
IN5400 – Optimizers and Data Augmentation

Alexander Binder

February 23, 2021

Key takeaways for Optimizers beyond SGD

Be able to explain the main ideas behind:

� learning rate decay strategies

� learning rate: linear warmup

� weight decay and its equivalence to `2-regularization

� the concept of exponential moving averages of a time-series

� updates in momentum term, RMSprop, Adam use exponential
moving averages (EMA)

� momentum term

� RMSprop

� Adam

� AdamW

Key takeaways for Efficient Net components

� depth-wise separable convolution: be able to explain the difference
in model design between depth-wise separable convolution with
1× 1 convolution and conventional convolution

� depth-wise separable convolution: understand the difference in
terms of computation efforts and parameter counts between a block
of depth-wise separable convolution followed by a 1 convolution
versus a single conventional convolution

� squeeze-and-excitation module as plugin

1

Lets see if we do this in this or in the next lecture:

teacher student learning and noisy students

� how to use noisy student approach

� be able to explain the basic steps how teacher student training
works

2

1 Optimizers beyond SGD: Better way to up-
date parameters by applying gradients

prereading: Sebastian Ruder, An overview of gradient descent optimization al-
gorithms https://arxiv.org/abs/1609.04747 http://sebastianruder.com

/optimizing-gradient-descent/index.html

What we had for optimization: want to find a parameter w corresponding to a
mapping fw : x 7→ f(x) ∈ Y

Ê(w,L) =
1

n

n∑
i=1

L(fw(xi), yi)

argminwÊ(fw, L)

Basic Algorithm idea (Gradient Descent):

� initialize start vector w0 as something, step size parameter η

� run while loop until vector changes very little, do at iteration t:

– wt+1 = wt − η∇wÊ(wt, L) = wt − learningrate · dEdw (wt)

– compute change to last: ‖wt+1 − wt‖

Problem is: deep neural networks have many parameters - see code. Need more
tricks to get it all working well.

1.1 How to choose a learning rate

First question: How to choose the learning rate?

Answer: there is no general solution for it - try and error on your problem.

fixed learning rate can result in problems: quadform.py

� DIVERGENCE if learning rate too high - (see example in past lecture)

� in a flat region steps can be very small:

Observation: size of update of weights, as measured by euclidean length
is proportional to the norm of the gradient:

wt+1 = wt − ηt∇wÊ(wt, L, 1, n)

‖wt+1 − wt‖ = ηt‖∇wÊ(wt, L, 1, n)‖

So in a flat region with ‖∇wÊ(wt, L, 1, n)‖ ≈ 0 , the steps taken are very
small.

3

https://arxiv.org/abs/1609.04747
http://sebastianruder.com/optimizing-gradient-descent/index.html
http://sebastianruder.com/optimizing-gradient-descent/index.html

� long flat region followed by a steep decline, want to go fast first, but must
go slow in the steep part - a constant stepsize is either too slow at the
start, or too fast at the end

must quickly reduce

stepsize here!

otherwise huge step into NaNs

� typical solution step-wise learning rate decay: not constant learning
rate η but reduce learning rate by multiplying with a constant γ ∈ (0, 1)
once every K steps:

ηt+1 =

{
ηt · γ, 0 < γ < 1 if t = c ·K for some c = 1, 2, 3, . . .

ηt else

other solution – polynomial learning rate decay, (but in deep learning often
too fast decrease of ηt)

ηt =
η0
tα
, α > 0

1.2 Linear learning rate warm up

Goyal et al. https://arxiv.org/abs/1706.02677 inspired by Chen et al. ht
tps://ieeexplore.ieee.org/document/7472805. Section 2.2 in the former

ηt =

η0

t
K0+1 if t ≤ K0, warmup phase

f(t, η0,K0) if t > K0, f(·) is your usual learning rate decay,

offsetted to start at index K0

Motivation: resolve instabilities at the start of learning by starting slower dur-
ing the first K0 epochs, in https://arxiv.org/abs/1706.02677 K0 = 5 for
imagenet. Might need to be larger for smaller datasets.

Results: see Table 1 in the paper https://arxiv.org/abs/1706.02677.

