
Generative Adversarial Networks (GAN), part1

Alexander Binder

University of Oslo (UiO)

April 21, 2021

Learning goals

� classic GANs: key components and their objectives:
generator, discriminator

� be able to explain what mode collapse is

� evaluation of GAN outputs

� a better model I progressive growing for GANs

� applications I: image morphing

� applications II: cross-domain mappings

... | 3

� ...

Goals for Generative Adversarial Networks (GANs) | 4

Core idea: Given a dataset Dn = {x1, . . . , xn}, for instance images xi ,
generate similar images to those in the dataset.

The objective for a GAN is twofold:

� a model G (and its parameters) that can randomly generate new
samples (images in our example), using a randomly generated noise
vector as the model input. In other words, our model G satisfies:

x = G(z), z ∼ N(0, Id), with d the number of input parameters.

� training of a GAN G should lead to some kind of similarity between
the samples in Dn and the samples x generated by the GAN, namely
x = G(z), z ∼ N(0, Id).

The important keywords in the previous description were ”similar”
and ”similarity”. What do we mean by ”similar” images?

The need for a similarity measure | 5

The GAN G , once trained, will generate samples with a distribution
PGAN by:

x = G(z), z ∼ N(0, Id), x is a random var now
x ∼ PGAN

Dn are samples drawn from some distribution Pdata.

We need a similarity metric, which measures how similar the
samples in both sets Pdata and PGAN are, and learn a model G , so
that PGAN ≈ Pdata. In practice, we dont have direct access to
PGAN , and also not to Pdata.

Practically, one has to use measures between a finite samples,
namely Dn and samples drawn from G .

Why pixel-wise modelling does not work? | 6

Simple idea:
� estimate for every pixel mean and standard deviation
� draw for every pixel from a gaussian with these parameters,

depending on the pixel
Why does learning the mean and the standard deviation of every
pixel in images from Dn not allow to sample things like bedrooms?

If you have no idea, compute the (rgb-sub-)pixel-wise mean and
std, and sample from it!

Fake objects created using a Wasserstein GAN with progressive growing
https://arxiv.org/pdf/1710.10196.pdf.

Pay attention to the mistakes in the image details: GANs are not a high
level reasoning algorithms. They model local pixel correlations ...

https://arxiv.org/pdf/1710.10196.pdf

Outline | 8

1 classic GAN: Generator

2 classic GAN: Discriminator (generator quality measure)

3 A classic GAN skeleton code in pytorch

4 Where to go next?

5 Evaluation of GAN outputs

6 a better model I - Progressive Growing

7 Application II – Cross Domain mappings

GANs - first component: the generator | 9

Model definition - Generator of a GAN:

� input space: vector space Rd , i.e. a vector with d
elements,

� The input vectors z will be randomly sampled from a
high dimensional random distribution,
usually a normal distribution Rd 3 z ∼ N(0, σ2Id),

� The GAN outputs, x = G(z), consist of images of some
size, e.g. 256× 256, but in practice outputs could be
any types of objects.

Next: how to map a vector of 1000 dims onto an image 256× 256?

the generator: model featuremaps | 10

By analogy,

� In a conventional CNN models:
every n layers, the model halves the image resolution and doubles /
increases the number of channels in feature maps.

� GANs generator models:
every n layers, the model increases the resolution progressively and,
if needed, decreases (example: halves) the number of channels in the
feature maps.

GANs - first component: the generator | 11

The layers should have progressively increasing spatial resolutions.

Core idea 1: Can use upsampling and convolutions.

Refer to the figure below, taken from Radford et
al. https://arxiv.org/pdf/1511.06434.pdf

https://arxiv.org/pdf/1511.06434.pdf

GANs - first component: the generator | 12

The layers should have progressively increasing spatial resolutions.

