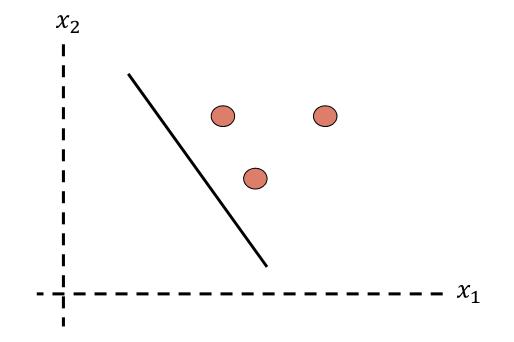


IN5400

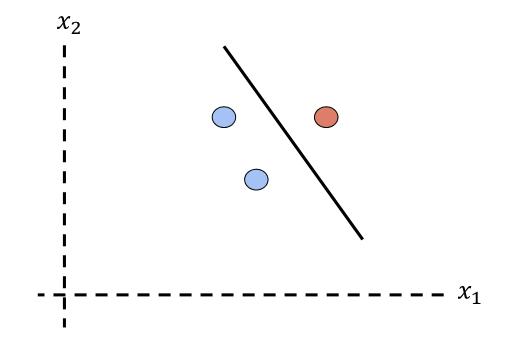
- (2D) Linear model $\hat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 3)



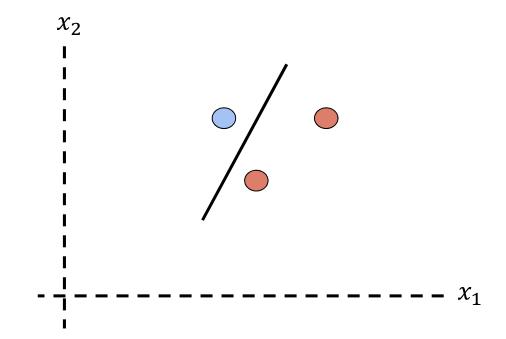
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 3)



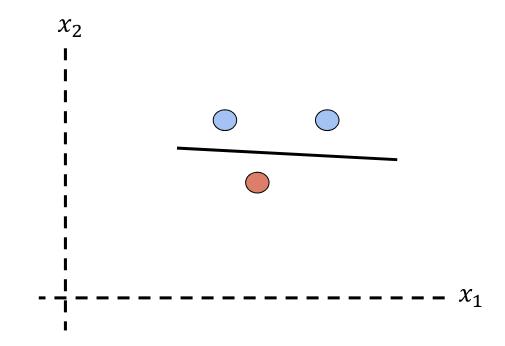
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 3)



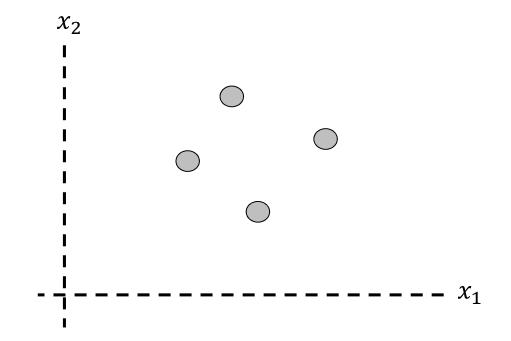
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 3)



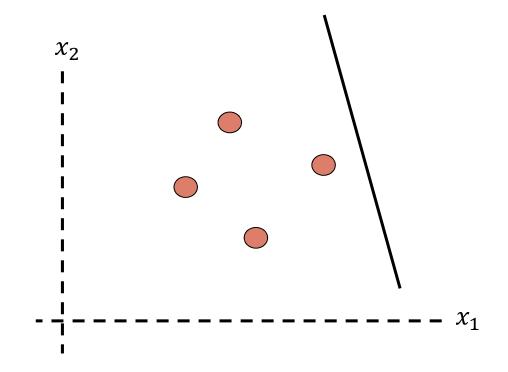
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 3)



