SEGMENTATION AND OBJECT DETECTION

IN5400 — Machine Learning for Image Analysis

Ole-Johan Skrede 13.03.2019

University of Oslo

- \cdot Weekly exercises will be uploaded soon
- · PhD-students: Remainder about essay
 - $\cdot\,$ Coordinate topics with Anne
 - Deadline for topic selection: 01.04.2019
 - · Deadline for submission: 01.05.2019
- \cdot ML-servers has been down due to change of GPU. This should be resolved now.

- $\cdot\,$ Introduction and motivation
- · Performance evaluation metrics
- $\cdot \,$ Object detection
- Image segmentation

INTRODUCTION AND MOTIVATION

Figure 1: Seagull. Image source: https://www.pixabay.com

OBJECT DETECTION — MULTIPLE INSTANCES

Figure 2: Rooster, cat, dog, donkey. Image source: https://www.pixabay.com

SEMANTIC SEGMENTATION

Figure 3: Left: Original. Right: Segmented. Image source: https://www.pexels.com

Figure 4: Left: Original. Right: Segmented. Image source: https://www.pexels.com

- $\cdot\,$ We will see a lot of different approaches
- $\cdot\,$ Not expected to know every algorithm inside-out
- $\cdot\,$ Most important that you are educated about the possibilities
- \cdot Curriculum (exam-relevant), will be decided well in time before the exam

PERFORMANCE EVALUATION METRICS

- \cdot Sensitivity
- \cdot Specificity
- \cdot Precision
- · Accuracy
- \cdot Jaccard index
- \cdot Mean average precision

DICHOTOMOUS PARTITION

- · Let B_R be the set of pixels enclosed by the *reference* bounding box
- · Let B_P be the set of pixels enclosed by the *predicted* bounding box
- · True positive: $TP = |B_R \cap B_P|$
- · False negative: $FN = |B_R \setminus B_P|$ (Type I error)
- · False positive: $FP = |B_P \setminus B_R|$ (Type II error)
- · True negative: $TN = |(B_R \cup B_P)^c|$
- \cdot Where, for sets $A,B\subseteq C$
 - $\cdot \ A \cap B = \{x : x \in A, x \in B\}$ is the intersection of A and B
 - · $A \setminus B = \{x : x \in A, x \notin B\}$ is the set difference between A and B
 - · $(A \cup B)^c = \{x : x \notin A, x \notin B, x \in C\}$ is the complement of $(A \cup B)$

Figure 5: Top: reference (green), prediction (blue). Bottom: TP (orange), FN (green), FP (blue), TN (red). Image source: https://www.pixabay.com • Proportion of positive reference instances labelled as positive by the predicted method

$$tpr = \frac{TP}{TP + FN}$$
$$= \frac{|B_R \cap B_P|}{|B_R|}$$

- $\cdot\,$ Also known as
 - \cdot true positive rate (tpr)
 - · recall
- Example on the right is pixel classification, but it also applies to object instances

Figure 6: Top: reference (green), prediction (blue). Middle: True positive (red). Bottom: Reference positive (red). Image source: https://www.pixabav.com • Proportion of negative reference instances labelled as negative by the predicted method

$$tnr = \frac{TN}{TN + FP}$$
$$= \frac{|(B_R \cap B_P)^c|}{|B_R^c|}$$

· Also known as *true negative rate* (tnr)

Figure 7: Top: reference (green), prediction (blue). Middle: True negative (red). Bottom: Reference negative (red). Image source: https://www.pixabay.com

• Proportion of predicted positive instances that are also labeled positive by the reference

$$ppv = \frac{TP}{TP + FP}$$
$$= \frac{|B_R \cap B_P|}{|B_P|}$$

- · Also known as *positive predictive value* (ppv)
- Example on the right is pixel classification, but it also applies to object instances

Figure 8: Top: reference (green), prediction (blue). Middle: True positive (red). Bottom: predicted positive (red). Image source: https://www.pixabav.com

ACCURACY

The proportion of correctly classified instances, relative to all instances (N)

$$acc = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= \frac{|B_R \cap B_P| + |(B_R \cup B_P)^c|}{|N|}$$

