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Messages

∙ Weekly exercises will be uploaded soon
∙ PhD-students: Remainder about essay

∙ Coordinate topics with Anne
∙ Deadline for topic selection: 01.04.2019
∙ Deadline for submission: 01.05.2019

∙ ML-servers has been down due to change of GPU. This should be resolved now.
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Outline

∙ Introduction and motivation
∙ Performance evaluation metrics
∙ Object detection
∙ Image segmentation
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introduction and motivation



Image classification and object localization

Figure 1: Seagull. Image source: https://www.pixabay.com
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Object detection — Multiple instances

Figure 2: Rooster, cat, dog, donkey. Image source: https://www.pixabay.com
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Semantic segmentation

Figure 3: Left: Original. Right: Segmented. Image source: https://www.pexels.com

6

https://www.pexels.com


Instance segmentation

Figure 4: Left: Original. Right: Segmented. Image source: https://www.pexels.com
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Learning outcome

∙ We will see a lot of different approaches
∙ Not expected to know every algorithm inside-out
∙ Most important that you are educated about the possibilities
∙ Curriculum (exam-relevant), will be decided well in time before the exam
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performance evaluation metrics



Evaluation metrics

∙ Sensitivity
∙ Specificity
∙ Precision
∙ Accuracy
∙ Jaccard index
∙ Mean average precision
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Dichotomous partition

∙ Let BR be the set of pixels enclosed by the reference
bounding box

∙ Let BP be the set of pixels enclosed by the predicted
bounding box

∙ True positive: TP = |BR ∩BP |
∙ False negative: FN = |BR \BP | (Type I error)
∙ False positive: FP = |BP \BR| (Type II error)
∙ True negative: TN = |(BR ∪BP )

c|
∙ Where, for sets A,B ⊆ C

∙ A ∩B = {x : x ∈ A, x ∈ B} is the intersection of A and B

∙ A \B = {x : x ∈ A, x /∈ B} is the set difference between A

and B

∙ (A ∪B)c = {x : x /∈ A, x /∈ B, x ∈ C} is the complement of
(A ∪B)

Figure 5: Top: reference (green), prediction (blue).
Bottom: TP (orange), FN (green), FP (blue), TN (red).
Image source: https://www.pixabay.com 11
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Sensitivity

∙ Proportion of positive reference instances labelled as
positive by the predicted method

tpr =
TP

TP + FN

=
|BR ∩BP |

|BR|

∙ Also known as
∙ true positive rate (tpr)
∙ recall

∙ Example on the right is pixel classification, but it also
applies to object instances Figure 6: Top: reference (green), prediction (blue).

Middle: True positive (red). Bottom: Reference
positive (red). Image source:
https://www.pixabay.com 12
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Specificity

∙ Proportion of negative reference instances labelled as
negative by the predicted method

tnr =
TN

TN + FP

=
|(BR ∩BP )

c|
|Bc

R|

∙ Also known as true negative rate (tnr)

Figure 7: Top: reference (green), prediction (blue).
Middle: True negative (red). Bottom: Reference
negative (red). Image source:
https://www.pixabay.com 13
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Precision

∙ Proportion of predicted positive instances that are also
labeled positive by the reference

ppv =
TP

TP + FP

=
|BR ∩BP |

|BP |

∙ Also known as positive predictive value (ppv)
∙ Example on the right is pixel classification, but it also
applies to object instances

Figure 8: Top: reference (green), prediction (blue).
Middle: True positive (red). Bottom: predicted
positive (red). Image source:
https://www.pixabay.com 14

https://www.pixabay.com


Accuracy

The proportion of correctly classified instances, relative to all
instances (N )

acc =
TP + TN

TP + TN + FP + FN

=
|BR ∩BP |+ |(BR ∪BP )

c|
|N |

Unsuited when class prevalence is unbalanced

First attempt Second attempt

TP 5 0

FP 22 0

FN 10 15

TN 563 585

acc 5+563
600

≈ 0.946 0+585
600

= 0.975

Figure 9: Dark blue: reference background. Light blue:
reference foreground. Green: Predicted background.
Orange: Predicted foreground. Top: reference.
Middle: First attempt. Bottom: Second attempt
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Balanced accuracy