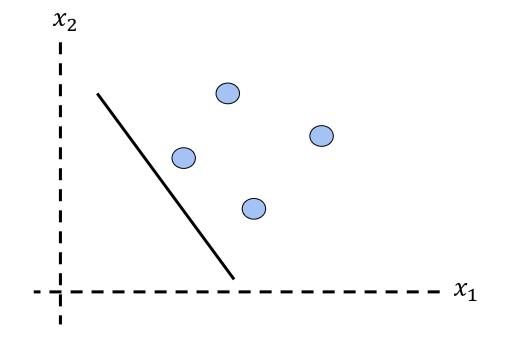
- (2D) Linear model $\hat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



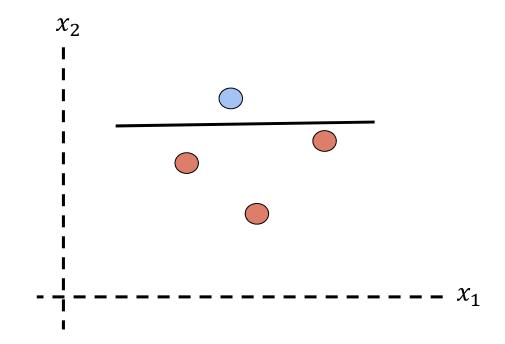
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



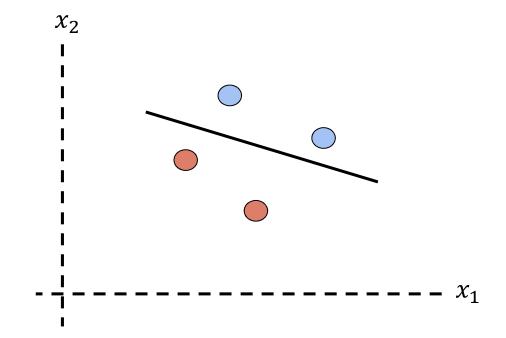
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



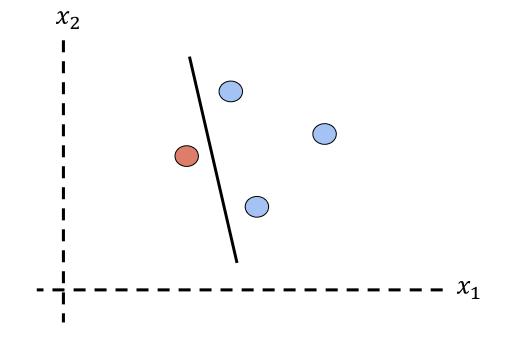
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)

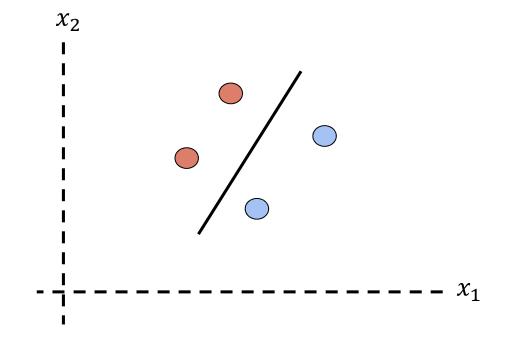


- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



IN5400 Page 30 06.03.2019

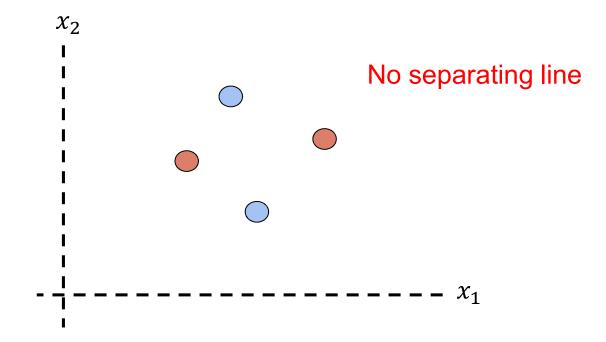
- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



- (2D) Linear model $\hat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



- (2D) Linear model $\widehat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$
- Configuration (N = 4)