Unsuited when class prevalence is unbalanced

	First attempt	Second attempt
TP	5	0
FP	22	0
FN	10	15
TN	563	585
acc	$\frac{5+563}{600} \approx 0.946$	$\frac{0+585}{600} = 0.975$

Figure 9: Dark blue: reference background. Light blue: reference foreground. Green: Predicted background. Orange: Predicted foreground. Top: reference. Middle: First attempt. Bottom: Second attempt Weighted accuracy where the weight of an instance is equal to the inverse prevalence of its true class. In the dichotomous case

$$bac = \frac{1}{2}(tpr + tnr)$$

Often more suited than the raw accuracy

	First attempt	Second attempt
TP	5	0
FP	22	0
FN	10	15
TN	563	585
bac	$\frac{1}{2}\left(\frac{5}{5+10} + \frac{563}{563+22}\right) \approx 0.648$	$\frac{1}{2}(0 + \frac{585}{585+15}) \approx 0.488$

Figure 10: Dark blue: reference background. Light blue: reference foreground. Green: Predicted background. Orange: Predicted foreground. Top: reference. Middle: First attempt. Bottom: Second attempt The proportion of all instances classified as positive by the reference and/or the prediction method, that are classified as positive by both the reference and the prediction method

$$iou = \frac{TP}{TP + FN + FP}$$
$$= \frac{|B_R \cap B_P|}{|B_R \cup B_P|}$$

- · Also known as
 - · Intersection over Union (IoU)
 - · Tanimoto index
- Example on the right is pixel classification, but it also applies to object instances

Figure 11: Top: reference (green), prediction (blue). Middle: Intersection (red). Bottom: Union (red). Image source: https://www.pixabay.com

- \cdot Mean average precision (mAP) is a common evaluation metric in object detection
- \cdot Each detected region (a bounding box) has a confidence score for each class
- $\cdot\,$ Set all detected regions with an IoU < T to be a false positive region, no matter the confidence score
- $\cdot \,$ Common threshold values are T=0.5
- For each class, compute the Average Precision (AP)
 - $\cdot\,$ Sort detections by decreasing confidence
 - Compute precision and recall cumulatively as you "walk" from high confidence to low confidence
 - Average all computed precision values by some method (will be discussed more in detail later)
- $\cdot\,$ Average the computed average precision scores over all classes

MEAN AVERAGE PRECISION EXAMPLE — INITIAL IMAGE

MEAN AVERAGE PRECISION EXAMPLE - REFERENCE

MEAN AVERAGE PRECISION EXAMPLE - REFERENCE AND PREDICTION

MEAN AVERAGE PRECISION EXAMPLE - INTERSECTION OVER UNION

MEAN AVERAGE PRECISION EXAMPLE — CLASS CONFIDENCES

	P cor	nfidence	R cor	nfidence	$IoU \ge 0.5$
	Car	House	Car	House	
P_1	0.1	0.9	0	1	1
P_2	0.3	0.7	0	1	1
P_3	0.3	0.7	0	1	1
P_4	0.6	0.4	1	0	1
P_5	0.7	0.3	1	0	1
P_6	0.5	0.5	1	0	1
P_7	0.8	0.2	1	0	1
	_	_	1	0	×
P_8	0.1	0.9	0	1	1
P_9	0.4	0.6	_	_	×
P_{10}	0.8	0.2	1	0	1
P_{11}	0.6	0.4	1	0	1
P_{12}	0.9	0.1	1	0	1
—	_	—	1	0	×
P_{13}	0.7	0.3	1	0	1
P_{14}	0.6	0.4	—	_	×
P_{15}	0.5	0.5	_	_	×
P_{16}	0.7	0.3	0	1	×
P_{17}	0.2	0.8	0	1	1
P_{18}	0.4	0.6	0	1	1

