IN5400 — Data Augmentation

Alex
March 2, 2021

[The following notes are compiled from various sources such as textbooks, lecture ma-
terials, Web resources and are shared for academic purposes only, intended for use by
students registered for a specific course. In the interest of brevity, every source is not
cited. The compiler of these notes gratefully acknowledges all such sources. |

Takeaway points

at the end of this lecture you should be able to:

e be able to give suggestions how to use images of varying sizes in a
neural network with a fixed input size

e be able to use a neural network with a different input size than the
one used at training time

e explain some example data augmentations

e explain how to choose a data augmentation parameter.

e it is not a vision-only approach

e the ideas how to use RandAugment and AutoAugment

e how to use weight standardization

e how to use noisy student

e understand how teacher student training works

e be able to explain the loss function in contrastive learning

e be able to explain how similar and dissimilar samples are generated
in contrastive learning and the role of data augmentation

external reading material:

Chapter 13.1 in https://d21.ai/d21-en.pdf

The goal of this lecture is to give an introduction to data augmentation.


https://d2l.ai/d2l-en.pdf

Problem 1: Input normalization to match how the network was
trained

Problem 2: The input dimensionality of a neural network may not
fit the dimensionality of the input data. We discuss ways to deal with it.

Problem 3: use neural network with a different than the specified
input size — yes one can!!

Problem 4: Data augmentation at Testing time

allow the neural net to see multiple views of the same sample. One creates
multiple views of one sample. The final prediction will be an average of
the prediction scores, averaged over all views. “Look at all aspects to
understand a thing.”

Example in this class: Do not input an image as a whole, but input 5
crops: a cropped image from the center, and 4 corner crops.

Original Image

compute the prediction as an average over crops:

prediction = Center crop/5+ upper left crop/5+ lower left crop/5+
lower right crop/5+ lower right crop/5

e Problem 5: Data augmentation at Training time: allow the neural
net to be trained with more data samples. Data augmentation increases
the data size by creating many similar samples from one sample.

e Example: training with slight photometric deformations of a sample (e.g.
darker or brighter images) will allow the network to be able to recognize
similarly brighter or darker images (relative to your original training im-
ages) when deployed at testing time.



This is very important, in particular for finetuning over small datasets.

There are two big important things which you are not going to learn when
trying to get experience on MNIST and CIFAR, but which matter a lot
in practice: data augmentation and transfer learning in a narrow sense.

e Problem 6: Getting the scale of relevant objects right: another
example of a fixed, non-randomized augmentation for images (will see that
in a later lecture):
make the image size such that relevant structures (e.g. cats, cars) can be
identified well.

A neural network for images has convolutional kernels with a fixed size.
During training their weights are learned and adapt to some structures.

The sizes of input images at test time must be such that ... the structures
to be identified at test time (e.g. cats, cars) — have similar size as —
structures used at training time.

If your training set contains only screen filling cat faces,

then dont complain that you will not be able to predict cat correctly on
this:




Your localized convolutional kernels were simply not trained to find struc-
tures on such small scales!

but data augmentation (or training a bounding box detector) can help
with that — you can classify over many small windows.

e Above are not image-specific problems. The same problems (normaliza-
tion, input dimensionality, multiple views, slightly augmented input data)
arise when using a neural network e.g. for text processing, as the number
of words is varying. Later we will see recurrent neural networks which can
deal with inputs being sequences of arbitrary lengths (however even then
it can make a big difference to deal with dimensionality properly).

e Coding: You will use a pretrained deep neural net to compute predictions
for images.

1 Problem 1: Input normalization:

What inputs does a neural network expect ? As for images, common image
readers produce subpixels in [0,255]. the output of PIL.Image into numpy is
usually of shape (height, width, channels).

A neural network expects inputs often in [0, 1] with shape (batchsize, channels, height, width)
with afterwards subtracted the mean of the training dataset.

For the conversion to [0,1] - in pytorch and mxnet transforms.ToTensor ()

takes care of that.

Often one has to do further preprocessing. The reason is: you have to do
the same preprocessing steps at test time, as what was done at training time,
otherwise train and test data have different distributions in input space. This
usually results in heavily reduced performance.