4

https://arxiv.org/abs/1706.02677
https://ieeexplore.ieee.org/document/7472805
https://ieeexplore.ieee.org/document/7472805
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677

Important:

Learning rate reduction schemes to know:

� stepwise learning rate reduction

� polynomial learning rate reduction

� SGD with warm restarts https://arxiv.org/pdf/1608.03983.

pdf Loshchilov and Hutter ICLR 2017

https://towardsdatascience.com/https-medium-com-reina-

wang-tw-stochastic-gradient-descent-with-restarts-5f

511975163

– for the i-th run decrease learningrate from η
(i)
max to η

(i)
min by a

cosine quarter wave:

ηt = η
(i)
min + (η(i)max − η

(i)
min)

1

2
(1 + cos(π

Tcur
Ti

))

– after that increase the number of epochs by a factor Ti+1 =

Ti · Tmult that are needed to get from η
(i)
max to η

(i)
min

a paper that makes use of that for generating an ensemble along the
restarts: https://arxiv.org/pdf/1704.00109.pdf

1.3 Weight decay

Replace

wt+1 = wt −ηt∇wÊ(wt, L) by

wt+1 = wt(1− ληt) −ηt∇wÊ(wt, L)

shrinks weight towards zero. Comes from quadratic regularization:

ÊReg(w,L) =
1

n

n∑
i=1

L(fw(xi), yi) +
1

2
ληt‖w‖22

∇wÊReg(w,L) = ∇w
1

n

n∑
i=1

L(fw(xi), yi) +∇w
1

2
ληt‖w‖22

∇wÊReg(w,L) = ∇wÊ(w,L) +ληtw

therefore: wt+1 = wt − ηt∇wÊ(w,L)− ληtw
therefore: wt+1 = wt(1− ληt)− ηt∇wÊ(w,L)

Important:

for SGD weight decay is the same as `2-regularization.
Weight decay in general is the multiplication of a weight with a small
number w = w · (1− γ), γ ∈ (0, 1) to shrink it towards zero.

5

https://arxiv.org/pdf/1608.03983.pdf
https://arxiv.org/pdf/1608.03983.pdf
https://towardsdatascience.com/https-medium-com-reina-wang-tw-stochastic-gradient-descent-with-restarts-5f511975163
https://towardsdatascience.com/https-medium-com-reina-wang-tw-stochastic-gradient-descent-with-restarts-5f511975163
https://towardsdatascience.com/https-medium-com-reina-wang-tw-stochastic-gradient-descent-with-restarts-5f511975163
https://arxiv.org/pdf/1704.00109.pdf

1.4 Momentum term

many more heuristics replace wt+1 = wt − ηt∇wÊ(wt, L) by something related
to it.

m0 = 0, α ∈ (0, 1)

mt+1 = αmt + ηt∇wÊ(wt, L)

wt+1 = wt −mt+1

What does the momentum compute? Assume ηt = η is constant.
Lets shorten: gt = ∇wÊ(wt, L)

m1 = αm0 + ηg0 = ηg0

m2 = αm1 + ηg1 = α1ηg0 + ηg1

m3 = αm2 + ηg2 = α2ηg0 + α1ηg1 + ηg2

m4 = αm3 + ηg3 = α3ηg0 + α2ηg1 + α1ηg2 + ηg3

m5 = αm4 + ηg4 = α4ηg0 + α3ηg1 + α2ηg2 + α1ηg3 + ηg4

general rule:

mt = η

(
t−1∑
s=0

αt−1−sgs

)

What does this represent: consider g0, g1, g2, . . . as a time series. Then

� mt is a weighted average up to multiplication with a constant.

� the weights of this average decrease exponential as we go back into the
past

Vanilla average over g0, g1, g2, . . .:

1

t

t−1∑
s=0

gs =

t−1∑
s=0

1

t
gs

a weighted average would be:

t−1∑
s=0

wsgs

ws ≥ 0,

t−1∑
s=0

ws = 1

6

Vanilla average is a weighted average with constant (time-independent weights):
ws = 1

t .
For the momentum term:

αt−1−s ≥ 0

t−1∑
s=0

αt−1−s = αt−1 + αt−2 + αt−3 + . . .+ α2 + α1 + α0

=

t−1∑
s=0

αs =
1− αt

1− α

So it –almost– sums up to one. It is a weighted average up to division of weights
by 1−αt

1−α .
Exponential decay from terms in the past: Earliest term:

s = 0⇒ αt−1−s = αt−1

Since 0 < α < 1 this is a very small term. Latest term has weight 1.
In summary: it is an average, and weights for gradients decrease exponentially

towards the past. So it looks more at the recent past. In practice often α = 0.9
– so the past has stronger weight than the present.