Weighted accuracy where the weight of an instance is equal to
the inverse prevalence of its true class. In the dichotomous
case

bac =
1

2
(tpr + tnr)

Often more suited than the raw accuracy

First attempt Second attempt

TP 5 0

FP 22 0

FN 10 15

TN 563 585

bac 1
2
( 5
5+10

+ 563
563+22

) ≈ 0.648 1
2
(0 + 585

585+15
) ≈ 0.488 Figure 10: Dark blue: reference background. Light

blue: reference foreground. Green: Predicted
background. Orange: Predicted foreground. Top:
reference. Middle: First attempt. Bottom: Second
attempt
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Jaccard index

∙ The proportion of all instances classified as positive by
the reference and/or the prediction method, that are
classified as positive by both the reference and the
prediction method

iou =
TP

TP + FN + FP

=
|BR ∩BP |
|BR ∪BP |

∙ Also known as
∙ Intersection over Union (IoU)
∙ Tanimoto index

∙ Example on the right is pixel classification, but it also
applies to object instances

Figure 11: Top: reference (green), prediction (blue).
Middle: Intersection (red). Bottom: Union (red).
Image source: https://www.pixabay.com
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Object detection evaluation — mean average precision

∙ Mean average precision (mAP) is a common evaluation metric in object detection
∙ Each detected region (a bounding box) has a confidence score for each class
∙ Set all detected regions with an IoU < T to be a false positive region, no matter the
confidence score

∙ Common threshold values are T = 0.5

∙ For each class, compute the Average Precision (AP)
∙ Sort detections by decreasing confidence
∙ Compute precision and recall cumulatively as you “walk” from high confidence to low
confidence

∙ Average all computed precision values by some method (will be discussed more in detail
later)

∙ Average the computed average precision scores over all classes
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Mean average precision example — initial image
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Mean average precision example — reference
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Mean average precision example — reference and prediction
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Mean average precision example — Intersection over Union
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Mean average precision example — class confidences
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Mean average precision — Precision / recall

∙ We compute the precision and recall (sensitivity) for each class independently
∙ First, we sort the predictions by decreasing confidence
∙ Then, we compute the precision and recall for the different confidence levels
∙ The recall at a confidence level is the number of true positive predictions at this
confidence level and above, divided by all reference positive instances

∙ The precision at a confidence level is the number of true positive predictions at this
confidence level and above, divided by all predicted positive instances at this
confidence level and above
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Mean average precision example — Precision / recall for car

Figure 12: Left: Car predictions sorted by decreaseing confidence. Right: Corresponding precision-recall plot.
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Mean average precision example — Precision / recall for house

Figure 13: Left: House predictions sorted by decreaseing confidence. Right: Corresponding precision-recall plot.
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Mean average precision — Averaging

∙ We get the mean average precision by averaging
the Average Precision (AP) over all classes

∙ The average precision is usually related to the
area under the curve (AUC) made by graphing the
true positive rate versus the false positive rate.

∙ Some common definitions of AP:
∙ The area under the precision / recall curve
∙ The area under the interpolated precision /
recall curve

∙ See e.g. [Everingham et al., 2015] for more info
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Mean average precision — AP from interpolated area under the curve

∙ Interpolate the precision / recall curve

pinterp(r) = max
r̂:r̂≥r

p(r̂)

where p(r̂) is the precision at recall r̂.
∙ Take the average of the interpolated precision at
evenly sampled recall values

AP =
1

11

∑
r∈{0.0,0.1,...,1.0}

pinterp(r)