- \cdot We compute the precision and recall (sensitivity) for each class independently
- · First, we sort the predictions by decreasing confidence
- \cdot Then, we compute the precision and recall for the different confidence levels
- The recall at a confidence level is the number of true positive predictions at this confidence level and above, divided by all reference positive instances
- The precision at a confidence level is the number of true positive predictions at this confidence level and above, divided by all predicted positive instances at this confidence level and above

MEAN AVERAGE PRECISION EXAMPLE - PRECISION / RECALL FOR CAR

	P car confidence	R car	$IoU \ge 0.5$	Recall	Precision	
P ₁₂	0.9	1	1	$\frac{1}{10}$	$\frac{1}{1}$	
P_{10}	0.8	1	1	$\frac{2}{10}$	$\frac{2}{2}$	
P_7	0.8	1	~	$\frac{3}{10}$	$\frac{3}{3}$	
P_{16}	0.7	0	×	$\frac{3}{10}$	$\frac{3}{4}$	
P_{13}	0.7	1	~	$\frac{4}{10}$	$\frac{4}{5}$	1.0 -
P_5	0.7	1	1	$\frac{5}{10}$	56	
P_{14}	0.6	_	×	$\frac{5}{10}$	5 7	0.0
P_{11}	0.6	1	1	$\frac{6}{10}$	<u>6</u> 8	0.8 -
P_4	0.6	1	1	$\frac{7}{10}$	$\frac{7}{9}$	
P_{15}	0.5	_	×	$\frac{7}{10}$	$\frac{7}{10}$	G 0.6 -
P_6	0.5	1	1	$\frac{8}{10}$	$\frac{8}{11}$	scisi
P_{18}	0.4	0	~	$\frac{8}{10}$	$\frac{8}{12}$	Å 0.4 -
P_9	0.4	_	×	$\frac{8}{10}$	$\frac{8}{13}$	
P_3	0.3	0	1	$\frac{8}{10}$	$\frac{8}{14}$	0.2 -
P_2	0.3	0	\checkmark	$\frac{8}{10}$	$\frac{8}{15}$	
P_{17}	0.2	0	\checkmark	$\frac{8}{10}$	$\frac{8}{16}$	0.0 -
P_8	0.1	0	~	$\frac{8}{10}$	$\frac{8}{17}$	0.0
P_1	0.1	0	1	$\frac{8}{10}$	$\frac{8}{18}$	0.0

car true false

1.0

0.6

0.8

0.4

Recall

MEAN AVERAGE PRECISION EXAMPLE - PRECISION / RECALL FOR HOUSE

	P house confidence	R house		$IoU \geq 0.5$	Recall	Precision
P_1	0.9		1	1	$\frac{1}{7}$	11
P_8	0.9		1	1	$\frac{2}{7}$	$\frac{2}{2}$
P_{17}	0.8		1	1	$\frac{3}{7}$	33
P_2	0.7		1	1	$\frac{4}{7}$	$\frac{4}{4}$
P_3	0.7		1	1	57	55
P_9	0.6		_	×	<u>5</u> 7	56
P_{18}	0.6		1	1	6 7	6 7
P_6	0.5		0	1	6 7	<u>6</u> 8
P_{15}	0.5		—	×	<u>6</u> 7	<u>6</u> 9
P_4	0.4		0	1	<u>6</u> 7	$\frac{6}{10}$
P_{11}	0.4		0	1	6 7	$\frac{6}{11}$
P_{14}	0.4		—	×	<u>6</u> 7	<u>6</u> 12
P_5	0.3		0	1	<u>6</u> 7	<u>6</u> 13
P_{16}	0.3		1	×	6 7	$\frac{6}{14}$
P_{13}	0.3		0	1	<u>6</u> 7	<u>6</u> 15
P_7	0.2		0	1	<u>6</u> 7	$\frac{6}{16}$
P_{10}	0.2		0	1	<u>6</u> 7	$\frac{6}{17}$
P_{12}	0.1		0	1	<u>6</u> 7	$\frac{6}{18}$

Figure 13: Left: House predictions sorted by decreaseing confidence. Right: Corresponding precision-recall plot.

