
segmentation and object detection
IN5400 — Machine Learning for Image Analysis

Ole-Johan Skrede
13.03.2019

University of Oslo

Messages

∙ Weekly exercises will be uploaded soon
∙ PhD-students: Remainder about essay

∙ Coordinate topics with Anne
∙ Deadline for topic selection: 01.04.2019
∙ Deadline for submission: 01.05.2019

∙ ML-servers has been down due to change of GPU. This should be resolved now.

1

Outline

∙ Introduction and motivation
∙ Performance evaluation metrics
∙ Object detection
∙ Image segmentation

2

introduction and motivation

Image classification and object localization

Figure 1: Seagull. Image source: https://www.pixabay.com

4

https://www.pixabay.com

Object detection — Multiple instances

Figure 2: Rooster, cat, dog, donkey. Image source: https://www.pixabay.com

5

https://www.pixabay.com

Semantic segmentation

Figure 3: Left: Original. Right: Segmented. Image source: https://www.pexels.com

6

https://www.pexels.com

Instance segmentation

Figure 4: Left: Original. Right: Segmented. Image source: https://www.pexels.com

7

https://www.pexels.com

Learning outcome

∙ We will see a lot of different approaches
∙ Not expected to know every algorithm inside-out
∙ Most important that you are educated about the possibilities
∙ Curriculum (exam-relevant), will be decided well in time before the exam

8

performance evaluation metrics

Evaluation metrics

∙ Sensitivity
∙ Specificity
∙ Precision
∙ Accuracy
∙ Jaccard index
∙ Mean average precision

10

Dichotomous partition

∙ Let BR be the set of pixels enclosed by the reference
bounding box

∙ Let BP be the set of pixels enclosed by the predicted
bounding box

∙ True positive: TP = |BR ∩BP |
∙ False negative: FN = |BR \BP | (Type I error)
∙ False positive: FP = |BP \BR| (Type II error)
∙ True negative: TN = |(BR ∪BP)

c|
∙ Where, for sets A,B ⊆ C

∙ A ∩B = {x : x ∈ A, x ∈ B} is the intersection of A and B

∙ A \B = {x : x ∈ A, x /∈ B} is the set difference between A

and B

∙ (A ∪B)c = {x : x /∈ A, x /∈ B, x ∈ C} is the complement of
(A ∪B)

Figure 5: Top: reference (green), prediction (blue).
Bottom: TP (orange), FN (green), FP (blue), TN (red).
Image source: https://www.pixabay.com 11

https://www.pixabay.com

Sensitivity

∙ Proportion of positive reference instances labelled as
positive by the predicted method

tpr =
TP

TP + FN

=
|BR ∩BP |

|BR|

∙ Also known as
∙ true positive rate (tpr)
∙ recall

∙ Example on the right is pixel classification, but it also
applies to object instances Figure 6: Top: reference (green), prediction (blue).

Middle: True positive (red). Bottom: Reference
positive (red). Image source:
https://www.pixabay.com 12

https://www.pixabay.com

Specificity

∙ Proportion of negative reference instances labelled as
negative by the predicted method

tnr =
TN

TN + FP

=
|(BR ∩BP)

c|
|Bc

R|

∙ Also known as true negative rate (tnr)

Figure 7: Top: reference (green), prediction (blue).
Middle: True negative (red). Bottom: Reference
negative (red). Image source:
https://www.pixabay.com 13

https://www.pixabay.com

Precision

∙ Proportion of predicted positive instances that are also
labeled positive by the reference

ppv =
TP

TP + FP

=
|BR ∩BP |

|BP |

∙ Also known as positive predictive value (ppv)
∙ Example on the right is pixel classification, but it also
applies to object instances

Figure 8: Top: reference (green), prediction (blue).
Middle: True positive (red). Bottom: predicted
positive (red). Image source:
https://www.pixabay.com 14

https://www.pixabay.com

Accuracy

The proportion of correctly classified instances, relative to all
instances (N)

acc =
TP + TN

TP + TN + FP + FN

=
|BR ∩BP |+ |(BR ∪BP)

c|
|N |

Unsuited when class prevalence is unbalanced

First attempt Second attempt

TP 5 0

FP 22 0

FN 10 15

TN 563 585

acc 5+563
600

≈ 0.946 0+585
600

= 0.975

Figure 9: Dark blue: reference background. Light blue:
reference foreground. Green: Predicted background.
Orange: Predicted foreground. Top: reference.
Middle: First attempt. Bottom: Second attempt