∙ Used in the PASCAL VOC object detection
challenge up until 2009

∙ Intended to reduce the impact of “wiggles” in the
precision / recall curve

∙ Downside: Can be too crude
28



Mean average precision — AP from area under the curve

∙ Compute the true area under the precision /
recall curve

∙ Area of the blue region in the figure to the right
∙ E.g. used in the PASCAL VOC object detection
competition from 2010 and onwards

∙ Common to use the trapezoidal rule to compute
the area

∙ Can also use a simpler estimate (e.g. in
sklearn.metrics.average_precision_score)

AP =

N∑
n=2

(rn − rn−1)pn (1)

for (precision, recall) entries
{(p1, r1), (p2, r2), . . . , (pN , rN )}
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Mean average precision example — Averaging over classes

∙ Using eq. (1) to compute AP, we get
∙ Car class: APcar ≈ 0.5888

∙ House class: APcar ≈ 0.6939

∙ The mean of the two is then mAP ≈ 0.6414
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image classification and localization



Objective

∙ Classify an image with a single object
∙ Draw a bounding box around the object

Figure 15: Seagull. Image source: https://www.pixabay.com
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Label vector

∙ Add object/no object indicator c0
∙ Interpret c0 as
c0 = Pr(there is an object in this box)

∙ c0 is often referred to as the objectness,
but can also be thought of as a
“catch-all” background class indicator

∙ Standard category probabilities from
classification (c1, c2, . . . , cNc )

∙ Interpret ci as ci = Pr(classi|c0 = 1),
i = 1, . . . , n

∙ Add bounding box location specifiers
∙ br : Center row coordinate
∙ bc: Center column coordinate
∙ bh: Box height
∙ bw : Box width

y =



c0
c1
c2
...

cNc

br
bc
bh
bw


Figure 16: Seagull. Image source: https://www.pixabay.com
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Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

y =



c0
c1
c2
c3
br
bc
bh
bw


Figure 17: Tiger. Image source: https://www.pixabay.com
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Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

y =



c0
c1
c2
c3
br
bc
bh
bw


Figure 18: Lion. Image source: https://www.pixabay.com
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Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

y =



c0
c1
c2
c3
br
bc
bh
bw


Note that c0 = 0, so we do
not care about the rest,
symbolized by Ø.

Figure 19: Savannah. Image source: https://www.pixabay.com
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Loss function

∙ We could use a conditioned L2 loss for all elements

L(y, ŷ) =

{∑|y|
i=1 (yi − ŷi)

2
, if y1 = 1

(y1 − ŷ1)
2
, if y1 = 0

∙ where
∙ y is the reference (ground truth) label vector
∙ ŷ is the predicted label vector
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Multi-task loss function

∙ Partition y into y = [c, b], with
∙ c = [c0, c1, . . . , cNc ]

∙ b = [br, bc, bh, bw]

∙ L2 loss for object bounding box location b

Lb(b, b̂) =
∑

i∈{x,y,h,w}

(bi − b̂i)
2

∙ Cross entropy loss for object categories c

Lc(c, ĉ) = −
n∑

i=1

ĉi log ci

∙ The total loss can be written as

L(y, ŷ) = Lc + [c0 = 1]Lb

∙ Only compare bounding box if there is an object
38



object detection



Classes of object detection

OD: Objectness detection
∙ Detect all objects in an image
∙ Does not care about category

SOD: Salient object detection
∙ Inspired by human visual attention
system

∙ Focus on a few informative image
regions

COD: Category-specific object detection
∙ Detect objects from predefined
categories

∙ Detect and classify object
∙ This is the focus in this lecture Figure 20: Source: [Han et al., 2018]
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Bounding box regression for object detection

∙ Impractical to encode a bounding box b = [bx, by, bh, bw] for every instance and class
∙ Every image would need a custom number of outputs

Figure 21: Image source: https://www.pixabay.com
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Sliding window object detection

∙ Train a classification net on images tightly
cropped around objects

∙ Slide a window (of multiple sizes) over the image
you want to detect objects in