MEAN AVERAGE PRECISION - AVERAGING

- We get the mean average precision by averaging the *Average Precision* (AP) over all classes
- The average precision is usually related to the area under the curve (AUC) made by graphing the true positive rate versus the false positive rate.
- · Some common definitions of AP:
 - $\cdot\,$ The area under the precision / recall curve
 - The area under the *interpolated* precision / recall curve
- See e.g. [Everingham et al., 2015] for more info

Mean average precision — AP from interpolated area under the curve

· Interpolate the precision / recall curve

 $p_{\text{interp}}(r) = \max_{\hat{r}:\hat{r} \geq r} p(\hat{r})$

where $p(\hat{r})$ is the precision at recall \hat{r} .

• Take the average of the interpolated precision at evenly sampled recall values

$$AP = \frac{1}{11} \sum_{r \in \{0.0, 0.1, \dots, 1.0\}} p_{\text{interp}}(r)$$

- Used in the PASCAL VOC object detection challenge up until 2009
- Intended to reduce the impact of "wiggles" in the precision / recall curve
- · Downside: Can be too crude

Mean average precision — AP from area under the curve

- Compute the true area under the precision / recall curve
- $\cdot\,$ Area of the blue region in the figure to the right
- E.g. used in the PASCAL VOC object detection competition from 2010 and onwards
- Common to use the trapezoidal rule to compute the area
- Can also use a simpler estimate (e.g. in sklearn.metrics.average_precision_score)

$$AP = \sum_{n=2}^{N} (r_n - r_{n-1})p_n$$

for (precision, recall) entries $\{(p_1, r_1), (p_2, r_2), \dots, (p_N, r_N)\}$

MEAN AVERAGE PRECISION EXAMPLE - AVERAGING OVER CLASSES

- \cdot Using eq. (1) to compute AP, we get
 - \cdot Car class: $AP_{\rm car} pprox 0.5888$
 - \cdot House class: $AP_{\mathsf{car}} pprox 0.6939$
- $\cdot\,$ The mean of the two is then $mAP\approx 0.6414$

IMAGE CLASSIFICATION AND LOCALIZATION

OBJECTIVE

- $\cdot\,$ Classify an image with a single object
- · Draw a bounding box around the object

Figure 15: Seagull. Image source: https://www.pixabay.com

LABEL VECTOR

- \cdot Add object/no object indicator c_0
- \cdot Interpret c_0 as
 - $c_0 = \Pr(ext{there is an object in this box})$
- c₀ is often referred to as the *objectness*, but can also be thought of as a "catch-all" background class indicator
- · Standard category probabilities from classification $(c_1, c_2, \ldots, c_{N_c})$
- · Interpret c_i as $c_i = \Pr(\mathsf{class}_i | c_0 = 1)$, $i = 1, \dots, n$
- $\cdot\,$ Add bounding box location specifiers
 - $\cdot \ b_r$: Center row coordinate
 - $\cdot \ b_c$: Center column coordinate
 - $\cdot b_h$: Box height
 - $\cdot b_w$: Box width

EXAMPLE: BIG CATS

 $\cdot c_1$: Tiger

- \cdot c_2 : Leopard
- \cdot c_3 : Lion

EXAMPLE: BIG CATS

 $\cdot c_1$: Tiger

- \cdot c_2 : Leopard
- \cdot c_3 : Lion

EXAMPLE: BIG CATS

 $\cdot c_1$: Tiger $\cdot c_2$: Leopard $\cdot c_3$: Lion c_0 c_1 c_2 c_3 y = b_r b_c b_h b_w

Note that $c_0 = 0$, so we do not care about the rest, symbolized by ϕ .