Core idea 2: Similar to the convolution operation, but in reverse –
fractionally strided convolution. Refer to the figure below, taken from
Radford et al. https://arxiv.org/pdf/1511.06434.pdf

https://arxiv.org/pdf/1511.06434.pdf

the generator: fractionally strided convolutions | 13

For single input channels, the working principle of a fractionally
strided convolution is described below.

the generator: fractionally strided convolutions | 14

For multiple input channels the working principle is analogous.

the generator: fractionally strided convolutions | 15

Pay attention below, how a stride is applied in fractionally strided
convolutions.

the generator: fractionally strided convolutions | 16

To summarize:

Conventional convolu-
tion

Fractionally strided con-
volution

Kernel size,
e.g. 3

Multiply 3 input ele-
ments with 3 kernel ele-
ments as an inner prod-
uct, copy in 1 output lo-
cation

Multiply one input ele-
ment with 3 kernel ele-
ments, copy in 3 output
locations

Stride, e.g. 2 Stride applied in input
feature map

Stride applied in output
feature map

the generator: fractionally strided convolutions | 17

have two ways how to increase the spatial resolution

� upsampling and convolution
� frac strided convolution and usual convolution

The generator | 18

Have: a model for the generator

Next: We need a loss to train the generator

Outline | 19

1 classic GAN: Generator

2 classic GAN: Discriminator (generator quality measure)

3 A classic GAN skeleton code in pytorch

4 Where to go next?

5 Evaluation of GAN outputs

6 a better model I - Progressive Growing

7 Application II – Cross Domain mappings

Classic GAN: loss for the generator defined via a
discriminator | 20

As mentioned, objective: train a generator that is able to generate
images ”similar” to the ones in a given dataset Dn...

To do so, we need to define a performance metric, a similarity
measure, which allows us to train the generator.

Idea:
� define a classifier which classifies real versus fake images.

Takes the neg log probability of its outputs as loss for the
generator.

� loss function for the generator will involve a mapping defined
by a neural net

Classic GAN: generator loss via a discriminator | 21

Definition GAN discriminator for a classic GAN:

A GAN discriminator D(x) is a neural network, which takes sets of
images as inputs.

Each set contains either real images or images sampled from the
GAN generator. The discriminator is a binary classifier, with one
output probability, encoding whether images are real and coming
from the training dataset, or fake.

Let denote D(x) ∈ [0, 1] the probability that a given input sample
x is real. D(x) = 1 means that the discriminator is sure with
probability 1 that x is real.

D(x) is trained to label the real images as class 1 (real), and the
ones generated by the GAN generator as fake (0).

Next: how to define a loss using this.

Classic GAN: generator loss via a discriminator | 22

Assume: we have a pretrained and for now a fixed discriminator.

The objective for the GAN generator would then be to create images x ,
which will be (incorrectly) classified as real by the discriminator. Similarity
↔ be mapped into classifier regions used to represent images from Dn.

Discriminator outputs probabilities D ∈ [0, 1]. The objective is to train G ,
such that D(G(z))→ 1.

max
G

D(G(z))⇔ max
G

log D(G(z))⇔ min
G
− log D(G(z))

Average over some generated samples:

L̂G = minG
1
N

∑
zi∈minibatch(N(0,Id)))

−1 · log D(G(zi))

LG = minG Ez∼N(0,Id) [−1 · log D(G(z))]

Classic GAN: generator loss via a discriminator | 23

L̂G = minG
1
k

∑
zi∈minibatch(N(0,1))k

−1 · log D(G(zi))

LG = minG Ez∼N(0,1) [−1 · log D(G(z))]

� In the first equation, we define the approximation of the expectation,
using one minibatch. In the second, we have the general definition of
the objective function we want to optimize.

� For a fixed and pretrained discriminator, the loss function LG is not
a trivial loss function, such as ‖f (x)− y‖2, as it involves a a
pretrained neural net D(x). Still, it is a valid loss function, with its
own minimization problem, that can be used to train the generator
G (and define its parameters).

� While this loss function is used to train G , a fixed discriminator is
not used because it leads to one central problem of GAN training.

GAN fundamental problem 1 - mode collapse | 24

Training the generator with a fixed discriminator, will usually result
in outputting small variations of one single image x ′ (or few such
candidates), which fools the discriminator.

from Arjovsky et al. https://arxiv.org/pdf/1701.07875.pdf

The generator will learn to output very minor variations of a few
images x ′ = G(z) for any input z , because these images x ′ allows
to minimize LG well.

https://arxiv.org/pdf/1701.07875.pdf

GAN fundamental problem 1 - mode collapse | 25

mode collapse:
� typical observation: generates only a few modes as compared

to training dataset, low variance of generated samples within a
mode → learned to approximate P only over a subset

from Arjovsky et al. https://arxiv.org/pdf/1701.07875.pdf
� measurement? see evaluation measures later on

https://arxiv.org/pdf/1701.07875.pdf

GAN fundamental problem 1 - mode collapse | 26

Mode collapse formally

The generator PGAN covers only a small part of the space
represented by the the test distribution Ptest