∙ Give each pixel a score based on the trained
classification net on each window

∙ Ok for cheap classification methods
∙ Very slow for CNN classification

Figure 22: Image source: https://www.pixabay.com

∙ Convolutional implementation
can fix the efficiency problem
(see e.g. OverFeat method)

∙ Still not very precise bounding
boxes
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Region proposal detection

∙ A subclass of object detection methods
∙ Use a separate method to find candidate regions
∙ Filter out regions without an object, or
redundant, overlapping regions with an object

∙ Classify these regions and refine region
boundary

Figure 23: Image source: https://www.pixabay.com
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R-CNN — overview

∙ Originally proposed in [Girshick et al., 2014]
∙ Combines region proposals and convolutional
neural networks

∙ Consists of three modules:
∙ For each image, propose a set of
category-independent regions

∙ Extract a fixed-length feature vector from each
region using a CNN

∙ Classify the feature vectors with a class-specific
linear SVM

Figure 24: Image source: https://www.pixabay.com
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R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

Figure 25: Image source: https://www.pixabay.com
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R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

∙ Warp the regions (regardless of shape) to a fixed
size

Figure 26: Image source: https://www.pixabay.com
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R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

∙ Warp the regions (regardless of shape) to a fixed
size

∙ Feature extraction
∙ Feed the warped regions into a pretrained CNN1

∙ Output a 4096-dimensional feature vector

Figure 27: Image source: https://www.pixabay.com

1Pretrained on ImageNet, finetuned to Pascal VOC, see paper for details
47
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R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

∙ Warp the regions (regardless of shape) to a fixed
size

∙ Feature extraction
∙ Feed the warped regions into a pretrained CNN1

∙ Output a 4096-dimensional feature vector

∙ A pretrained SVM scores each region
∙ Reject regions with non-maximum suppression
∙ Tune bounding boxes with a pretrained
regression model

Figure 28: Image source: https://www.pixabay.com

1Pretrained on ImageNet, finetuned to Pascal VOC, see paper for details
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Non-max suppression

∙ Important step in several object detection algorithms
∙ Remove all boxes with associate objectness c0 smaller
than some threshold, say c0 < 0.5

∙ For each class i = 1, 2, . . . , n

∙ Create a list of unseen regions Ui that contains all the
regions in the image

∙ Create an empty list of regions to keep Ki

∙ While there are regions left in Ui

∙ Find the most probable region Rmax
∙ Rmax can be the region with highest value of c0ci (or some
similar criterion)

∙ Remove all regions that overlaps with Rmax (e.g. with
iou > 0.5), from Ui

∙ Move Rmax from Ui to Ki

Figure 29: Top: Original. Middle: Too low c0
removed. Bottom: iou > 0.5 removed. Image
source: https://www.pixabay.com
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Fast R-CNN

∙ Publication: [Girshick, 2015]
∙ The original R-CNN is slow and expencive:

∙ Multi-stage pipeline
∙ Classify each predicted region with a CNN
∙ Intermediate feature maps are stored, takes a lot of space

∙ Fast R-CNN manages to save computation by first feeding the entire image into a CNN
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Fast R-CNN

∙ Get region proposals (as in R-CNN)
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Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
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Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map
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Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer
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Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer
∙ Feed the fixed-sized pooled region to fully connected
layers

∙ One softmax output for class prediction
∙ One regression output for the bounding box prediction
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Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer
∙ Feed the fixed-sized pooled region to fully connected
layers

∙ One softmax output for class prediction
∙ One regression output for the bounding box prediction
∙ Multi-task loss
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Region of Interest (ROI) pooling

∙ Max-pooling on input of non-uniform size
∙ Often used when extracting features for regions
∙ One list of region descriptors: (br, bc, bh, bw) for every
region