Neural nets are usually trained with images, from which the training dataset
mean is subtracted (that is: for every pixel). It was observed that training with
samples which have on average over the dataset a zero mean results in faster
convergence.

See http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf for an expla-
nation.

Furthermore, often input dimensions are also normalized by dividing them over
a standard deviation (either channel-wise or pixel-wise) estimated over the train-
ing set.

subpizel[channel] = subpizel[channel] — trainset_mean|[channel]

subpizel[channel] — trainset_mean[channel]

bpizel|ch l] =
subpizel channel] trainset_std[channel]

In keras, that hosts many different modes, one can see at least three different
modes:


http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

https://github.com/keras-team/keras-applications/blob/master/keras_
applications/imagenet_utils.py

One of them does not do division by standard deviation by default (else: —
the caffe standard)

Check what preprocessing was used at training time for the network you
are going to use. Check what of that makes sense to be used at test time.
Fail here = even prediction at test time with a pretrained net will fail
(or training itself).

2 Problem 2: data input size vs nn input size
without changing the network input

The default resnet deep neural net has an input size of 224 x 224 for images
(inception 299 x 299). Your images usually are not of that size.

What can one do? One can resize the neural network for every image. We will
talk later how to do that. But reinitializing the NN is ultra-slow, in particular
when one wants to process a larger set of images.

Alternative is to adapt the image. One may resize the image to 224 x 224
with giving up the aspect ratio (height to width). Unusual — aspect ratio.more
common:

e resize the image while preserving the aspect ratio such that the
smaller size s is s > 224 pixels, and then take a crop of size 224 x 224

e the crop can have multiple approaches: a center crop or a ran-
dom crop of 224 x 224 with random position.

The same problem affects sequence analysis with 1d-cnns.

Recurrent neural networks can deal with sequences of arbitrary lengths, however
training them with subsampled sequences of fixed length can be considered for
improving performance.

3 Problem 3: use neural network with a differ-
ent than the specified input size

Learning goal: you can most of the time use a pretrained neural network with
a different input size than its original input size.

You want to classify over a larger input than 224 x 224, say 330 x 360 ? Yes
you can.


https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py

The important thing to understand is: if you change the input size, then this
does NOT affect the number of parameters in any convolutional layer, only its
output sizes.

It can break at subsequent fully connected layers - but often it can be fixed.
So if there is a fully connected layer, with a pooling or flatten layer before it,
then one must change the parameters of the pooling or flatten layer to become
a global pooling with a fixed output size.

when resizing input to a network

e Convolution layers: Resizing the input of a neural network changes
the sizes of resulting feature maps, but for convolution layers it does
not change their number of parameters — therefore loading
pretrained convolution layers will still work.

e Dense Layers: Resizing the input of a neural network changes the
number of parameters in fully connected/dense layers. In order
to ensure the same number of parameters in fully connected layers
with changed size as with original input size, one needs to ensure
that the number of inputs to fully connected layers stays the same.
If the fully connected layer is preceded by a pooling layer, then the
pooling layer can be modified to solve this problem.

e Useful: Global pooling/adaptive pooling are pooling methods
where the output size is fixed and instead the pooling kernel size is
changing dependent on the input to match the desired output size.

Lets look at a resnet 18 to understand this: https://github.com/pytorch/
vision/blob/master/torchvision/models/resnet.py/in class ResNet(nn.Module):
and def resnetl8(pretrained=False, **kwargs):

Consider how the forward pass works def forward(self,x):

(224,224) — many conv layers — (512,7,7) — Pooling by self.avgpool
—(512,1,1) = z = z.wiew(z.size(0), —1) — (512) — self.fc— > (1000)

self.avgpool = nn.AdaptiveAvgPool2d(...)

This use ensures that rescaling of the input will not affect the input to the dense
layer

The same problem affects sequence analysis with 1d-cnns.

4 Problems 4 and 5: Data augmentation

One does not simply predict on a raw sample. One does not simply train with a
raw sample.

Using data augmentation is a fundamental standard in deep learning.
Unfortunately, many tutorials skip this.