UiO **Department of Informatics** University of Oslo IN5400 Page 34 06.03.2019

VC dimension

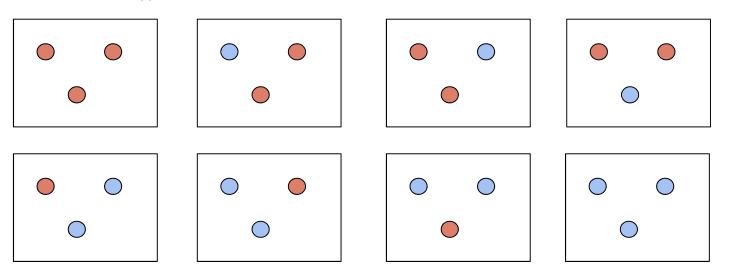
- Definition
 - The maximum number of points that can be arrange such that ${\mathcal H}$ can shatter them.
- The VC dimension of a linear model in dimension *d* is:
 - $d_{VC}(\mathcal{H}_{linear}) = d + 1$
- Capacity increases with the number of **effective** parameters

Growth function

- The **growth function** is a measure of the capacity of the hypothesis set.
- Given a set of N samples and an **unrestricted** hypothesis set, the value of the growth function is:

 $m_{\mathcal{H}}(N)=2^N$

Example: $m_{\mathcal{H}}(3) = 8$



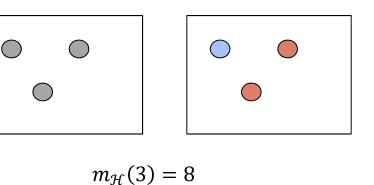
Growth function for a restricted hypothesis set

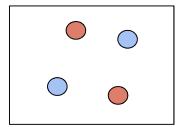
• For a **restricted** (limited) hypothesis set the growth function is bounded by:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{VC}} \binom{N}{i}$$

Maximum power is $N^{d_{VC}}$

• Linear model





 $m_{\mathcal{H}}(4)=14$

IN5400

Generalization error

• Error measure binary classification:

$$e(g(\mathbf{x}_n), f(\mathbf{x}_n)) = \begin{cases} 0, & \text{if } g(\mathbf{x}_n) = f(\mathbf{x}_n) \\ 1, & \text{if } g(\mathbf{x}_n) \neq f(\mathbf{x}_n) \end{cases}$$

• In-sample error:

$$E_{in}(g) = \frac{1}{N} \sum_{n=1}^{N} e(g(\mathbf{x}_n), f(\mathbf{x}_n))$$

• Out-of-sample error:

$$E_{out}(g) = \mathrm{E}_{\mathbf{x}}\left[e\left(g(\mathbf{x}), f(\mathbf{x})\right)\right]$$

Generalization error:

$$G(g) = E_{out}(g) - E_{in}(g)$$

Upper generalization bound

- Number of **In-sample** samples, *N*
- Generalization threshold, ϵ
- Growth function: $m_{\mathcal{H}}$ ()
- The Vapnik-Chervonenkis Inequality

$$P\left[|E_{out}(g) - E_{in}(g)| > \varepsilon\right] \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\varepsilon^2 N}$$
Maximum power is $N^{d_{VC}}$

What makes learning feasible?

- Restricting the capacity of the hypothesis set!
- But are we satisfied?
 - No!
- The overall goal is to have a small $E_{out}(g)$

IN5400

UiO **Department of Informatics** University of Oslo

The goal is small $E_{out}(g)$

$$P\left[|E_{out} - E_{in}| > \varepsilon\right] \leq \underbrace{4 \, m_{\mathcal{H}}(2N) \, e^{-\frac{1}{8}\varepsilon^2 N}}_{\delta}$$

$$\varepsilon = \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}} = \Omega(N, \mathcal{H}, \delta)$$

$$P\left[|E_{out} - E_{in}| < \Omega\right] \ge 1 - \delta$$

With probability $\geq 1 - \delta$:

$$E_{out} < E_{in} + \Omega(N, \mathcal{H}, \delta)$$

UiO **Department of Informatics**

University of Oslo

IN5400 Page 41 06.03.2019

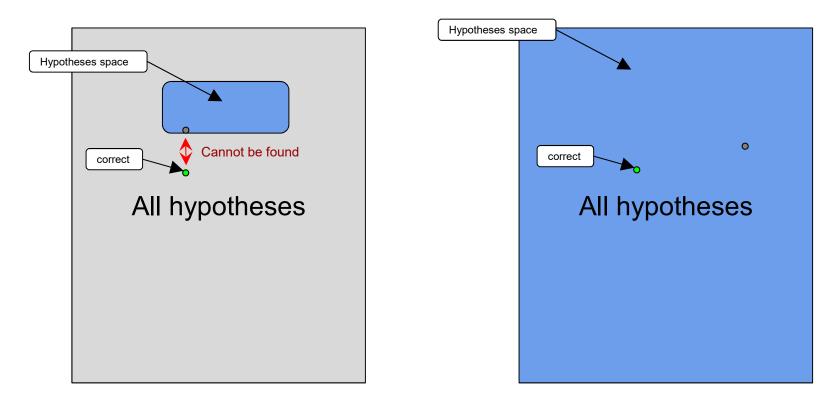
Progress

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets

Part 3: Miscellaneous

- Rethinking generalization
- Capacity of dense neural networks

A model with wrong hypothesis will never be correct



- Bias: The learning model cannot represent the target function due a limited hypothesis set
- **Variance:** The final hypothesis is a function of our dataset, and we might not find the optimal target function

IN5400

UiO **Department of Informatics**

University of Oslo

Progress

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets
- Part 3: Miscellaneous
 - Rethinking generalization
 - Capacity of dense neural networks

IN5400 Page 44 06.03.2019

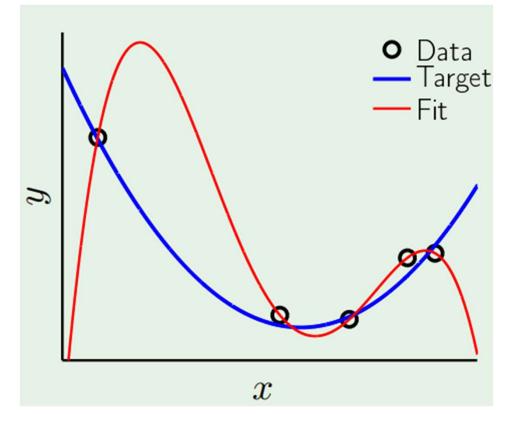
Noise

- The **in-sample** data will contain noise.
- Origin of noise:
 - Measurement (sensor) noise
 - The **in-sample** data may not include all parameters used by the target function
 - Our \mathcal{H} has not the capacity to fit the target function

The role of noise

- We want to fit our hypothesis to the target function, not the noise
- Example:
 - Target function: second order polynomial
 - Noisy in-sample data
 - Hypothesis: Fourth order polynomial

Result: $E_{in} = 0$, E_{out} is huge



Page 45

IN5400

Overfitting - Training to hard

3.5 Initially, the hypothesis is not ٠ selected from the data and E_{in} and 3 E_{out} are similar. 2.5 While training, we are exploring ٠ more of the hypothesis space 2 Error 1.5 Eout Early stopping 0.5 E 2000 4000 5000 0 1000 3000 6000 7000 8000 9000

10000

Epochs

UiO **Department of Informatics**

University of Oslo

Progress

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets
- Part 3: Miscellaneous
 - Rethinking generalization
 - Capacity of dense neural networks

Splitting of data

- Training set (60%)
 - Used to train our model
- Validation set (20%)
 - Used to select the best hypothesis
- Test set (20%)
 - Used to get a representative **out-of-sample** error