∙ One, shared feature map
∙ ROI-pooling partitions the box region into a S × S grid
∙ Extracts the max in each grid cell
∙ This results in a S × S matrix, no matter the input shape
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Faster R-CNN

∙ Publication: [Ren et al., 2016]
∙ With Fast R-CNN, the region proposal is the bottleneck
∙ Faster R-CNN introduces a Region Proposal Network (RPN)
∙ Consists of two modules:

∙ A fully convolutional RPN
∙ The Fast R-CNN detection network

∙ The RPN “tells Fast R-CNN where to look”
∙ The RPN and the detection network share layers
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Anchor boxes

∙ A location have multiple boxes in different sizes and shapes
∙ Spread these anchor locations around an image
∙ Anchor shapes can be task-specific
∙ Training/labeling: Every anchor box is labeled as containing an object or not
∙ The overlap between the anchor box and reference box determines the label
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Region proposal network (RPN)

∙ A small network that scans the anchor boxes
∙ Predicts if an anchor box contain an object
∙ Refines the anchor box region boundary
∙ The regions with highest confidence of containing an object is kept
∙ Non-maximum suppression handles overlap
∙ These proposal regions go on to the next stage
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Faster R-CNN — Complete picture

∙ The CNN extracts features
∙ Features are used by the RPN
∙ The RPN proposes regions to a detection network (like
Fast-RCN)

∙ The detection network uses the same features as the RPN
∙ Training:

∙ Alternate between RPN and detection network training
∙ Or, train them jointly
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YOLO

∙ Publication: [Redmon et al., 2016]
∙ You Only Look Once
∙ Very fast (about 100× faster than Fast R-CNN)
∙ Not as accurate as the most accurate methods
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YOLO — grid

∙ Partition image into S × S grid
∙ A grid cell is responsible for detecting
an object with center point in that grid
cell

∙ Each grid cell predicts B bounding
boxes, and a confidence score for each
box

∙ Confidence:
c0 · iou(reference box,predicted box)
(zero if there is no reference box in that
cell) Figure 30: Image source: https://www.pixabay.com
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YOLO — prediction vector

∙ The target vector has then the shape
(S, S, 5 ·B +Nc)

∙ For each cell:
∙ One set of parameters
(c0, br, bc, bh, bw), for every bounding
box

∙ A set of class parameters
(c1, c2, . . . , nc)

∙ Can train against the target vector with
a conventional CNN

∙ Limitation: One cell can predict B
objects of the same class

∙ Extension: Use multiple anchor boxes,
each with an associated class

Figure 31: Image source: https://www.pixabay.com
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Object detection — summary

∙ A challenging problem
∙ Impressive progress the last few years
∙ More recent methods

∙ R-FCN
∙ SSD
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semantic segmentation



Semantic segmentation

∙ Classify every pixel in an image
∙ Differentiate between classes
∙ Do not differentiate between multiple instances of the same class

Figure 32: Left: Original. Right: Segmented. Image source: https://www.pexels.com
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Sliding window classification

∙ Select a small window
∙ Classify this image
∙ Assign the center pixel of this window
the most probable class

∙ Repeat for all pixels in the image
∙ Very inefficient
∙ Misses larger image context

Figure 33: Top: Original. Bottom: Partially segmented. Image source:
https://www.pexels.com
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CNN multiple pixel classification

∙ Segment image all at once
∙ Input image shape: H ×W × C

∙ Output layer shape: H ×W ×Nc, where Nc: number of
classes

∙ Pixel-wise cross entropy loss
∙ Softmax over channels at a pixel location
∙ Repeat, and average over all pixels

∙ Very expensive on computation and memory

Figure 34: Top: Original. Bottom: Segmented. Image
source: https://www.pexels.com
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Downsampling and upsampling

∙ Segment image all at once
∙ Input image shape: H ×W × C

∙ Output layer shape: H ×W ×Nc, where Nc: number of
classes

∙ Spatial downsampling followed by upsampling (encoding,
decoding)