Examples of data augmentation at test time for images:


https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

e random crops of a fixed size of the image
e corner and center crops (see above)

e mirroring along the vertical axis

Test time data augmentation

At test time data augmentation is often used in an averaging sense. Let
2 be an input sample, f(-) a predictor, and A, the a-th augmentation
(e.g. the a-th crop of an image, a randomized rotation), then the predic-
tion is computed as an average over a set of chosen augmentations:

1 &
awglX) = — A,(x)), a deterministic or a ~ Py(a
Javg(2) nAgy(()) o(a)

Here the average is computed over augmentations of the same input
sample z.

The idea of data augmentation at test time is to predict on an average of mul-
tiple views of the same input.

in pytorch?

https://pytorch.org/docs/stable/torchvision/transforms.html

Training time data augmentation

The idea of data augmentation at training time is to extend the training
data available by creating instances

e which can be plausibly derived from the training data set

e which are plausible to have the same ground truth label as their
origin

e which are plausible to be seen in the test set.

e which sometimes are used to encode invariances that one wants
to have in the learning process (e.g. recognition independent of
whether object is rotated ... (1))

Thus to increase the training dataset.

f(@) = f(Aa()), a~ Py(a)

Learning theory perspective: Data augmentation vs the iid assump-
tion?7??

Examples of data augmentation at training time for images:


https://pytorch.org/docs/stable/torchvision/transforms.html

e geometric distortions:

— rotations - they make sense sometimes up to a certain degree, some
imaging problems are suitable for arbitrary rotations

— mirroring

— distort an MNIST digit by e.g. shear. Not used often outside of MNIST
or similar shape recognition tasks.

e photometric distortions (see Chapter 13.1 in https://d21.ai/d21-en.
pdf): modify brightness, and contrast/gamma of an image. for some
scenario (e.g. medical stainings) one can think also to play with hues
(colors).

Contrast change (e.g. https://www.dfstudios.co.uk/articles/programming/
image-programming-algorithms/image-processing-algorithms-part-5-contrast-adjustment/|
we assume that each subpixel lies in [0, 255].

sub = C x (sub—128) +128,C >0

For randomized image augmentation purposes the value C' is drawn for
every image and minibatch from a random distribution such as

C ~ Uniform|a,b]

The random distribution has usually parameters, here a, b which need to
be selected on a validation dataset, but not on the test set.

Brightness change:

sub = C + sub
Gamma change:
sub\ ¢
b =255 — C>0
SU * (255> , O >

The hue is a value for the color in HSV colorspace.

An example where playing with hues a little bit may make sense: Below
is the same stain Haematoxylin and Eosin, of the same tissue. Different
lab people create different color intensities!



https://d2l.ai/d2l-en.pdf
https://d2l.ai/d2l-en.pdf
https://www.dfstudios.co.uk/articles/programming/image-programming-algorithms/image-processing-algorithms-part-5-contrast-adjustment/
https://www.dfstudios.co.uk/articles/programming/image-programming-algorithms/image-processing-algorithms-part-5-contrast-adjustment/

For one quick intro on photometric distortions : Andrew Howard, Some
Improvements on Deep Convolutional Neural Network Based Image Clas-
sification https://arxiv.org/pdf/1312.5402.pdfl See also the googlenet

paper.

General data augmentation

is a transformation of an input x
A(x)

Often it has a parameter a, e.g. value of brightness to add
Aq(z)

Such parameters, are at training time often drawn from a random dis-
tribution

a ~ Py(a)

The parameters of the random distribution are hyperparameters, and
need to be validated on a validation set.

Augment to what degree?

Data augmentation methods depends typically on some parameter. One
needs to

e train with multiple choices of the parameter,
e find the best parameter by looking at validation dataset errors.

e Once all parameters have been selected, then one does one final
evaluation on the test data set — in order to check that one did
not overfit by optimizing parameters by looking at the validation
error.

4.1 Augmentation outside of vision
e generic option: add gaussian noise

e generic option: add gaussian noise in feature space (e.g. after fourier
transform)

e out of exams: riskier options — generative methods like seq2seq learning
and cycleGANs

e Examples of data augmentation at training time for text sentences?
e cycle-gan inspired (Jigsaw toxic comment classification):

— text — other language — translate back


https://arxiv.org/pdf/1312.5402.pdf

e out of exams: Noising in NLP: https://arxiv.org/pdf/1703.02573.
pdf, ICLR 2017

e out of exams: use a language model to suggest augmentations: http:
//aclweb.org/anthology/N18-2072

e Audio: modify the speed mildly https://openreview.net/pdf?id=HyaF53XYx

e Vision (sorry): Neural style transfer — surely can be applied also to audio!