� momentum does what?: compute an average mt+1 between current gra-
dient ηt∇wÊ(wt, L) and gradients from the past mt. use this average for
updating weights

� acts as a memory for gradients in the past, applied gradient is stabilized
by an average from the past

� it can help in flat valleys because it remembers the bigger stepsize from
the past steps

� with one more parameter α

Important:

SGD with momentum and α = 0.9 and weight decay is a very common
baseline choice

mt+1 = αmt + η∇wÊ(wt, L)

wt+1 = wt −mt+1 − ηβwt

Momentum term can be understood as a rescaled, time-dependent weighted av-
erage of gradients. Meaning of Rescaled: weights do not sum up to 1 and depend
on the number of steps T . Momentum is related to first moment of gradients
and thus to the idea of replacing a random variable by its first moment.

pytorch ?

optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)

7

1.5 Exponential moving average (EMA)

For a time series gs the term

EMA(gs)0 = 0 +(1− α)g0

EMA(gs)t = αEMA(gs)t−1 +(1− α)gt

defines an exponential moving average. Moving – because weights are high for
recent past.

Generalize what we have seen in the momentum. Difference: explicit weighting
with 1− α.

The recursion yields here

EMA(gs)0 = α0(1− α)g0

EMA(gs)1 = α1(1− α)g0 + (1− α)g1

EMA(gs)2 = α2(1− α)g0 + α1(1− α)g1 + (1− α)g2

EMA(gs)3 = α3(1− α)g0 + α2(1− α)g1 + α1(1− α)g2 + (1− α)g3

EMA(gs)t =

t∑
s=0

αt−s(1− α)gs

The weights of EMA(gs)t sum up to 1− αt+1.

1.6 RMSProp

An idea to deal with the flat regions – Unpublished method by Geoffrey Hinton.

Observation: size of update of weights, as measured by euclidean length is
proportional to the norm of the gradient:

gt = ∇wÊ(wt, L)

wt+1 = wt − ηtgt
‖wt+1 − wt‖ = ηt‖gt‖

So in a flat region with ‖gt‖ ≈ 0, the steps taken are very small.

First idea: use gradient divided by norm of gradient

wt+1 = wt − ηt
gt
‖gt‖

Problem with this: whether one is in a looong flat region or not cannot be
decided by looking at a single gradient at the current point - need to look a bit
more into the past.

8

So use an average of norms of gradients from the past, and divide by them.
Divide by EMA(·)t of norms of gradients:

wt+1 = wt − ηt
gt

EMA(‖gs‖)t

Idea: flat valley, for many time steps s around the current time step t norms of
gradients are small, so EMA will be small. Dividing by a small term makes the
stepsize bigger.

Still not perfect: We need to reduce the stepsize fast when we enter more steep
regions. That means: if a current gradient norm ‖gt‖ at time t is large, the
EMA needs to become large quickly (so that dividing by a large EMA leads to
a small step)!

Need to make the EMA more sensitive to large gradient in the current time
step.

must quickly reduce

stepsize here!

otherwise huge step into NaNs

Squared norms are better, as squares are more sensitive to large outliers in a
sum (x2 grows quicker than x). so use ‖gt‖2 - squared norms in the EMA (and
take a root of the EMA).

wt+1 = wt − ηt
gt√

EMA(‖gs‖2)t

One can show mathematically that the root of an average of squared norms
is larger than the vanilla average: inequality between the arithmetic and the
quadratic mean.

Still not perfect: What is if all gradients are near-zero? Huge step into the
world of NaNInf. Better: add a small ε

wt+1 = wt − ηt
gt√

EMA(‖gs‖2)t + ε

Now upscaling factor is limited by 1√
ε

9

This RMSProp Algorithm can be rewritten in an iterative form, which is
easier to code:

Parameters: α, ε, η

d0 = 0

compute gt := ∇wÊ(wt, L)

dt = αdt−1 + (1− α)‖gt‖2 # dt is EMA(‖gs‖2)t

wt+1 = wt − ηt
gt√
dt + ε

can be remembered as:

maintain an EMA for squared norms of gradient, divide gradient by the
square-root of it plus some stabilizing ε. Use this for update of weights.