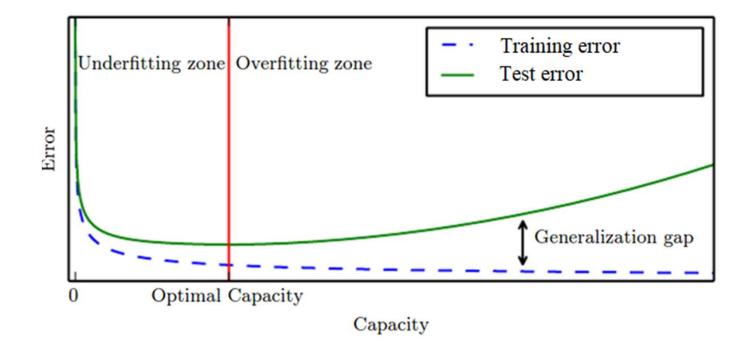
IN5400 Page 48 06.03.2019

Important! No peeking

- Keep a dataset that you don't look at until evaluation (**test set**)
- The test set should be as different from your **training set** as you expect the real world to be

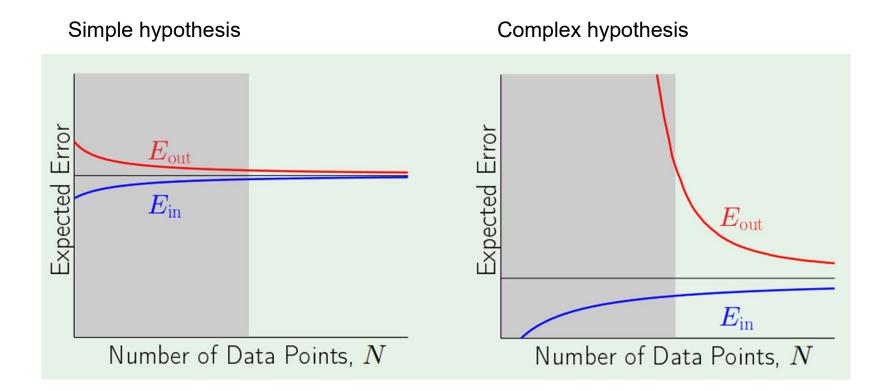
IN5400

A typical scenario



IN5400 Page 50 06.03.2019

Learning curves



IN5400 Page 51 06.03.2019

UiO **Department of Informatics**

University of Oslo

Progress

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets
- Part 3: Miscellaneous
 - Rethinking generalization
 - Capacity of dense neural networks

Learning from a small datasets

- Regularization (L2)
- Dropout
- Data augmentation
- Transfer learning
- Multitask learning

Regularization (L2)

- We add an additional term to our loss function
- Error term (example regression):

$$E_{task} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y)^2$$

• Regularization (L2)

$$E_{reg} = \frac{\lambda}{2N} \sum_{l=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} W_{k,j}^{[l]2}$$

Total Loss

$$E_{total} = E_{task} + E_{reg}$$

• SGD update:

$$W_{t+1} = W_t - \alpha \nabla E_{total} = W_t - \alpha \nabla E_{tas} - \frac{\alpha \lambda}{N} W_t$$

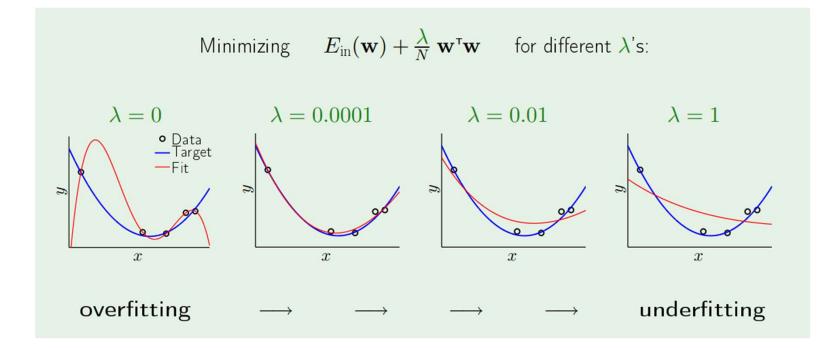
Weight decay

IN5400

IN5400 Page 55 06.03.2019

Regularization

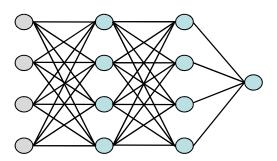
• With a tiny weight penalty, we can reduce the effect of noise significantly.

