IN5400 Week 09: average precision

Alex
March 4, 2021
[The following notes are compiled from various sources such as textbooks, lecture materials, Web resources and are shared for academic purposes only, intended for use by students registered for a specific course. In the interest of brevity, every source is not cited. The compiler of these notes gratefully acknowledges all such sources.]

1 Understanding average precision

Consider the average precision score. It is a measure for ranking quality (higher is better).

- It assumes you have two classes $y_{i} \in\{0,1\}$. You are predicting on a set of N samples $\left(x_{i}, y_{i}\right)_{i=1}^{N}$. Suppose +1 (from $\left.y_{i} \in\{0,1\}\right)$ denotes the relevant class. Suppose $s\left(x_{i}\right)$ is a prediction score for class +1 .
- Furthermore, in order to compute mean average precision, we assume that the samples $\left(x_{i}, y_{i}\right)$ are already sorted according to the prediction score $s\left(x_{i}\right)$ in descending order, such that the highest scoring sample comes first.

In information retrieval context it would mean that we rank the documents x_{i} according to a relevance prediction, so that the document which is predicted as most relevant, comes first.

- Next, we define to be the precision at $k(\mathrm{P} @ \mathrm{k})$ as the precision for the top- k documents according:

$$
P @ k=\frac{1}{k} \sum_{i=1, \text { sorted indices!! }}^{k} y_{i}
$$

- This allows to define average precision as:

$$
\begin{aligned}
A P & =\frac{1}{R} \sum_{k=1}^{N} 1\left[y_{k}==+1\right] P @ k \\
& =\frac{1}{R} \sum_{k=1}^{N} 1\left[y_{k}==+1\right] \sum_{i=1, \text { sorted }!!}^{k} \frac{1}{k} y_{i} \\
R & =\sum_{k=1}^{N} 1\left[y_{k}==+1\right]
\end{aligned}
$$

Note that R is the number of samples on the dataset $\left(x_{i}, y_{i}\right)_{i=1}^{N}$ which are relevant $\left(y_{i}=+1\right)$.

1.1 Questions:

- Suppose you have 11 total number of samples, 3 of them have $y_{i}=+1$ and those three come first in the ranking. what is your average precision?
- Suppose you have 11 total number of samples, 3 of them have $y_{i}=+1$ and those three come last in the ranking. what is your average precision?
- Suppose you have N total number of samples, R of them have $y_{i}=+1$ and those R come last in the ranking. what is your average precision? You will (likely) not be able to write it in a simple term like $\sum_{i=1}^{R} i=\frac{R(R+1)}{2}$. Give an expression which depends on R, N and contains a sum.
- Now consider a random predictor: suppose you have N total samples, R of them have $y_{i}=+1$ and those are on evenly distributed (bcs every time you train the predictor, it learns nothing) in the following sense (to give a simplified calculation):
indexing starts at 1 and the first $y_{i}=1$ sample appears at $\frac{N}{R}$, the second sample at $2 \frac{N}{R}$, the l-th sample at $l \frac{N}{R}$, etc. What is the average precision then? You will be able to write it as a simple term.

Hint: calculate the precision@k for every index $k=l \frac{N}{R}$. Then the Average precision.

- Now consider a slightly shifted random predictor: suppose you have N total samples, R of them have $y_{i}=+1$ and those are on evenly distributed (bcs every time you train the predictor, it learns nothing) in the following sense (to give a simplified calculation):
indexing starts at 1 and the first $y_{i}=1$ sample appears at 1 , the second sample at $1+\frac{N}{R}$, the l-th sample at $1+(l-1) \frac{N}{R}$, etc.

What is the average precision then ? Here you will not be able to write it in a simple term again. Will the average precision for this case be lower or higher than in the case before?

- consider a linear classifier $s(x)=w x+b$ with trainable parameters w and b. Consider (a) accuracy by $0-1$-loss and (b) mean average precision. For (a) and (b) which of the trainable parameters have an impact on the result and why?