 \cdot We could use a conditioned L_2 loss for all elements

$$L(y, \hat{y}) = \begin{cases} \sum_{i=1}^{|y|} (y_i - \hat{y}_i)^2, & \text{if } y_1 = 1\\ (y_1 - \hat{y}_1)^2, & \text{if } y_1 = 0 \end{cases}$$

- \cdot where
 - $\cdot \,\, y$ is the reference (ground truth) label vector
 - $\cdot \,\, \hat{y}$ is the predicted label vector

MULTI-TASK LOSS FUNCTION

 \cdot Partition y into y = [c, b], with

$$c = [c_0, c_1, \dots, c_{N_c}]$$

$$b = [b_r, b_c, b_h, b_w]$$

 $\cdot \, L_2$ loss for object bounding box location b

$$L_b(b, \hat{b}) = \sum_{i \in \{x, y, h, w\}} (b_i - \hat{b}_i)^2$$

 \cdot Cross entropy loss for object categories c

$$L_c(c,\hat{c}) = -\sum_{i=1}^n \hat{c}_i \log c_i$$

 $\cdot\,$ The total loss can be written as

$$L(y, \hat{y}) = L_c + [c_0 = 1]L_b$$

 $\cdot\,$ Only compare bounding box if there is an object

OBJECT DETECTION

CLASSES OF OBJECT DETECTION

OD: Objectness detection

- $\cdot\,$ Detect all objects in an image
- $\cdot\,$ Does not care about category

SOD: Salient object detection

- Inspired by human visual attention system
- Focus on a few informative image regions

COD: Category-specific object detection

- Detect objects from predefined categories
- $\cdot\,$ Detect and classify object
- $\cdot\,$ This is the focus in this lecture

Figure 20: Source: [Han et al., 2018]

BOUNDING BOX REGRESSION FOR OBJECT DETECTION

- · Impractical to encode a bounding box $b = [b_x, b_y, b_h, b_w]$ for every instance and class
- · Every image would need a custom number of outputs

Figure 21: Image source: https://www.pixabay.com

- Train a classification net on images tightly cropped around objects
- Slide a window (of multiple sizes) over the image you want to detect objects in
- Give each pixel a score based on the trained classification net on each window
- \cdot Ok for cheap classification methods
- $\cdot\,$ Very slow for CNN classification

Figure 22: Image source: https://www.pixabay.com

- Convolutional implementation can fix the efficiency problem (see e.g. OverFeat method)
- Still not very precise bounding boxes

- $\cdot\,$ A subclass of object detection methods
- · Use a separate method to find candidate regions
- Filter out regions without an object, or redundant, overlapping regions with an object
- Classify these regions and refine region boundary

Figure 23: Image source: https://www.pixabay.com

- · Originally proposed in [Girshick et al., 2014]
- Combines region proposals and convolutional neural networks
- · Consists of three modules:
 - For each image, propose a set of category-independent regions
 - Extract a fixed-length feature vector from each region using a CNN
 - Classify the feature vectors with a class-specific linear SVM

Figure 24: Image source: https://www.pixabay.com

- \cdot Propose regions (~ 2000)
 - In the original publication they use *selective search* [Uijlings et al., 2013]

Figure 25: Image source: https://www.pixabay.com

- \cdot Propose regions (~ 2000)
 - In the original publication they use *selective search* [Uijlings et al., 2013]
- Warp the regions (regardless of shape) to a fixed size

Figure 26: Image source: https://www.pixabay.com

- \cdot Propose regions (~ 2000)
 - In the original publication they use *selective search* [Uijlings et al., 2013]
- Warp the regions (regardless of shape) to a fixed size
- \cdot Feature extraction
 - $\cdot~$ Feed the warped regions into a pretrained CNN^1
 - \cdot Output a 4096-dimensional feature vector

Figure 27: Image source: https://www.pixabay.com

¹Pretrained on ImageNet, finetuned to Pascal VOC, see paper for details

R-CNN

- $\cdot\,$ Propose regions ($\sim 2000)$
 - In the original publication they use *selective search* [Uijlings et al., 2013]
- Warp the regions (regardless of shape) to a fixed size
- Feature extraction
 - $\cdot\,$ Feed the warped regions into a pretrained CNN^1
 - \cdot Output a 4096-dimensional feature vector
- \cdot A pretrained SVM scores each region
- $\cdot\,$ Reject regions with non-maximum suppression
- Tune bounding boxes with a pretrained regression model