Its effect can be understood as:

� divide gradient dE/dw by a history of gradient norms with time-limited
horizon

� upscales stepsize in flat region

� downscales stepsize when it becomes mountainous

RMSProp can be understood as a normalization of the gradient by a rescaled,
time-dependent weighted average of gradient norms. The normalizer in RM-
SProp is related to the second moment of gradient norms. Compare also to
standard deviation. The normalizer in RMS prop differs from standard devia-
tion in what way ?

X random variable

E[X] first moment

E[X2] second moment

σ2(X) = E[X2]− (E[X])2

Compate to RMSprop:

Z = gt

N = EMA(‖gt‖2) rescaled second moment estimator for ‖gt‖

ut =
Z√
N + ε

=
gt√

EMA(‖gt‖2) + ε

wt+1 = wt − ηtut

10

it does something like:

Xd −→
Xd√

E[‖X‖2] + ε

It is related to normalizing a variable by dividing it by an estimate of its standard
deviation.

X −→ X√
σ2(X) + ε

How to express a similar intuition for the momentum?

Compare this to momentum where (The EMA is not an exact first moment and
not an exact expectation!!) the idea was:

X −→ E[X]

Putting these two ideas together will result in Adam

X −→ E[X]√
E[X2] + ε

1.7 Adam

A popular must know.

Similar to a combination RMSprop with Momentum Term but Two ideas as
improvement over RMSprop.

How would RMSprop with Momentum Term look like in step t?

compute gt := ∇wÊ(wt, L)

st = α1st−1 + (1− α1)‖gt‖2 # dt is EMA(‖gs‖2)t

rpropterm =
gt√
st + ε

In RMSProp one would apply rpropterm to update the weights wt with a
stepsize ηt. Now one replaces in rpropterm the gradient gt by its momentum
mt:

mt = α2mt−1 + (1− α2)gt

wt+1 = wt − ηt
mt√
st + ε

The two improvements are made in Adam over the algorithm above:

11

1. normalize every dimension of the update separately – dont use the norm
of the gradient, but the square of every single dimension

2. turn all used/defined terms which use an EMA into a true weighted aver-
age by multiplying them with the appropriate normalizer (time-dependent)

1
1−αt

We explain both steps in detail.

Point 1. normalize every dimension of the update separately:

The gradient gt is a vector gt = (g
(1)
t , . . . , g

(d)
t , . . . , g

(D)
t). When computing

rpropterm above every dimension d of gt is scaled by the same constant:

1√
EMA(‖gs‖2)t + ε

=
1

√
st + ε

In Adam one computes an EMA for every dimension gt[d] of the gradient. One
uses the square (gt[d])2 of the gradient in dimension d:

st[d] = α1st−1[d] + (1− α1)(gt[d])2

st[d] is a scalar. Note summing the component squared for all dimensions d
results in the squared gradient norm ‖gt‖2 =

∑
d(gt[d])2.

For a single dimension of the gradient this follows the idea of replacing a random
variable with its mean, and to normalize it by an estimate of the

√
· of second

moment which is related to the standard deviation:

gt[d] −→ E[gt[d]]√
E[gt[d]2] + ε

It does not hold exactly bcs the weights of the EMA do not sum up to one

Using only 1. the algorithm would look like that:

compute gt := ∇wÊ(wt, L)

st[d] = α1st−1 + (1− α1)(gt[d])2 #EMA of gt[d]2

st = (st[0], . . . , st[D]) = (st[d])d #vectorization

mt = α2mt−1 + (1− α2)gt #EMA of gt[d]vectorized

wt+1 = wt − ηt
mt√
st + ε

1/
√
st : (element-wise division for every dimension st[d])

12

Point 2. turn all used/defined terms which use an EMA into a true weighted
average by multiplying them with an appropriate constant:

This is based on the observation, that the weights of every
EMA(us)t sum up to 1− αt+1.

Therefore whenever applying an EMA term, it must be divided by 1 − αt+1,
in order to yield a true weighted average. An EMA is used here in two steps:
once when computing term, a second time when computing wt+1.

The final ADAM algorithm is:

Parameters η, ε, α1, α2

m0 = 0, s0 = 0

compute gt := ∇wÊ(wt, L)

st[d] = α1st−1[d] + (1− α1)(gt[d])2 #element− wise
mt = α2mt−1 + (1− α2)gt

ct,1 = 1− αt1, ct,2 = 1− αt2

wt+1 = wt − ηt
mt/ct,1√
st/ct,2 + ε

1/
√
st : (element-wise division for every dimension st[d])

can be remembered as:

� a combination of RMSProp with momentum

� one momentum term for the gradient (one EMA),

� and another EMA for the element-wise squared gradient

� plus dividing both EMAs by those constants that makes them true
weighted averages.