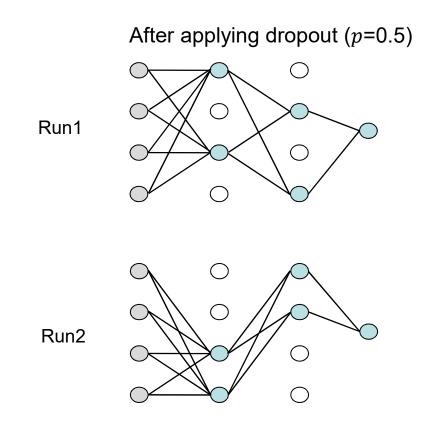


What is dropout?

- Dropout is a regularization technique
- We keep nodes with probability, *p*

Standard neural network





IN5400 Page 56 06.03.2019

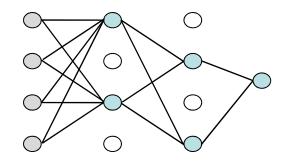
TJ1 Tollef Jahren, 3/6/2019

What is the effect of dropout?

- We force the network to make redundant representations
- Stochastic in nature, difficult for the network to memories.
- We scale with 1/ *p* as we want the hidden features to have the same expected value:

$$z = \frac{1}{p} \left(W^T x + b \right)$$

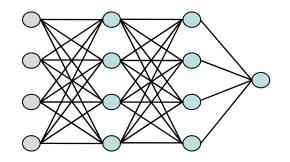
- Model averaging
 - The models share features and therefore is strongly regularized.
- Takes longer to train

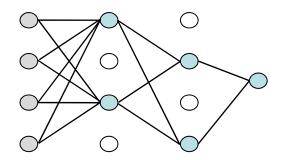


IN5400

Dropout during test time

- During training:
 - We keep nodes with probability p
- At test time option 1
 - We average over the models with setting p = 1
 - Advantage: Is fast!
- At test time option 2
 - We average over the models by forward passing multiple times and then computing an average.
 - Advantage: In addition to compute an average, we can compute a variance which can serve as uncertainty quantity.





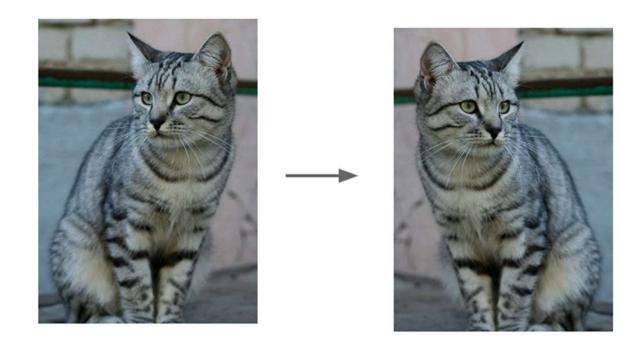
IN5400 06.03.2019

Data augmentation

- Increasing the dataset!
- Examples:
 - Horizontal flips
 - Cropping and scaling
 - Contrast and brightness
 - Rotation
 - Shearing