∃ε > 0, A ⊂ Rd : PGAN(A)� Ptest(A) and Ptest(A) ≥ ε

See Fig 3 in
http://proceedings.mlr.press/v80/bang18a/bang18a.pdf for a
simple example with multiple modes.

http://proceedings.mlr.press/v80/bang18a/bang18a.pdf

Quality vs diversity tradeoff | 27

Generator Quality vs Generator Diversity tradeoff

There is a performance tradeoff for the GANs generators:
sample quality versus sample diversity. They can come in
conflict with each other, for example when one would use a
fixed discriminator and no additional tricks on the generator.

Why this tradeoff exists?

Did we specify diversity in the generator loss criterion?

GAN fundamental problem 1 - mode collapse | 28

What is the point of talking about mode collapse ?

One partial solution: use a trainable discriminator, such that its
way to predict changes in every time step. The discriminator
becomes a moving target for the generator!

classic GAN with a discriminator | 29

one (partial) solution

� also train and update the discriminator. Note: this results in an
adaptive, non-static generator loss.

� train a discriminator and generator jointly – in interleaved steps,
from random initializations. coarse idea:

– fix discriminator, update generator for example using L̂G
– fix generator, update discriminator using a loss to be defined L̂D

image from Thalles Silva https://medium.freecodecamp.org/
an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

classic GAN – loss for the discriminator | 30

� Goal: G(v) should be classified by the discriminator D(·) as not
coming from Dn, thus D(G(v)) ≈ 0, xi ∼ Dn should be classified by
the discriminator D(·) as coming from Dn, thus D(xi) ≈ 1

⇒D(xi) ≈ 1, xi ∈ Dn and 1− D(G(v)) ≈ 1
⇒− ln D(xi) ≈ 0, xi ∈ Dn and − ln(1− D(G(v))) ≈ 0

⇒LD = Ex∼Pdata [− ln(D(x))] + Ev∼Pv [− ln(1− D(G(v)))]

≈L̂D = 1
b

b∑
xi∼Dn

− ln D(xi)︸ ︷︷ ︸
xi is real,D(xi)≈1

+ 1
b

b∑
vi∼Pv

− ln(1− D(G(vi)))︸ ︷︷ ︸
G(vi) is synth,1−D(G(vi))≈1

classic GAN with a discriminator - labels? | 31

non-saturating GAN

A GAN using L̂G as above and this L̂D is called non-saturating
GAN

� labels for the discriminator ? A discriminator ↔ binary classification
task. We know which images comes from the generator and which
comes from the original dataset: we can automatically label them:
· generated samples: label 0
· samples drawn from Dn: label 1

thus we are ready to train the discriminator, too.

classic GAN training as a whole | 32

For every minibatch of data iterate two steps
� fix w(D), optimize minw(G) L̂G(w(G))
� fix w(G), optimize minw(D) L̂D(w(D))

overview over other loss functions (dont need to memorize them):

https://arxiv.org/pdf/1711.10337.pdf

https://arxiv.org/pdf/1711.10337.pdf

classic GAN training as a whole | 33

Vanilla GAN training (Interleaved training)

� Step 1: train the discriminator, with a fixed generator.
· Fix generator weights, generate fake samples, label

them as class 0 (fake class)
· Train discriminator weights by minibatches, alternating

between fake (generated by the generator, labeled as 0)
and real samples (drawn from your dataset Dn, labeled
as 1). The loss for the discriminator simply consists of a
classification accuracy loss (e.g. cross-entropy).

� Step 2: train the generator, with a fixed discriminator.
· Fix discriminator weights, and train generator weights

so as to fool the discriminator, as detailed in the
previous section.