� Use for weight update: the (constant-adjusted) momentum divided
element-wise by the (constant-adjusted) square-root of the EMA
for the element-wise squared gradient +ε.

13

1.8 AdamW: Adam with decoupled weight decay

https://arxiv.org/abs/1711.05101 Loshchilov & Hutter, ICLR 2019

Parameters η, ε, α1, α2

m0 = 0, s0 = 0

compute gt := ∇wÊ(wt, L)

st[d] = α1st−1[d] + (1− α1)(gt[d])2 #element− wise
mt = α2mt−1 + (1− α2)gt

ct,1 = 1− αt1, ct,2 = 1− αt2

wt+1 = wt − ηt
mt/ct,1√
st/ct,2 + ε

− ληtwt

1/
√
st : (element-wise division for every dimension) st[d])

The difference is to Adam as above (from the paper)?

So the difference is:

wt+1 = wt − ηt
mt/ct,1√
dt/ct,2 + ε

vs wt+1 = wt − ηt
mt/ct,1√
dt/ct,2 + ε

− ληtwt

Many toolboxes do not do real weight decay, but add a `2-regularizer term and
let the gradient perform implicitly weight decays then (see purple).

When implemented as `2-regularizer, then the effect of the `2-regularizer gets
swallowed and smoothed out in/by the EMA terms. EMA was designed to
smooth out large changes in gradient, now it smoothens out the weight decay
effect too :) .

14

https://arxiv.org/abs/1711.05101

Important:

AdamW compared to Adam performs a stronger weight decay when
gradients are larger.

1.9 How valuable are these methods?

There are doubts that they are always better – you need to validate:

https://arxiv.org/pdf/1705.08292.pdf

Out of class:

My personal observation is that Adam converges faster in the beginning but
SGD catches up later on. It seems that switching later to SGD can be beneficial:
https://arxiv.org/pdf/1712.07628.pdf

Important:

If you want to use different solvers, remember to save not only the model
but also the solver state

1.10 Where are those in pytorch?

torch.optim

1.11 A paper on effects of newer learning rate heuristics

https://arxiv.org/pdf/1810.13243.pdf

Why all these arxiv.org papers

Learning from lectures ??? Learn to effectively process/filter papers:
ICML, NeurIPS, ICLR, CVPR, ICCV, ACL, EMNLP, ICASSP, SIG-
GRAPH, ... and rank A and rank B conferences.

15

https://arxiv.org/pdf/1705.08292.pdf
https://arxiv.org/pdf/1712.07628.pdf
https://arxiv.org/pdf/1810.13243.pdf

2 SOA 2019/2020

today:

� blocks of depth-wise separable convolution with 1× 1 convolution

� squeeze-and-excitation module as plugin

� Efficientnet https://arxiv.org/abs/1905.11946

... Approach:

� take a lightweight neural network building block (MobileNet inverted resid-
ual)

� search for an initial neural architecture EfficientNet-B0 based on it

� then expand the neural network by at the same time: –increasing depth
(more layers), –increasing width (more channels in each layer) and – in-
creasing spatial resolution

� train the upscaled networks

2.1 Efficient Net – the Basic Block: MobileNet inverted
residual block

The inspiration of this stacking of conv2d(1 × 1)–ReLU–conv2d(depth-wise
separable k×k)–ReLU–conv2d(1×1) are depth-wise separable convolutions

Left: depthwise separable convolution. Middle: 1 × 1-convolution

16

https://arxiv.org/abs/1905.11946

Processing intuition:

� The depthwise separable convolution processes each input channel sepa-
rately in its spatial neighbors

� the 1× 1-convolution allows channels to interact with each other.

This is a replacement for a 3 × 3 convolution. To see why, let us compare
standard convolution vs the block of depthwise separable +1× 1 convolutions:

� depthwise separable convolution: applies a kernel kc with one input and
output channel of size (cin = 1, sizeh = k, sizew = k, cout = 1) separately
to each input channel of the input feature map. The kernel kc is different
for each input channel index c. Number of parameters: c ∗ k2

� computational cost for a concatenation of conv2d(depth-wise separable
k × k) – 1× 1 convolution is much less than a full convolution:

– assume: the whole blockmaps (c, h, w) to (c′, h, w) with kernel size
k, that is, the conv2d(1× 1) maps c to c′.