15

Balanced accuracy

Weighted accuracy where the weight of an instance is equal to
the inverse prevalence of its true class. In the dichotomous
case

bac =
1

2
(tpr + tnr)

Often more suited than the raw accuracy

First attempt Second attempt

TP 5 0

FP 22 0

FN 10 15

TN 563 585

bac 1
2
(5
5+10

+ 563
563+22

) ≈ 0.648 1
2
(0 + 585

585+15
) ≈ 0.488 Figure 10: Dark blue: reference background. Light

blue: reference foreground. Green: Predicted
background. Orange: Predicted foreground. Top:
reference. Middle: First attempt. Bottom: Second
attempt

16

Jaccard index

∙ The proportion of all instances classified as positive by
the reference and/or the prediction method, that are
classified as positive by both the reference and the
prediction method

iou =
TP

TP + FN + FP

=
|BR ∩BP |
|BR ∪BP |

∙ Also known as
∙ Intersection over Union (IoU)
∙ Tanimoto index

∙ Example on the right is pixel classification, but it also
applies to object instances

Figure 11: Top: reference (green), prediction (blue).
Middle: Intersection (red). Bottom: Union (red).
Image source: https://www.pixabay.com

17

https://www.pixabay.com

Object detection evaluation — mean average precision

∙ Mean average precision (mAP) is a common evaluation metric in object detection
∙ Each detected region (a bounding box) has a confidence score for each class
∙ Set all detected regions with an IoU < T to be a false positive region, no matter the
confidence score

∙ Common threshold values are T = 0.5

∙ For each class, compute the Average Precision (AP)
∙ Sort detections by decreasing confidence
∙ Compute precision and recall cumulatively as you “walk” from high confidence to low
confidence

∙ Average all computed precision values by some method (will be discussed more in detail
later)

∙ Average the computed average precision scores over all classes

18

Mean average precision example — initial image

19

Mean average precision example — reference

20

Mean average precision example — reference and prediction

21

Mean average precision example — Intersection over Union

22

Mean average precision example — class confidences

23

Mean average precision — Precision / recall

∙ We compute the precision and recall (sensitivity) for each class independently
∙ First, we sort the predictions by decreasing confidence
∙ Then, we compute the precision and recall for the different confidence levels
∙ The recall at a confidence level is the number of true positive predictions at this
confidence level and above, divided by all reference positive instances

∙ The precision at a confidence level is the number of true positive predictions at this
confidence level and above, divided by all predicted positive instances at this
confidence level and above

24

Mean average precision example — Precision / recall for car

Figure 12: Left: Car predictions sorted by decreaseing confidence. Right: Corresponding precision-recall plot.

25

Mean average precision example — Precision / recall for house

Figure 13: Left: House predictions sorted by decreaseing confidence. Right: Corresponding precision-recall plot.

26

Mean average precision — Averaging

∙ We get the mean average precision by averaging
the Average Precision (AP) over all classes

∙ The average precision is usually related to the
area under the curve (AUC) made by graphing the
true positive rate versus the false positive rate.

∙ Some common definitions of AP:
∙ The area under the precision / recall curve
∙ The area under the interpolated precision /
recall curve

∙ See e.g. [Everingham et al., 2015] for more info

27

Mean average precision — AP from interpolated area under the curve

∙ Interpolate the precision / recall curve

pinterp(r) = max
r̂:r̂≥r

p(r̂)

where p(r̂) is the precision at recall r̂.
∙ Take the average of the interpolated precision at
evenly sampled recall values

AP =
1

11

∑
r∈{0.0,0.1,...,1.0}

pinterp(r)

∙ Used in the PASCAL VOC object detection
challenge up until 2009

∙ Intended to reduce the impact of “wiggles” in the
precision / recall curve

∙ Downside: Can be too crude
28

Mean average precision — AP from area under the curve

∙ Compute the true area under the precision /
recall curve

∙ Area of the blue region in the figure to the right
∙ E.g. used in the PASCAL VOC object detection
competition from 2010 and onwards

∙ Common to use the trapezoidal rule to compute
the area

∙ Can also use a simpler estimate (e.g. in
sklearn.metrics.average_precision_score)