� Repeat!

classic GAN training: remarks | 34

This consists of a non-cooperative two player game, with two
players taking turns:
� The first player, the generator, tries to create images close to

real relative to Dn, to fool the discriminator,
� The second player, the discriminator tries to learn to separate

the generator fake images from the real images.
Training the discriminator results in a generator loss L̂G which
contains a neural network to represent a function D inside the loss

L(G) = 1
b

b∑
vi∼Pv

− ln D(G(v))

and which changes over iterations.

classic GAN training: remarks | 35

another view on the generator loss LG :
� depends on the discriminator D network.
� example of a loss function which is trainable (w(D)),

time-varying (updates to w(D)) and defined via a neural net.
It is an implicitly defined loss without an explicit formula like
1
n
∑n

i=1(f (xi)− yi)2

LD is used to train LG .

classic GAN training: remarks | 36

GAN at testing time

The generator is a function to sample from a learned proba-
bility distribution PGAN :
� draw your input code z from a fixed random

distribution such as z ∼ N(0, 1)
� generate your sample by s = G(z)

z ∼ N(0, 1), s = G(z)

The distribution PGAN that was learned by the generator is
not explicitly given. You can only sample from it.

Outline | 37

1 classic GAN: Generator

2 classic GAN: Discriminator (generator quality measure)

3 A classic GAN skeleton code in pytorch

4 Where to go next?

5 Evaluation of GAN outputs

6 a better model I - Progressive Growing

7 Application II – Cross Domain mappings

classic GAN training | 38

� we alternatively update the generator, and the discriminator weights, thus
we will need two optimizers optimizerD and optimizerG!

� prepare your one class training data dataloader= ..., send to GPU
� define your generator model, send it to GPU, initialize its weights

netG = Generatormodel().to(device)
netG.initweights()

� define your discriminator model, send it to GPU, init its weights
netD = Discriminatormodel().to(device)
netD.initweights()

� define optimizers, e.g. using Adam
optimizerD=nn.optim.Adam(netD.parameters(), lr=... ,
otherparameters= ...)
optimizerG=nn.optim.Adam(netG.parameters(), lr=... ,
otherparameters= ...)

classic GAN training | 39

for batch in dataloader:
train discriminator on one minibatch of real data, labeled as 1
netD.zero_grad() #zero out any accumulated gradients
output=netD(batch)
label1 = #ones

loss_D_data = criterion(output,label1)
criterion=-log D(x) can be realized as torch.BCELoss with the right label
loss_D_data.backward()

train discriminator on one minibatch of generator data, labeled as 0
randcodes= torch.randn(batchsize, ...)
fakebatch= netG(randcodes)

output=netD(fakebatch.detach())
#.detach() here prohibits the gradient from flowing
past the fakebatch tensor. Why do we want to stop there?
if not detached, then gradient computations flow into fakebatch= netG(randcodes)
and a later optimizerG.step() would also update the generator model weights.
we only want to optimize netD now, while netG should be frozen.
netG.zero_grad() would clear them out, but its waste of recorded computations

label0 = #zeros
loss_D_fake = criterion(output,label0)

-log (1-D(x)) can be realized as torch.BCELoss with the right label
loss_D_fake.backward()

#code continues on next page

classic GAN training | 40

for batch in dataloader:
#[...]
code continues from last page from here loss_D_fake.backward()

#update weights
optimizerD.step()

train generator
netG.zero_grad()

randcodes= torch.randn(batchsize, ...)
fakebatch= netG(randcodes)
output=netD(fakebatch) # now the gradient should flow into G

loss_G= criterion(output,label1) # yes label1 !,
#bcs criterion is to minimize -log D (G(z))

loss_G.backward() # any here computed gradients for netD
#are flushed in the next netD.zero_grad() !!! :)
optimizerG.step()

classic GAN training | 41

A good tutorial, if needed:
https://pytorch.org/tutorials/beginner/dcgan faces tutorial.html

� First three windows: packages, parameters, dataloader for Dn

� Then weight init
� Then generator model (nn.ConvTranspose2d is the

fractionally strided convolution) and its init
� Then discriminator model (nn.ConvTranspose2d is the

fractionally strided convolution) and its init
� Then loss criterion and both optimizers
� Actual training similar to above
� Code contains example how to deal with dataloader, how to

define generator and discriminator models

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

Outline | 42

1 classic GAN: Generator

2 classic GAN: Discriminator (generator quality measure)

3 A classic GAN skeleton code in pytorch

4 Where to go next?

5 Evaluation of GAN outputs

6 a better model I - Progressive Growing

7 Application II – Cross Domain mappings

Where to go next? | 43

� evaluation: how to measure the quality?