Data augmentation

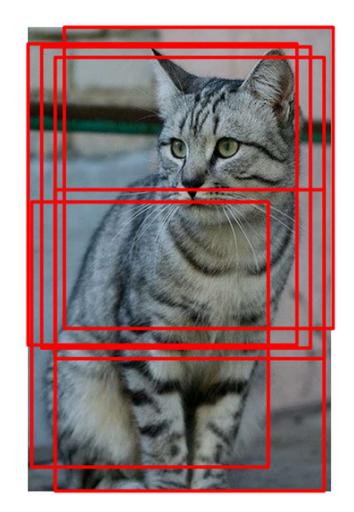
• Horizontal Flip



IN5400 Page 60 06.03.2019

Data augmentation

• Cropping and scaling

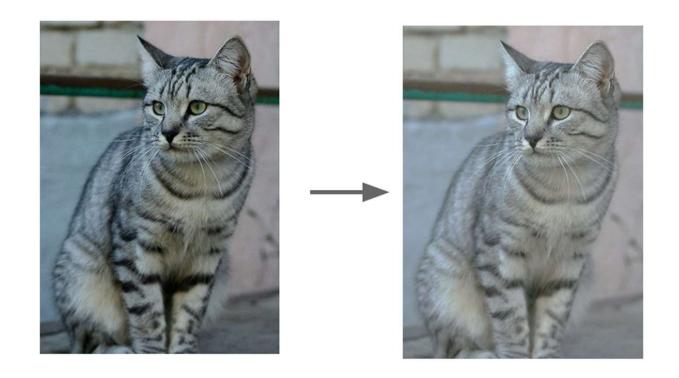


Page 61

IN5400

Data augmentation

Change Contrast and brightness

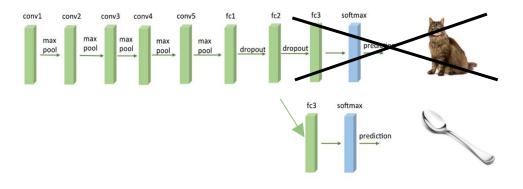


Page 62

IN5400

Transfer learning

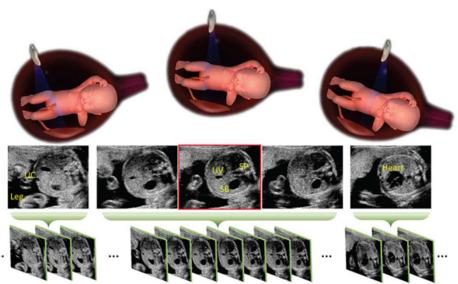
- Use a network trained on another dataset. Often called pre-trained network.
- Neural networks share representations across classes
- You can reuse these features for many different applications
- Depending on the amount of data, finetune:
 - the last layer only
 - the last couple of layers



IN5400 Page 63 06.03.2019

What can you transfer to?

- Detecting special views in Ultrasound
- Initially far from ImageNet
- Benefit from fine-tuning imagenet features



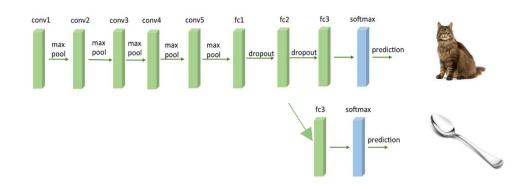
<u>Standard Plane Localization in Fetal Ultrasound via Domain Transferred</u> <u>Deep Neural Networks</u>

IN5400 06.03.2019

Transfer learning from pretrained network

- Since you have less parameters to train, you are less likely to overfit.
- Need a lot less time to train.

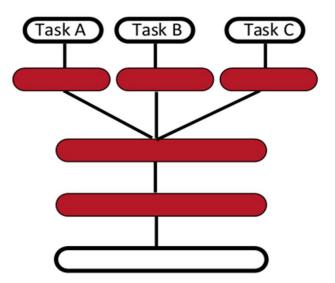
OBS! Since networks trained on ImageNet have a lot of layers, it is still possible to overfit.



IN5400

Multitask learning

- Many small datasets
- Different targets
- Share base-representation



IN5400

UiO **Department of Informatics**

University of Oslo

Progress

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets
- Part 3: Miscellaneous
 - Rethinking generalization
 - Capacity of dense neural networks

Is traditional theory valid for deep neural networks?

- "UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION"
- Experiment:
 - Deep neural networks have the capacity to memories many datasets
 - Deep neural networks show small generalization error

IN5400

UiO **Department of Informatics**

University of Oslo

Progress

- Part 1: Learning theory
 - Is learning feasible?
 - Model complexity
 - Bias variance
- Part 2: Practical aspects of learning
 - Overfitting
 - Evaluating performance
 - Learning from small datasets
- Part 3: Miscellaneous
 - Rethinking generalization
 - Capacity of dense neural networks

Have some fun

- Capacity of dense neural networks
- http://playground.tensorflow.org

IN5400 Page 70 06.03.2019

Tips for small data

- 1. Try a pre-trained network
- 2. Get more data
 - a) 1000 images with 10 mins per label is 20 working days...
 - b) Sounds like a lot, but you can spend a lot of time getting transfer learning to work
- 1. Do data-augmentation
- 2. Try other stuff (Domain-adaption, multitask learning, simulation, etc.)