– computational cost for a full convolution: c ∗ h ∗ w ∗ k2 ∗ c′.

Why ? k×k products over h∗w positions (approximately for stride 1,
depends on padding, we assume canonical padding). this for c input
channels and c′ output channels

– computational cost for a block of d-wise separable k × k + 1 × 1-
convolution: chwk2 + chwc′ = chw(k2 + c′) – one order less.

Why ?

17

depth-wise separable convolution is applying hwk2 multiplications
for c kernels with 1 input channel for each kernel: results in chwk2

The conv2d(1× 1) needs chwc′ multiplications over a feature map of
size (h,w) and c input and c′ output channels.

� trainable parameters?

– full convolution c · k2 · c′

– a block of d-wise separable k×k + 1×1-convolution: c ·k2 (c kernels
of size k, one for each input channels) +c ∗ c′ (1× 1 conv)

total: c(k2 + c′) – same one order less

� modified architecture with a bottleneck:

– depth-wise convolution with kernel (1, k, k, 1) - ReLU -

– 1×1 convolution (to a small output channel number = the bottleneck)
- ReLU -

– 1×1 convolution (to a larger output channel number = the expansion)

Left: depthwise separable convolution, followed by a 1 × 1-convolution as a

bottleneck, followed by a 1 × 1-convolution to expand to a larger channel size

� modified architecture with bottleneck - stack 3

– depth-wise convolution with kernel (1, k, k, 1) - ReLU -

– 1×1 convolution (to a small output channel number = the bottleneck)
- ReLU -

– 1×1 convolution (to a larger output channel number = the expansion)

– depth-wise convolution with kernel (1, k, k, 1) - ReLU -

– 1×1 convolution (to a small output channel number = the bottleneck)
- ReLU -

– 1×1 convolution (to a larger output channel number = the expansion)

– depth-wise convolution with kernel (1, k, k, 1) - ReLU -

– 1×1 convolution (to a small output channel number = the bottleneck)
- ReLU -

– 1×1 convolution (to a larger output channel number = the expansion)

18

� modified architecture with bottleneck - stack 3, now start from the third
item:

– 1×1 convolution (to a larger output channel number = the expansion)

– depth-wise convolution with kernel (1, k, k, 1) - ReLU -

– 1×1 convolution (to a small output channel number = the bottleneck)
- ReLU -

– 1×1 convolution (to a larger output channel number = the expansion)

– depth-wise convolution with kernel (1, k, k, 1) - ReLU -

– 1×1 convolution (to a small output channel number = the bottleneck)
- ReLU -

– add a shortcut from start to end x+H(x)

– Why this mod? If computation passes through a bottleneck, then all
the information must be contained in the bottleneck already, there-
fore we can start at the bottleneck, having a smaller feature map,
rather than starting at the larger feature map – mobileNet ;)

� MobileNet inverted residual block:

similar idea to depth-wise convolution - ReLU - 1 × 1 convolution - ReLU.
inverted residual:

� 1 × 1 2d conv expands number of channels

� k × k 2d depthwise-separable conv processes each channel with its own filter
acting only on a single input channel

� 1 × 1 2d conv shrinks back number of channels

� add a residual-making shortcut from start to end x + H(x)

� same idea: low computations and ...

� the bottleneck feature maps with small number of channels contain the actual
information

� before summing residual added a squeeze-and-excitation block

19

idea behind it:

� compute a reweighting of each channel sc

zc = Pool(f [c, :, :])

s = σ(W2ReLU(W1z))

� use 1 feature per channel (zc) as input

� s learns a reweighting by letting channels interact with each other

� multiply output of residual block with the reweighting:

ũ = scuc

� then add residual on top of that

� light-weight module, s weights do not sum to 1, component-wise rescaling
rather than attention weights

� note the bottleneck C/r

20

2.2 EfficientNet B0

found by a neural architecture search from MobileNet inverted residual blocks
with different strides and kernel sizes