AP =

N∑
n=2

(rn − rn−1)pn (1)

for (precision, recall) entries
{(p1, r1), (p2, r2), . . . , (pN , rN)}

29

Mean average precision example — Averaging over classes

∙ Using eq. (1) to compute AP, we get
∙ Car class: APcar ≈ 0.5888

∙ House class: APcar ≈ 0.6939

∙ The mean of the two is then mAP ≈ 0.6414

30

image classification and localization

Objective

∙ Classify an image with a single object
∙ Draw a bounding box around the object

Figure 15: Seagull. Image source: https://www.pixabay.com

32

https://www.pixabay.com

Label vector

∙ Add object/no object indicator c0
∙ Interpret c0 as
c0 = Pr(there is an object in this box)

∙ c0 is often referred to as the objectness,
but can also be thought of as a
“catch-all” background class indicator

∙ Standard category probabilities from
classification (c1, c2, . . . , cNc)

∙ Interpret ci as ci = Pr(classi|c0 = 1),
i = 1, . . . , n

∙ Add bounding box location specifiers
∙ br : Center row coordinate
∙ bc: Center column coordinate
∙ bh: Box height
∙ bw : Box width

y =

c0
c1
c2
...

cNc

br
bc
bh
bw

Figure 16: Seagull. Image source: https://www.pixabay.com

33

https://www.pixabay.com

Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

y =

c0
c1
c2
c3
br
bc
bh
bw

Figure 17: Tiger. Image source: https://www.pixabay.com

34

https://www.pixabay.com

Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

y =

c0
c1
c2
c3
br
bc
bh
bw

Figure 18: Lion. Image source: https://www.pixabay.com

35

https://www.pixabay.com

Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

y =

c0
c1
c2
c3
br
bc
bh
bw

Note that c0 = 0, so we do
not care about the rest,
symbolized by Ø.

Figure 19: Savannah. Image source: https://www.pixabay.com

36

https://www.pixabay.com

Loss function

∙ We could use a conditioned L2 loss for all elements

L(y, ŷ) =

{∑|y|
i=1 (yi − ŷi)

2
, if y1 = 1

(y1 − ŷ1)
2
, if y1 = 0

∙ where
∙ y is the reference (ground truth) label vector
∙ ŷ is the predicted label vector

37

Multi-task loss function

∙ Partition y into y = [c, b], with
∙ c = [c0, c1, . . . , cNc]

∙ b = [br, bc, bh, bw]

∙ L2 loss for object bounding box location b

Lb(b, b̂) =
∑

i∈{x,y,h,w}

(bi − b̂i)
2

∙ Cross entropy loss for object categories c

Lc(c, ĉ) = −
n∑

i=1

ĉi log ci

∙ The total loss can be written as

L(y, ŷ) = Lc + [c0 = 1]Lb

∙ Only compare bounding box if there is an object
38

object detection

Classes of object detection

OD: Objectness detection
∙ Detect all objects in an image
∙ Does not care about category

SOD: Salient object detection
∙ Inspired by human visual attention
system

∙ Focus on a few informative image
regions

COD: Category-specific object detection
∙ Detect objects from predefined
categories

∙ Detect and classify object
∙ This is the focus in this lecture Figure 20: Source: [Han et al., 2018]

40

Bounding box regression for object detection

∙ Impractical to encode a bounding box b = [bx, by, bh, bw] for every instance and class
∙ Every image would need a custom number of outputs

Figure 21: Image source: https://www.pixabay.com

41

https://www.pixabay.com

Sliding window object detection

∙ Train a classification net on images tightly
cropped around objects

∙ Slide a window (of multiple sizes) over the image
you want to detect objects in

∙ Give each pixel a score based on the trained
classification net on each window

∙ Ok for cheap classification methods
∙ Very slow for CNN classification

Figure 22: Image source: https://www.pixabay.com

∙ Convolutional implementation
can fix the efficiency problem
(see e.g. OverFeat method)

∙ Still not very precise bounding
boxes

42

https://www.pixabay.com

Region proposal detection

∙ A subclass of object detection methods
∙ Use a separate method to find candidate regions
∙ Filter out regions without an object, or
redundant, overlapping regions with an object

∙ Classify these regions and refine region
boundary

Figure 23: Image source: https://www.pixabay.com

43

https://www.pixabay.com

R-CNN — overview

∙ Originally proposed in [Girshick et al., 2014]
∙ Combines region proposals and convolutional
neural networks