Train time data augmentation

Data augmentation is used at training time in a randomized fashion —
because mild randomization often helps against overfitting.

e at training time: randomized transforms — The randomization de-
pends on the transformation. Example: For image brightness, one
choose a random add within some range, like [—0.2,0.2], every time
an image is loaded, so for one minibatch one draws a vector of ran-
dom numbers).

e at training time: often one keeps an image as it is with p proba-
bility, and applies randomized transforms with 1 — p probability.
Every time an image batch is loaded, one chooses a new parameter
from a random distribution.

e one does usually NOT apply these distortions on the val-
idation or test set !! (except one wants averaging over
multiple views)

important:
The probability distribution of the distortion parameter has hyperpa-
rameters, that needs to be validated on the validation dataset.

1
i - L w Az 19 » Y1
argmin, 3" L(fulAi(z, params)), )

€ minibatch

where A; (-, params) is a randomized augmentation, e.g. brightness mod-
ification with a randomly drawn value, which varies for every image
during every training epoch.

Compare to the augmentation at test time — for which the average is computed
over different augmentations of the same input sample x.

Augmentation can be also applied to the ground truth, adding some noise to
the labels! Example: adding noise to regression ground truth, moving boundary
boxes of detections, moving segmentation boundaries

10


https://arxiv.org/pdf/1703.02573.pdf
https://arxiv.org/pdf/1703.02573.pdf
http://aclweb.org/anthology/N18-2072
http://aclweb.org/anthology/N18-2072
https://openreview.net/pdf?id=HyaF53XYx

Dont forget this one

model.eval () whenever you compute test/val scores or you will predict
only nonsense, and you cant see why it fails

5 How to select Data Augmentation Parame-
ters?

Standard approach: try out several settings. Choose best according to perfor-
mance on validation data

Problem: many data augmentation choices. Each has parameters.

Systematic search on validation data is too expensive (see AutoAugment search
space)!

5.1 RandAugment

Cubuk et al. 2019 https://arxiv.org/abs/1909.13719

Given 14 transforms

transforms = [Hlden‘cityﬂ, AutoContrastB, BEqualizeH,BRotatem, BSolarizeH,

BColor, BPosterizem,Contrastm, Brightness, Sharpness,

BShearXB, BShearYB, TranslateX, BTranslateYB]
Simple idea:
e given hyperparameters N, M:

— N number of transformations applied to one sample sequentially

— M intensity of distortion
e do not care about order of them or which ones
e randomly draw any N with uniform probability*'

o define strength of each augmentation by an integer 0,...,10 by linearly
partitioning a maximal range (based on Table 6 in Cubuk et allhttps:
//arxiv.org/abs/1805.09501)

— apply each transformation with the same strength M € 0,...,10
e optimize only over hyperparameters M, N

In result almost as good as searching for specific policies (e.g Table 4 in the
paper, factor 1032 faster).

(* see section 4.7 in the paper — tried optimization with «;; - the probability to
use transformation 7 in step j for N = 2 — expensive, needs 14N transformations
to be tried out on every image.)

11


https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1805.09501

5.2 UniformAugment
Chen et al. 2020 https://arxiv.org/abs/2003.14348

Idea: do not search anymore if you know a reasonable maximal range for each
transformation ( if ... ).

e use N = 2. draw a sequence of two augmentations with uniform proba-
bility p(T) = ﬁ]

e draw randomly apply/drop probability from U (][0, 1]), draw randomly aug-
mentation strength from U([0, 1]), where value of one corresponds to the
maximum strength M

e apply augmentation

e out of class: A bit bold motivation. assumption: for the right choice of
space M for augmentation strength, given one real image x, then applying
transformations Ty (x), A ~ U([0, 1]) covers the space of all realistic images
with a good match of probability of occurrence.

A word of caution

These 14 transformations were found to be useful on general ImageNet
images.

This may not hold for other domains, eg. medical or satellite images. It
may not hold when your domain has much fewer images than imagenet.