∙ Pixel-wise cross entropy loss
∙ Softmax over channels at a pixel location
∙ Repeat, and average over all pixels

∙ Different upsampling techniques

Figure 35: Top: Original. Bottom: Segmented. Image
source: https://www.pexels.com
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Simple unpooling

Fill with zeros Fill with same
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Max unpooling

Remember max locations from max pool downsampling. Reverse this on the “opposite”
layer
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Interpolation upsampling
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Trainable upsampling

∙ Upsampling convolution
∙ In depth convolution tutorial here
∙ Can learn kernel parameters as with regular convolution
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Transposed convolution

∙ Can view convolution as a matrix-matrix
multiplication

∙ Transposed convolution gets its name
by transposing this operation

∙ Also called
∙ fractionally strided convolution
∙ deconvolution (this is a misnomer)
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FCN

∙ Publication: [Long et al., 2014]
∙ Early adaptor of segmentation with end-to-end trained CNNs
∙ Uses learnable transposed convolution in upsampling

Figure 36: FCN architecture. Image source: [Long et al., 2014]
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FCN — skip connections

∙ Aggressive upsampling leads to course segmentation result
∙ Combine upsampling from different parts in the layer
∙ Each with different upscaling

Figure 37: FCN architecture with different upsampling strategies. Image source: [Long et al., 2014]
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U-net

∙ Publication: [Ronneberger et al., 2015]
∙ Contraction: Ordinary convolution and pooling layers
∙ Expansion: Concatenation of

∙ Cropped feature maps from contraction phase (gray arrows)
∙ Transposed convolution from previous layer
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Dilated convolution

∙ Insert spacing between convolution
kernel cells (dilation rate)

∙ Also called
∙ convolution with holes
∙ A-trous convolution (a trous is french
for with holes)

∙ Increase field of view, without needing
larger convolution kernel, or multiple
chained convolutions
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DeepLab

∙ Publication: [Chen et al., 2016]
∙ VGG16 or ResNet as base networks
∙ Employs dilated convolution in upsampling
∙ v3 currently holds top position on the PASCAL VOC segmentation leaderboard

Figure 38: VGG16 version with atrous spatial pyramid pooling (ASPP)
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Example: Tumor segmentation — input
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Example: Tumor segmentation — prediction
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Example: Tumor segmentation — prediction and reference
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Segmentation — argmax

∙ Normally, convnet-segmentation methods outputs a probability map for each class
∙ Need to assign one label to each pixel (segment the image)
∙ Could use arg-max over classes for each pixel
∙ Pros:

∙ Simple
∙ Fast

∙ Cons:
∙ Ugly
∙ Inaccurate

∙ Very common to use Dense Conditional Random Fields
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Segmentation — Conditional random fields

∙ Fast implementation: Efficient Inference in Fully Connected CRFs with Gaussian Edge
Potentials

∙ Use information from the output probability map
∙ Also takes into account features from the input image, such as color in neighbouring
pixels

Figure 39: Source: [Krähenbühl and Koltun, 2011] 85
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Example: Tumor segmentation — segmentation and reference
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instance segmentation



Instance segmentation

∙ Image segmentation with discrimination between instances of the same class
∙ Combines object detection and semantic segmentation
∙ More difficult than standard semantic segmentation

Figure 40: Left: Original. Right: Segmented. Image source: https://www.pexels.com
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Mask R-CNN

∙ Publication: [He and Girshick, 2017]
∙ Extends Faster R-CNN
∙ Faster R-CNN outputs a class label and a bounding box offset for each detected
region

∙ Mask R-CNN in addition outputs one object mask for each class
∙ The object mask is produced by a small segmentation network (e.g. FCN)
∙ The segmentation is performed independently in each class
∙ Substitutes the ROI pooling with a location-preserving ROI alignment layer
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Mask R-CNN

Figure 41: Mask R-CNN results [He and Girshick, 2017] 90
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