∙ Consists of three modules:
∙ For each image, propose a set of
category-independent regions

∙ Extract a fixed-length feature vector from each
region using a CNN

∙ Classify the feature vectors with a class-specific
linear SVM

Figure 24: Image source: https://www.pixabay.com

44

https://www.pixabay.com

R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

Figure 25: Image source: https://www.pixabay.com

45

https://www.pixabay.com

R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

∙ Warp the regions (regardless of shape) to a fixed
size

Figure 26: Image source: https://www.pixabay.com

46

https://www.pixabay.com

R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

∙ Warp the regions (regardless of shape) to a fixed
size

∙ Feature extraction
∙ Feed the warped regions into a pretrained CNN1

∙ Output a 4096-dimensional feature vector

Figure 27: Image source: https://www.pixabay.com

1Pretrained on ImageNet, finetuned to Pascal VOC, see paper for details
47

https://www.pixabay.com

R-CNN

∙ Propose regions (∼ 2000)
∙ In the original publication they use selective
search [Uijlings et al., 2013]

∙ Warp the regions (regardless of shape) to a fixed
size

∙ Feature extraction
∙ Feed the warped regions into a pretrained CNN1

∙ Output a 4096-dimensional feature vector

∙ A pretrained SVM scores each region
∙ Reject regions with non-maximum suppression
∙ Tune bounding boxes with a pretrained
regression model

Figure 28: Image source: https://www.pixabay.com

1Pretrained on ImageNet, finetuned to Pascal VOC, see paper for details
48

https://www.pixabay.com

Non-max suppression

∙ Important step in several object detection algorithms
∙ Remove all boxes with associate objectness c0 smaller
than some threshold, say c0 < 0.5

∙ For each class i = 1, 2, . . . , n

∙ Create a list of unseen regions Ui that contains all the
regions in the image

∙ Create an empty list of regions to keep Ki

∙ While there are regions left in Ui

∙ Find the most probable region Rmax
∙ Rmax can be the region with highest value of c0ci (or some
similar criterion)

∙ Remove all regions that overlaps with Rmax (e.g. with
iou > 0.5), from Ui

∙ Move Rmax from Ui to Ki

Figure 29: Top: Original. Middle: Too low c0
removed. Bottom: iou > 0.5 removed. Image
source: https://www.pixabay.com

49

https://www.pixabay.com

Fast R-CNN

∙ Publication: [Girshick, 2015]
∙ The original R-CNN is slow and expencive:

∙ Multi-stage pipeline
∙ Classify each predicted region with a CNN
∙ Intermediate feature maps are stored, takes a lot of space

∙ Fast R-CNN manages to save computation by first feeding the entire image into a CNN

50

Fast R-CNN

∙ Get region proposals (as in R-CNN)

51

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image

52

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

53

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer

54

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer
∙ Feed the fixed-sized pooled region to fully connected
layers

∙ One softmax output for class prediction
∙ One regression output for the bounding box prediction

55

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer
∙ Feed the fixed-sized pooled region to fully connected
layers

∙ One softmax output for class prediction
∙ One regression output for the bounding box prediction
∙ Multi-task loss

56

Region of Interest (ROI) pooling

∙ Max-pooling on input of non-uniform size
∙ Often used when extracting features for regions
∙ One list of region descriptors: (br, bc, bh, bw) for every
region

∙ One, shared feature map
∙ ROI-pooling partitions the box region into a S × S grid
∙ Extracts the max in each grid cell
∙ This results in a S × S matrix, no matter the input shape

57

Faster R-CNN

∙ Publication: [Ren et al., 2016]
∙ With Fast R-CNN, the region proposal is the bottleneck
∙ Faster R-CNN introduces a Region Proposal Network (RPN)
∙ Consists of two modules:

∙ A fully convolutional RPN
∙ The Fast R-CNN detection network

∙ The RPN “tells Fast R-CNN where to look”
∙ The RPN and the detection network share layers

58

Anchor boxes

∙ A location have multiple boxes in different sizes and shapes
∙ Spread these anchor locations around an image
∙ Anchor shapes can be task-specific
∙ Training/labeling: Every anchor box is labeled as containing an object or not
∙ The overlap between the anchor box and reference box determines the label

59

Region proposal network (RPN)