Figure 28: Image source: https://www.pixabay.com

¹Pretrained on ImageNet, finetuned to Pascal VOC, see paper for details

- $\cdot\,$ Important step in several object detection algorithms
- $\cdot\,$ Remove all boxes with associate objectness c_0 smaller than some threshold, say $c_0 < 0.5\,$
- · For each class $i=1,2,\ldots,n$
 - \cdot Create a list of unseen regions U_i that contains all the regions in the image
 - \cdot Create an empty list of regions to keep K_i
 - \cdot While there are regions left in U_i
 - $\cdot\,$ Find the most probable region $R_{
 m max}$
 - $\cdot \ R_{\max}$ can be the region with highest value of $c_0 c_i$ (or some similar criterion)
 - $\cdot\,$ Remove all regions that overlaps with $R_{\rm max}$ (e.g. with iou>0.5), from U_i
 - \cdot Move R_{\max} from U_i to K_i

Figure 29: Top: Original. Middle: Too low c_0 removed. Bottom: iou > 0.5 removed. Image source: https://www.pixabay.com

- Publication: [Girshick, 2015]
- $\cdot\,$ The original R-CNN is slow and expensive:
 - · Multi-stage pipeline
 - $\cdot\,$ Classify each predicted region with a CNN
 - $\cdot\,$ Intermediate feature maps are stored, takes a lot of space
- · Fast R-CNN manages to save computation by first feeding the entire image into a CNN

• Get region proposals (as in R-CNN)

- \cdot Get region proposals (as in R-CNN)
- $\cdot\,$ Run a CNN on the entire image

- \cdot Get region proposals (as in R-CNN)
- $\cdot\,$ Run a CNN on the entire image
- Project region proposals (ROIs) onto output CNN feature map

- \cdot Get region proposals (as in R-CNN)
- $\cdot\,$ Run a CNN on the entire image
- Project region proposals (ROIs) onto output CNN feature map
- · ROI pooling layer

- · Get region proposals (as in R-CNN)
- $\cdot\,$ Run a CNN on the entire image
- Project region proposals (ROIs) onto output CNN feature map
- · ROI pooling layer
- Feed the fixed-sized pooled region to fully connected layers
- $\cdot\,$ One softmax output for class prediction
- $\cdot\,$ One regression output for the bounding box prediction

- \cdot Get region proposals (as in R-CNN)
- $\cdot\,$ Run a CNN on the entire image
- Project region proposals (ROIs) onto output CNN feature map
- · ROI pooling layer
- Feed the fixed-sized pooled region to fully connected layers
- $\cdot\,$ One softmax output for class prediction
- $\cdot\,$ One regression output for the bounding box prediction
- · Multi-task loss

- $\cdot\,$ Max-pooling on input of non-uniform size
- $\cdot\,$ Often used when extracting features for regions
- $\cdot \,$ One list of region descriptors: (b_r, b_c, b_h, b_w) for every region
- \cdot One, shared feature map
- $\cdot\,$ ROI-pooling partitions the box region into a $S\times S$ grid
- $\cdot\,$ Extracts the max in each grid cell
- $\cdot\,$ This results in a $S\times S$ matrix, no matter the input shape

- Publication: [Ren et al., 2016]
- $\cdot\,$ With Fast R-CNN, the region proposal is the bottleneck
- · Faster R-CNN introduces a Region Proposal Network (RPN)
- · Consists of two modules:
 - · A fully convolutional RPN
 - $\cdot\,$ The Fast R-CNN detection network
- $\cdot\,$ The RPN "tells Fast R-CNN where to look"
- $\cdot\,$ The RPN and the detection network share layers

ANCHOR BOXES

- $\cdot\,$ A location have multiple boxes in different sizes and shapes
- $\cdot\,$ Spread these anchor locations around an image
- · Anchor shapes can be task-specific
- · Training/labeling: Every anchor box is labeled as containing an object or not
- \cdot The overlap between the anchor box and reference box determines the label

- $\cdot\,$ A small network that scans the anchor boxes
- · Predicts if an anchor box contain an object
- · Refines the anchor box region boundary
- \cdot The regions with highest confidence of containing an object is kept
- \cdot Non-maximum suppression handles overlap
- \cdot These proposal regions go on to the next stage