2.3 Efficient Net Bi, i ≥ 1 via expansion

Let be φ ∈ {1, . . . , 7} the expansion coefficient. Scale neural network depth
(number of layers), neural network width (number of channels in each feature
map), and spatial resolution of all feature maps by multiplied factors of:

depth: d = αφ

width: w = βφ

resolution: r = γφ

α,≥ 1, β ≥ 1, γ ≥ 1,

αβ2γ2 ≈ 2

� STEP 1:first fix φ = 1, assuming twice more re-sources available, and do
a small grid search of α, β, γ. In particular, they found the best values
for EfficientNet-B0 are α = 1.2, β = 1.1, γ = 1.15, under constraint of
αβ2γ2 ≈ 2

� STEP 2: then fix α, β, γ as constants and scale up baseline network with
different φ, to obtain EfficientNet-B1 to B7

Why αβ2γ2 ≈ 2 ?

� if using φ = 1, and upscaling the network by α, β, γ then the computational
costs increased by αβ2γ2 and we want the computational cost to double
in one step.

� γ2 is obvious because we have 2 spatial dimensions to which γ is applied.

� β2 is because the 1 × 1 conv complexity of computations is hwcc′ – this
scales quadratically if c = c′

21

How to get to EfficientNet Bi

� for every i train the EfficientNet Bi from scratch.

� Results ? See paper.

� (off exams) See in the paper ”5.2 ImageNet Results for EfficientNet” for
many additional tricks

One final remark (off exams):

convolution layers, stacking simple elements deeply, residuals – follows ideas to
enforce a structured, hierarchical learning. Will see this in GANs again.

In theory a dense layer could represent a convolution operation (by having tied
weights, which are only zero around a center).
Gradient flow improvements (batchnorm, residuals), optimizers, teacher student
learning – also about making learning more uniform / normalized, hopefully
easier.
Compare later to RNNs: CNNs: gradient flow to be preserved through many
layers. RNNs: gradient flow to be preserved through many time steps – where
the hidden state at a time t can be compared to a CNN feature map at layer
index t :)

22

2.4 Noisy student

Xie et al. https://arxiv.org/abs/1911.04252

nothing more to say

� makes use of additional unlabeled data, labels it by the teacher to obtain
probability distribution per image as label

� uses soft labels computed by the teacher on original images, but for train-
ing adds noise to the student model for the same images

23

https://arxiv.org/abs/1911.04252

� combines semi-supervised data, weakly supervision and model noising

� Personal guess: probably needs a sufficient strong teacher to start with.
likely wont work with poorly performing teachers...

2.5 Background: teacher-student training

� goal: want to train a network (the student)

� idea: do not train it using hard ground truth labels. Given a sample x,
obtain softmax probability distribution t(x) from the teacher first

� train student s(·) with the teacher probabilities t(x) as soft labels for a
loss capable to do so, e.g. using cross-entropy

Reminder: Cross entropy of two distributions p, s:

CE(p, q) =

C∑
c=1

−pc log sc

Reminder: if p are one-hot ground truth labels, and s = s(x) is the softmax
prediction over an image, this reduces to:

− log sc(x) where c is the ground truth class of x

the neg log probability of the prediction for the ground truth class.

The cross-entropy between teacher and student are the teacher-weighted
neg log student probabilities:

L(x, t(x)) =

C∑
c=1

−tc(x) log sc(x)

� why does it work well ? effectively prioritizes the learning of easy samples!
(Out of class: see curriculum learning in machine learning). The losses
are lower for hard samples where tc(x) is close to the guessing threshold
1
C for most classes. Losses are larger for easy samples, where the teacher
is very confident and predicts t(x) close to a one-hot-label.

Idea here: prioritize the learning of easy samples. (out of class, opposite
idea: hard negative mining for problems with too many negative samples)

� applications: usually used to train structurally smaller/lighter students
from complex teacher models, e.g. to obtain a faster or more resource
efficient model (Noisy student trains a model of the same complexity)

24

	Optimizers beyond SGD: Better way to update parameters by applying gradients
	How to choose a learning rate
	Linear learning rate warm up
	Weight decay
	Momentum term
	Exponential moving average (EMA)
	RMSProp
	Adam
	AdamW: Adam with decoupled weight decay
	How valuable are these methods?
	Where are those in pytorch?
	A paper on effects of newer learning rate heuristics

	SOA 2019/2020
	Efficient Net – the Basic Block: MobileNet inverted residual block
	EfficientNet B0
	Efficient Net Bi, i 1 via expansion
	Noisy student
	Background: teacher-student training