∙ A small network that scans the anchor boxes
∙ Predicts if an anchor box contain an object
∙ Refines the anchor box region boundary
∙ The regions with highest confidence of containing an object is kept
∙ Non-maximum suppression handles overlap
∙ These proposal regions go on to the next stage

60

Faster R-CNN — Complete picture

∙ The CNN extracts features
∙ Features are used by the RPN
∙ The RPN proposes regions to a detection network (like
Fast-RCN)

∙ The detection network uses the same features as the RPN
∙ Training:

∙ Alternate between RPN and detection network training
∙ Or, train them jointly

61

YOLO

∙ Publication: [Redmon et al., 2016]
∙ You Only Look Once
∙ Very fast (about 100× faster than Fast R-CNN)
∙ Not as accurate as the most accurate methods

62

YOLO — grid

∙ Partition image into S × S grid
∙ A grid cell is responsible for detecting
an object with center point in that grid
cell

∙ Each grid cell predicts B bounding
boxes, and a confidence score for each
box

∙ Confidence:
c0 · iou(reference box,predicted box)
(zero if there is no reference box in that
cell) Figure 30: Image source: https://www.pixabay.com

63

https://www.pixabay.com

YOLO — prediction vector

∙ The target vector has then the shape
(S, S, 5 ·B +Nc)

∙ For each cell:
∙ One set of parameters
(c0, br, bc, bh, bw), for every bounding
box

∙ A set of class parameters
(c1, c2, . . . , nc)

∙ Can train against the target vector with
a conventional CNN

∙ Limitation: One cell can predict B
objects of the same class

∙ Extension: Use multiple anchor boxes,
each with an associated class

Figure 31: Image source: https://www.pixabay.com

64

https://www.pixabay.com

Object detection — summary

∙ A challenging problem
∙ Impressive progress the last few years
∙ More recent methods

∙ R-FCN
∙ SSD

65

semantic segmentation

Semantic segmentation

∙ Classify every pixel in an image
∙ Differentiate between classes
∙ Do not differentiate between multiple instances of the same class

Figure 32: Left: Original. Right: Segmented. Image source: https://www.pexels.com

67

https://www.pexels.com

Sliding window classification

∙ Select a small window
∙ Classify this image
∙ Assign the center pixel of this window
the most probable class

∙ Repeat for all pixels in the image
∙ Very inefficient
∙ Misses larger image context

Figure 33: Top: Original. Bottom: Partially segmented. Image source:
https://www.pexels.com

68

https://www.pexels.com

CNN multiple pixel classification

∙ Segment image all at once
∙ Input image shape: H ×W × C

∙ Output layer shape: H ×W ×Nc, where Nc: number of
classes

∙ Pixel-wise cross entropy loss
∙ Softmax over channels at a pixel location
∙ Repeat, and average over all pixels

∙ Very expensive on computation and memory

Figure 34: Top: Original. Bottom: Segmented. Image
source: https://www.pexels.com

69

https://www.pexels.com

Downsampling and upsampling

∙ Segment image all at once
∙ Input image shape: H ×W × C

∙ Output layer shape: H ×W ×Nc, where Nc: number of
classes

∙ Spatial downsampling followed by upsampling (encoding,
decoding)

∙ Pixel-wise cross entropy loss
∙ Softmax over channels at a pixel location
∙ Repeat, and average over all pixels

∙ Different upsampling techniques

Figure 35: Top: Original. Bottom: Segmented. Image
source: https://www.pexels.com

70

https://www.pexels.com

Simple unpooling

Fill with zeros Fill with same

71

Max unpooling

Remember max locations from max pool downsampling. Reverse this on the “opposite”
layer

72

Interpolation upsampling

73

Trainable upsampling

∙ Upsampling convolution
∙ In depth convolution tutorial here
∙ Can learn kernel parameters as with regular convolution

74

https://arxiv.org/pdf/1603.07285.pdf

Transposed convolution

∙ Can view convolution as a matrix-matrix
multiplication

∙ Transposed convolution gets its name
by transposing this operation

∙ Also called
∙ fractionally strided convolution
∙ deconvolution (this is a misnomer)

75

FCN

∙ Publication: [Long et al., 2014]
∙ Early adaptor of segmentation with end-to-end trained CNNs
∙ Uses learnable transposed convolution in upsampling

Figure 36: FCN architecture. Image source: [Long et al., 2014]