- $\cdot\,$ The CNN extracts features
- $\cdot\,$ Features are used by the RPN
- The RPN proposes regions to a detection network (like Fast-RCN)
- $\cdot\,$ The detection network uses the same features as the RPN
- Training:
 - · Alternate between RPN and detection network training
 - \cdot Or, train them jointly

- Publication: [Redmon et al., 2016]
- · You Only Look Once
- $\cdot\,$ Very fast (about 100× faster than Fast R-CNN)
- $\cdot \,$ Not as accurate as the most accurate methods

YOLO – grid

- $\cdot \;$ Partition image into $S \times S$ grid
- A grid cell is responsible for detecting an object with center point in that grid cell
- Each grid cell predicts *B* bounding boxes, and a confidence score for each box
- · Confidence:
 - $c_0 \cdot iou$ (reference box, predicted box) (zero if there is no reference box in that cell)

Figure 30: Image source: https://www.pixabay.com

YOLO - PREDICTION VECTOR

- $\cdot \,$ The target vector has then the shape $(S,S,5\cdot B+N_c)$
- \cdot For each cell:
 - · One set of parameters $(c_0, b_r, b_c, b_h, b_w)$, for every bounding box
 - A set of class parameters (c_1, c_2, \ldots, n_c)
- Can train against the target vector with a conventional CNN
- Limitation: One cell can predict *B* objects of the *same* class
- Extension: Use multiple anchor boxes, each with an associated class

Figure 31: Image source: https://www.pixabay.com

- \cdot A challenging problem
- · Impressive progress the last few years
- $\cdot\,$ More recent methods
 - · R-FCN
 - · SSD

SEMANTIC SEGMENTATION

SEMANTIC SEGMENTATION

- $\cdot\,$ Classify every pixel in an image
- · Differentiate between classes
- \cdot Do not differentiate between multiple instances of the same class

Figure 32: Left: Original. Right: Segmented. Image source: https://www.pexels.com

- $\cdot\,$ Select a small window
- $\cdot\,$ Classify this image
- Assign the center pixel of this window the most probable class
- $\cdot\,$ Repeat for all pixels in the image
- \cdot Very inefficient
- · Misses larger image context

Figure 33: Top: Original. Bottom: Partially segmented. Image source: https://www.pexels.com

- $\cdot\,$ Segment image all at once
- $\cdot \,$ Input image shape: $H \times W \times C$
- $\cdot \;$ Output layer shape: $H \times W \times N_{c}$, where N_{c} : number of classes
- · Pixel-wise cross entropy loss
 - $\cdot\,$ Softmax over channels at a pixel location
 - $\cdot\,$ Repeat, and average over all pixels
- $\cdot\,$ Very expensive on computation and memory

Figure 34: Top: Original. Bottom: Segmented. Image source: https://www.pexels.com

- · Segment image all at once
- $\cdot \,$ Input image shape: $H \times W \times C$
- $\cdot \;$ Output layer shape: $H \times W \times N_c$, where N_c : number of classes
- Spatial downsampling followed by upsampling (encoding, decoding)
- Pixel-wise cross entropy loss
 - $\cdot\,$ Softmax over channels at a pixel location
 - $\cdot\,$ Repeat, and average over all pixels
- · Different upsampling techniques

Figure 35: Top: Original. Bottom: Segmented. Image source: https://www.pexels.com

MAX UNPOOLING

Remember max locations from max pool downsampling. Reverse this on the "opposite" layer

INTERPOLATION UPSAMPLING

- \cdot Upsampling convolution
- $\cdot\,$ In depth convolution tutorial here
- \cdot Can learn kernel parameters as with regular convolution

- Can view convolution as a matrix-matrix multiplication
- Transposed convolution gets its name by transposing this operation
- \cdot Also called
 - \cdot fractionally strided convolution
 - \cdot deconvolution (this is a misnomer)