6 SOA 2019/2020

today:
o Weight standardization
e Noisy student with Efficientnet https://arxiv.org/abs/1911.04252

e contrastive learning

6.1 Weight standardization

Group Norm + Weight standardization + Batch size 1 seems to outperform
Batch normalization.

Qiao et al. https://arxiv.org/abs/1903.10520
Simple idea:

e vanilla convolution is locally conv(z) = W x z with some kernel W,
W.shape = (Cout, k, k, Cir,), W € RCout xkxkxCin

e motivation: batchnorm decouples gradient flow from scale of weight

e can be also achieved by normalizing the weights directly!

12


https://arxiv.org/abs/2003.14348
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1903.10520

e reshape / regroup kernel into W € RRO*! O = C,,; output dimensions,
I = Cy, x k x k input dimensions,

e replace conv(x) = W * x by a convolution with standardized weights

conv(z) = Wxa

W =WS(W)

where WS(W) = (Wo’i)ig,oeo is the weight standardization function

given as:
/Woi _ Wo,i - ,U/(Wo,:)
’ o(Ws,.)
1 I

M(Wo,:) = f Wo,i
i=1
1g - -

o(Wo,) = 7 Z Wogz —wE(Wo,,) = \/Ei~I[W02,i] — By [Wo,]? + €

i=1

Compare to standardization of a random variable:
. X —
x==_H

Vo?

e compute the loss using convolutions with standardized weights

conv(x) = Wxz=WS(W)*z

e optimize loss with respect to the raw weights W .

Out of class: Paper delivers on explanation in terms of reducing the Lipschitz
constants

13



6.2 Noisy student
Xie et al. https://arxiv.org/abs/1911.04252

Require: Labeled images {(x1. 41). (2. y2). .o, (0. yn ) } and
unlabeled images {&1. Fa,....&m }.
1: Learn teacher model #% which minimizes the cross entropy
loss on labeled images

;Zi(yhf i, 0Y)
i=1

[

: Use a normal (i.e.. not noised) teacher model to generate soft
or hard pseudo labels for clean (i.e., not distorted) unlabeled
images

gi = flF.00).¥i=1,---.m

3: Learn an equal-or-larger student model #; which minimizes

the cross entropy loss on labeled images and unlabeled

images with noise added to the student model

e

1 . . 1 _ 1 -
1 e, f5 5 (2, 0°)) + — (i, 5 (3, 6°
HZI (wir SN 0, 0%)) "”Zl (@ SN (30, 67))
4: Iterative training: Use the student as a teacher and go back to
step 2.
Algorithm 1: Noisy Student Training.

steel arch bridge

SE e T

' /
Train teacher model Infer pseudo-labels
with labeled data on unlabeled data
. b

Data augmentation -, : .’f Train equal-or- “\I ' ™
larger student model Make the student a J

Drospout —| K .
VP | with combined data new teacher

Stochastic depth \_and noise injected

Figure 1: Tlustration of the Noisy Student Training. (All
shown images are from ImageNet.)

nothing more to say

e makes use of additional unlabeled data, labels it by the teacher to obtain
probability distribution per image as label

e uses soft labels computed by the teacher on original images, but for train-
ing adds noise to the student model for the same images

e combines semi-supervised data, weakly supervision and model noising

probably needs a sufficient strong teacher to start with. likely wont work
with poorly performing teachers...
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https://arxiv.org/abs/1911.04252

6.3 Background: teacher-student training

e goal: want to train a network (the student)

e idea: do not train it using hard ground truth labels. Given a sample x,
obtain softmax probability distribution ¢(z) from the teacher first

e train student s(-) with the teacher probabilities ¢(x) as soft labels for a
loss capable to do so, e.g. using cross-entropy

Reminder: Cross entropy of two distributions p, s:

C
CE(pa q) = Z —DPc IOg Sc

c=1

Reminder: if p are one-hot ground truth labels, and s = s(z) is the softmax
prediction over an image, this reduces to:

—log s.(x) where c is the ground truth class of z

the neg log probability of the prediction for the ground truth class.

The cross-entropy between teacher and student are the teacher-weighted
neg log student probabilities:
c
Lz, t(x)) = Y —tc(x)log se(x)

c=1

important: trained is only s., the gradients are computed only with
respect to parameter of s.!

e why does it work well 7 The losses are lower for hard samples where t.(x)
is close to the guessing threshold % for most classes. Losses are larger for
easy samples, where the teacher is very confident and predicts t(x) close
to a one-hot-label.