� a better model I: Progressive growing of GANs

� applications I: cross-domain mappings for data samples.

� a better loss: Wasserstein-GANs

� a better model II: StyleGAN and StyleGAN2

� applications II: GAN inpainting

� a better training: small-scale training of GANs

Outline | 44

1 classic GAN: Generator

2 classic GAN: Discriminator (generator quality measure)

3 A classic GAN skeleton code in pytorch

4 Where to go next?

5 Evaluation of GAN outputs

6 a better model I - Progressive Growing

7 Application II – Cross Domain mappings

Evaluation of GAN outputs | 45

Takeaway points for this section

� be able to use the KL-Divergence
� that the inception score computes a distance function

between two probability distributions p(y |x) and p(y)
where y are the predicted labels

� be able to explain how Frechet inception distance works
� having heard of self-similarity
� be able to explain how perceptual path length works

GAN quality evaluation is a largely unsolved problem.

Evaluation of GAN outputs | 46

From Ali Borji https://arxiv.org/abs/1802.03446
https://arxiv.org/pdf/2103.09396

An example of desirable loss properties

� prefer models with samples close to the training data distribution
� prefer models with high diversity, sensitive to mode drop, mode

collapse
� agree with human rankings and human perceptual assessments
� allow to be sensitive or invariant to certain image transformations,

depending on what is needed for the use case (e.g. be
mirror-invariant or sensitive to mirroring, same for jitter, color
distortions etc)

� work well with smaller sample sizes
� have lower, upper bounds to scores
� optionally: prefer models where latent spaces are disentangled,

that means that generation properties can be steered by sampling
from certain well-defined regions

https://arxiv.org/abs/1802.03446
https://arxiv.org/pdf/2103.09396

Evaluation of GAN outputs | 47

GAN quality evaluation is a not fully solved problem.

Evaluation of GAN outputs: inception score | 48

The inception score IS(G) uses the KL-Divergence DKL(p||q)
between two distributions

DKL(p||q) = +
∑

x
p(x) log p(x)

q(x) discrete

DKL(p||q) = +
∫

x
p(x) log p(x)

q(x) continuous with density

DKL(p||q) = Ex∼P [log p(x)
q(x)] = −Ex∼P [log q(x)

p(x)]

Asymmetrically defined (!!) expectation of the log ratio of two
distributions.

Evaluation of GAN outputs | 49

Properties:

DKL(p||q) ≥ 0
DKL(p||q) = 0⇔ p(x) = q(x) except on a set where p(S) = 0

DKL(p||q) = −
∑

p(x) log q(x)− (−
∑

x
p(x) log p(x))

= H(P,Q)− H(P)

the last says, it is the difference between the crossentropy H(P,Q)
and the entropy of P

Why this is not a distance measure?

Evaluation of GAN outputs: inception score | 50

The inception score IS(G) (higher is better) uses the KL-Divergence
DKL(p||q) between two distributions

IS(G) = exp(S)
S = Ex∼GDKL(p(y |x)||p(y))

DKL(r ||s) =
∫

r(x) log
(

r(x)
s(x)

)
dx

� p(y |x) is for an image x the softmax probability for all the classes of
an inceptionV3 network.
For a good generator, this distribution p(y |x) should be peaked, and
thus have low entropy. Why? Idea: peaked p(y |x)↔ it generates
images with clearly distinguishable objects.

� p(y) is the marginal distribution over all classes. A generator should
create a diverse range of classes. So p(y) should be flat therefore.
Thus: one should be peaked, one should be flat, and the
KL-divergence of these two should be then high

Evaluation of GAN outputs: inception score | 51

criticism of the inception score:

See https://arxiv.org/pdf/1801.01973.pdf for a criticism of the usage of
inception scores. In short, the paper shows that for datasets other than
ImageNet, it is not a good measure.

� Obviously, this score depends on your implementation of the
InceptionV3 and may vary whether you use tensorflow, CNTK,
pytorch, chainer, paddlepaddle or ... ! This is the first unrealiability.