- Publication: [Long et al., 2014]
- · Early adaptor of segmentation with end-to-end trained CNNs
- · Uses learnable transposed convolution in upsampling

Figure 36: FCN architecture. Image source: [Long et al., 2014]

FCN - SKIP CONNECTIONS

- · Aggressive upsampling leads to course segmentation result
- · Combine upsampling from different parts in the layer
- · Each with different upscaling

Figure 37: FCN architecture with different upsampling strategies. Image source: [Long et al., 2014]

U-NET

- Publication: [Ronneberger et al., 2015]
- $\cdot\,$ Contraction: Ordinary convolution and pooling layers
- \cdot Expansion: Concatenation of
 - \cdot Cropped feature maps from contraction phase (gray arrows)
 - $\cdot\,$ Transposed convolution from previous layer

- Insert spacing between convolution kernel cells (dilation rate)
- \cdot Also called
 - $\cdot\,$ convolution with holes
 - A-trous convolution (a trous is french for with holes)
- Increase field of view, without needing larger convolution kernel, or multiple chained convolutions

DEEPLAB

- Publication: [Chen et al., 2016]
- $\cdot\,$ VGG16 or ResNet as base networks
- \cdot Employs dilated convolution in upsampling
- \cdot v3 currently holds top position on the PASCAL VOC segmentation leaderboard

Figure 38: VGG16 version with atrous spatial pyramid pooling (ASPP)

EXAMPLE: TUMOR SEGMENTATION — INPUT

Example: Tumor segmentation — prediction

Example: Tumor segmentation — prediction and reference

- \cdot Normally, convnet-segmentation methods outputs a probability map for each class
- · Need to assign *one* label to each pixel (segment the image)
- · Could use arg-max over classes for each pixel
- · Pros:
 - · Simple
 - Fast
- · Cons:
 - Ugly
 - · Inaccurate
- · Very common to use Dense Conditional Random Fields

Segmentation — Conditional random fields

- Fast implementation: Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
- $\cdot\,$ Use information from the output probability map
- Also takes into account features from the input image, such as color in neighbouring pixels

Example: Tumor segmentation — segmentation and reference

INSTANCE SEGMENTATION

INSTANCE SEGMENTATION

- · Image segmentation with discrimination between instances of the same class
- $\cdot\,$ Combines object detection and semantic segmentation
- $\cdot\,$ More difficult than standard semantic segmentation

Figure 40: Left: Original. Right: Segmented. Image source: https://www.pexels.com

- Publication: [He and Girshick, 2017]
- $\cdot\,$ Extends Faster R-CNN
- Faster R-CNN outputs a class label and a bounding box offset for each detected region
- $\cdot\,$ Mask R-CNN in addition outputs one object mask for each class
- \cdot The object mask is produced by a small segmentation network (e.g. FCN)
- $\cdot\,$ The segmentation is performed independently in each class
- $\cdot\,$ Substitutes the ROI pooling with a location-preserving ROI alignment layer

MASK R-CNN

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *arXiv preprint*, pages 1–10, 2016.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The pascal visual object classes challenge: A retrospective. *IJCV*, 2015.

Ross Girshick. Fast R-CNN. arXiv preprint, pages 1–9, 2015.

- Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. *CVPR2014*, pages 1–8, 2014.
- Junwei Han, Dingwen Zhang, Gong Cheng, Nian Liu, and Dong Xu. Advanced deep-learning techniques for salient and category-specific object detection. *IEEE Signal Processing Magazine*, 35:84–100, 2018.

Kaiming He and Ross Girshick. Mask R-CNN. arXiv preprint, pages 1–10, 2017.

 P Krähenbühl and Vladlen Koltun. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Supplementary Material. *arXiv preprint*, pages 1–4, 2011.
Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. *arXiv preprint*, pages 1–10, 2014.

- Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified, Real-Time Object Detection. *arXiv preprint*, 2016.
- Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN : Towards Real-Time Object Detection with Region Proposal Networks. *arXiv preprint*, pages 1–14, 2016.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. *arXiv preprint*, pages 1–8, 2015.
- J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. *IJCV*, 2013.

QUESTIONS?