Idea here: effectively prioritizes the learning of easy samples! (Out of class:
see curriculum learning in machine learning). (out of class, opposite idea:
hard negative mining for problems with too many negative samples)

e applications: usually used to train structurally smaller/lighter students
from complex teacher models, e.g. to obtain a faster or more resource
efficient model (Noisy student trains a model of the same complexity)

7 Contrastive Learning
Coarse Idea:

e Pretrain a network without millions of labeled samples such as imagenet.
Use instead a large set of unlabeled samples.

e Use data augmentations to train a classifier over similarity outputs.

15



e two data augmentations from the same image define the same class, should
have high similarity score

Maximize agreement

z; 2j
!)f_"}x Tyf-}
h; +— Representation — hj
f) F()
|"/.:-z:,-..‘ [ &)

ot ‘.___T_/ |

B
—

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ~ 7T and
t" ~ T)and applied to each data example to obtain two correlated
views. A base encoder network f(.) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.

— same image: train parameters of f and g such that the vectors z;, z;
have high similarity if z; and x; are created by data augmentations
from the same base image x

e two data augmentations from two different images define two different
classes and should have low similarity scores

e high level view: pretrains a network representation using an auxiliary task
— see analogies to the learning of word embeddings (CBoW, skip-gram,
Mikolovs paper).

A few Papers:

e MoCo He et al. https://arxiv.org/abs/1911.05722, MoCo v2 Chen et
al. https://arxiv.org/abs/2003.04297

e SimCLR Chen et al. https://arxiv.org/abs/2002.05709, SimCLR v2
https://arxiv.org/abs/2006.10029

What for this can be used?

e if you want to predict on Imagenet, then currently pretraining with ima-
genet labels is still better but ...

e potential use case 1: when comparing for initialization for finetuning (1)
weights from imagenet vs (2) contrastive, then contrastive learning can
outperform imagenet-based initialization. see table 1 in the Moco v2 pa-
per.

e potential use case 2: apply contrastive learning on target domain un-
labeled data after loading imagenet weights
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— suppose you have a target domain with much unlabeled data, then:
use after loading imagenet weights, apply contrastive learning. Com-
bine then with finetuning for the few labeled samples.

— concretely: SimCLR, v2 shows that when using a strategy similar
to noisy students, that contrastive learning with unlabeled data and
10% labels of imagenet comes close to the performance as training
imagenet conventionally with 100% labels — but it requires and prof-
its from deeper networks than supervised training.

Promising direction: can finetune better on a dataset with few labels and
a big amount of unlabeled data.

e in terms of messing up potential, plain finetuning is easier to handle.

e needs lots of tricks to work properly. Next: show some key architectural
components to make it work.

Steps used in contrastive learning:

e loss function:

SimCLR:

— draw always a pair of samples (indexed by (2¢—1,27)) by randomized
data augmentation from the same image.

— draw N pairs from N different images, thus having 2/N samples in
total

UTU

sim(u,v) = Talllol (cosine angle)
Loi_1,2; = —log softmax({ all pairs (¢,7)})[(2¢ — 1, 29)]
og Q;Xp(sim(z%_ln,zm)/ﬂ
D pet Lppei exp(sim(zq, 2x) /)
LN
L= N ; Loi—1,2i + Lo 2i—1

—1

Lo;i_1,2; — neg log Softmax over 2N similarities as outputs — for the slot/
component where two images should be similar

MoCo/ MoCo v2:

— draw ¢, kT by randomized data augmentation from the same image.