76

FCN — skip connections

∙ Aggressive upsampling leads to course segmentation result
∙ Combine upsampling from different parts in the layer
∙ Each with different upscaling

Figure 37: FCN architecture with different upsampling strategies. Image source: [Long et al., 2014]

77

U-net

∙ Publication: [Ronneberger et al., 2015]
∙ Contraction: Ordinary convolution and pooling layers
∙ Expansion: Concatenation of

∙ Cropped feature maps from contraction phase (gray arrows)
∙ Transposed convolution from previous layer

78

Dilated convolution

∙ Insert spacing between convolution
kernel cells (dilation rate)

∙ Also called
∙ convolution with holes
∙ A-trous convolution (a trous is french
for with holes)

∙ Increase field of view, without needing
larger convolution kernel, or multiple
chained convolutions

79

DeepLab

∙ Publication: [Chen et al., 2016]
∙ VGG16 or ResNet as base networks
∙ Employs dilated convolution in upsampling
∙ v3 currently holds top position on the PASCAL VOC segmentation leaderboard

Figure 38: VGG16 version with atrous spatial pyramid pooling (ASPP)

80

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6

Example: Tumor segmentation — input

81

Example: Tumor segmentation — prediction

82

Example: Tumor segmentation — prediction and reference

83

Segmentation — argmax

∙ Normally, convnet-segmentation methods outputs a probability map for each class
∙ Need to assign one label to each pixel (segment the image)
∙ Could use arg-max over classes for each pixel
∙ Pros:

∙ Simple
∙ Fast

∙ Cons:
∙ Ugly
∙ Inaccurate

∙ Very common to use Dense Conditional Random Fields

84

Segmentation — Conditional random fields

∙ Fast implementation: Efficient Inference in Fully Connected CRFs with Gaussian Edge
Potentials

∙ Use information from the output probability map
∙ Also takes into account features from the input image, such as color in neighbouring
pixels

Figure 39: Source: [Krähenbühl and Koltun, 2011] 85

https://arxiv.org/pdf/1210.5644.pdf
https://arxiv.org/pdf/1210.5644.pdf

Example: Tumor segmentation — segmentation and reference

86

instance segmentation

Instance segmentation

∙ Image segmentation with discrimination between instances of the same class
∙ Combines object detection and semantic segmentation
∙ More difficult than standard semantic segmentation

Figure 40: Left: Original. Right: Segmented. Image source: https://www.pexels.com

88

https://www.pexels.com

Mask R-CNN

∙ Publication: [He and Girshick, 2017]
∙ Extends Faster R-CNN
∙ Faster R-CNN outputs a class label and a bounding box offset for each detected
region

∙ Mask R-CNN in addition outputs one object mask for each class
∙ The object mask is produced by a small segmentation network (e.g. FCN)
∙ The segmentation is performed independently in each class
∙ Substitutes the ROI pooling with a location-preserving ROI alignment layer

89

Mask R-CNN

Figure 41: Mask R-CNN results [He and Girshick, 2017] 90

References I

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. arXiv preprint, pages 1–10, 2016.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes challenge: A retrospective. IJCV,
2015.

Ross Girshick. Fast R-CNN. arXiv preprint, pages 1–9, 2015.
Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. CVPR2014, pages 1–8, 2014.

Junwei Han, Dingwen Zhang, Gong Cheng, Nian Liu, and Dong Xu. Advanced deep-learning
techniques for salient and category-specific object detection. IEEE Signal Processing
Magazine, 35:84–100, 2018.

Kaiming He and Ross Girshick. Mask R-CNN. arXiv preprint, pages 1–10, 2017.

91

References II

P Krähenbühl and Vladlen Koltun. Efficient Inference in Fully Connected CRFs with
Gaussian Edge Potentials Supplementary Material. arXiv preprint, pages 1–4, 2011.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. arXiv preprint, pages 1–10, 2014.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once:
Unified, Real-Time Object Detection. arXiv preprint, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN : Towards Real-Time
Object Detection with Region Proposal Networks. arXiv preprint, pages 1–14, 2016.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. arXiv preprint, pages 1–8, 2015.

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object
recognition. IJCV, 2013.

92

Questions?

93

	Introduction and motivation
	Performance evaluation metrics
	Image classification and localization
	Object detection
	Semantic segmentation
	Instance segmentation
	References