— in theory: draw a set {k~} by randomized data augmentation from
other images than the one used for k™ and ¢

— in practice: {k~} comes from a queue of features from augmented
images from past training minibatches (faster by reusal)
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L+ {1y = — log softmax(((q, k1), (q,k7), (¢,k3), - - -, (g, kEx)))[(g, k)]
~ log exp(qlkt/7)
exp(¢Tkt/7) + 32— exp(qTk™/7)

Softmax over 1+ |{k~}| similarities as outputs
Both losses enforces data augmentations from the same image to be simi-
lar, and data augmentations from different images to be dissimilar.

e MLP head on top of representation to be trained (SimCLR, MoCo v2):

take feature map h from the representation layer (example for SimCLR:
feature maps from variants of ResNet50 after the global pooling), then
pass it through: linear-ReLu-linear:

z = g(h) = W2 *R(Wl *h)
Moco v2: same idea, output of W7 is 2048-dim
SimCLR v2: same idea, but three layers of weights, not only 2.
It is important for performance to use more than one linear layer on top

of h.

e representation below the MLP head:

— SimCLR: identical model f(-) for all samples (variants of ResNet50
after the global pooling)

Maximize agreement
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (f ~ T and
t" ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g{-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.

serious drawback: very large batchsizes necessary 4096 or 8192. Not
feasible with high end GPUs as of end of 2020. Does Google want to
promote its TPUs? ;-)

— MoCo v2: using two different models. One to encode query ¢ and
one for similar and dissimilar keys kT, {k~}

18



* idea: have a query encoder fq, (-) for encoding the positive query
q.

* 0, (query encoder parameters) is updated by backpropagation of
the loss.

* have a key encoder fy,(+) for k*,{k~} - which is not backprop-
agation trained .

x update key encoder parameters 6, by applying a slow momentum
a = 0.999 to incorporate the backprop-learned query encoder
parameters:

ek’t+1 = 0999 ek,t + 0001 0q,t+1

* advantage: GPU-feasible batchsizes (256) - but see the moco v2
paper, you still may need a rack of 4 or 8 gpus as office heating
e data augmentations:

SimCLR: random crop (with resize and random horizontal flip p = 0.5
chance to apply the flip), random color distortion (p = 0.5 chance to
apply the jitter), and random Gaussian blur (p = 0.5 chance to apply the
blur, o ~ U(0.1,2.0))

MoCo v2: random crop (with resize and random horizontal flip p = 0.5
chance to apply the flip), random color distortion (p = 0.5 chance to apply
the jitter), random horizontal flip, random greying, and random Gaussian
blur

out of exams: SimCLR v2: https://arxiv.org/abs/2006.10029

e Fig 3: pretrain with a deeper head, keep first layer of added head (VGG
is ...)!

e then finetune on labeled part of target domain
e then: eq 2 and eq 3 is comparable noisy student training (see before :) ).

e add momentum encoder from MoCo

8 out of class: Big Transfer paper

Kolesnikov et al. https://arxiv.org/abs/1912.11370
train a number of same models on imagenet-2012 (1.25M training images),
Imagenet-21k (14.2M images) , JET-300M (300M images)

e model pretraining very standard: SGD, lr = 0.03, momentum= 0.9,
weight decay = le — 4

e step-wise decrease of learning rates Important in any training!!

e for training with large batch sizes: compare BN versus Group Norm +
Weight standardization.
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— section 4.3 — performance: Group Norm + Weight standardization
result in same performance on pretraining task, and better perfor-
mance on finetuning tasks with a small sample size.

— but Group Norm + Weight standardization uses effectively batch size
1 and for large batch training it needs no synchronization of batch
statistics (thus much faster!) over compute devices.

e but: Fig 7 using a larger dataset for pretraining - need to train longer in
terms of total time, cannot apply same computational budget as used for
the smaller pretraining dataset

e finetuning:
— no weight decay, Ir = 0.003, step-wise decrease of learning rates, use
of mixup.

— schedule (number of finetuning steps), resolution, and usage of MixUp
depend on the tasks image resolution and training set size

— number of finetuning steps increases as finetuning dataset increases!

— Table2, Table 3, Figh: using a model pretrained on a larger dataset
helps for performance on finetuning datasets

— Fig 4: bigger models also help

— check finetuning results on datasets with only 1000 training points
(VTAB-1k), 19 different tasks (Table 2)

mixup:
e idea: draw two samples (z;,¥;), (x;,y;) from your training data

e train with a weighted mixture of them - mixed in the input data and the
labels

A ~ Beta(a, ) € (0,1)
(xivyi) ~ D7 (x]ayj) ~D
T=Ar; + (1 - Nz,
g=Ayi+(1—=ANy;

... Use the mixed up sample z, y for training as input data and label pair
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