� The other reason is that the estimate of p(y) becomes not a good
measure of variability, when the test images of your dataset are not
from the set of all imagenet classes.
In this case your test image classes may cluster into a subset of
imagenet (e.g. cats will mostly fall into the cat race classes of
imagenet), and the spread of p(y) will not measure the diversity of
your generated classes, but how well they cluster relative to the
boundaries of imagenet classes.

https://arxiv.org/pdf/1801.01973.pdf

Evaluation of GAN outputs: inception score | 52

(–) implementation-dependent
(–) value unclear for problems outside of imagenet
(–) weak at detecting mode collapse

Evaluation of GAN outputs: Frechet Inception Distance | 53

Frechet Inception Distance (lower is better)

� Compute for your data the feature maps of a layer (pool 3) of an
inceptionV3 network.

� Then compute mean and covariance µg ,Σg for the above feature
maps for the samples from the generator, and µd ,Σd for the above
feature maps for the samples from the data

� Then compute the Frechet Distance as if it were two Gaussians:

d((µg ,Σg), (µd ,Σd)) =
√
‖µg − µd‖2

2 + Tr(Σd + Σg − 2(Σd Σg)1/2)

� ‖µg − µd‖2
2 is a squared distance between the means of two gaussian

distributions (one mean computed from images sampled from the
training dataset Dn, one mean computed from images sampled from
the generator G(·))

� Tr(Σd + Σg − 2(Σd Σg)1/2) is a squared distance between the
covariances of two gaussian distributions

Evaluation of GAN outputs: Frechet Inception Distance | 54

� Out of class: To understand the weird term
Tr(Σd + Σg − 2(Σd Σg)1/2), note:
Denoting x = (Σd)1/2, y = (Σg)1/2, we get:

Tr(Σd + Σg − 2(Σd)1/2(Σg)1/2) = Tr(x ? x) + Tr(y ? y)− Tr(2x ? y)

if x , y were vectors, we would have:

x · x + y · y − 2x · y = ‖x − y‖2

Unfortunately, (Σd Σg)1/2 is a matrix, but taking Tr(Z) =
∑

i Zii
turns any matrix A into a scalar.

� What is left to understand:

A ·S B := Tr(A ? B>)

defines an inner product on the set of all symmetric matrices (e.g.
https://math.stackexchange.com/questions/476802/
how-do-you-prove-that-trbt-a-is-a-inner-product)

https://math.stackexchange.com/questions/476802/how-do-you-prove-that-trbt-a-is-a-inner-product
https://math.stackexchange.com/questions/476802/how-do-you-prove-that-trbt-a-is-a-inner-product

Evaluation of GAN outputs: Frechet Inception Distance | 55

� Since Σ is positive definite, Σcan be decomposed as (not uniquely)

Σd = A>A, with A := (Σd)1/2

Σg = B>B, with B := (Σg)1/2

� then we obtain

Tr(Σd + Σg − 2(Σd)1/2(Σg)1/2)

= Tr((Σd)1/2 ? (Σd)1/2) + Tr(Σ1/2
g ? Σ1/2

g)− 2Tr(Σ1/2
d ? Σ1/2

g)

= (Σd)1/2 ·S (Σd)1/2 + (Σg)1/2 ·S (Σg)1/2 − 2Σ1/2
d ·S Σ1/2

g

= ‖Σ1/2
d − Σ1/2

g ‖2
·S

See Heusel et al. “GANs trained by a two time-scale update rule converge
to a Nash equilibrium” https://arxiv.org/pdf/1706.08500.pdf

https://arxiv.org/pdf/1706.08500.pdf

Evaluation of GAN outputs: Frechet Inception Distance | 56

Frechet Inception Distance (lower is better)

� Compute for your data the feature maps of a layer (pool 3) of an
inceptionV3 network.

� Then compute mean and covariance µg ,Σg for the above feature
maps for the samples from the generator, and µd ,Σd for the above
feature maps for the samples from the data

� Then compute the Frechet Distance between the two Gaussians:

d((µg ,Σg), (µd ,Σd)) =
√
‖µg − µd‖2

2 + Tr(Σd + Σg − 2(Σd Σg)1/2)

� the Frechet Distance is a distance measure defined in the feature
map space of a neural network, not in pixel space. advantage: can
capture some high level semantic similarities (e.g. a face must have
a nose close to eyes)

� depends on your implementation again (inceptionV3)

Evaluation of GAN outputs: Frechet Inception Distance | 57

(+) can detect mode collapse
(+) ok correlation to human rating evaluation
(–) implementation-dependent
(–) gaussian assumption is unclear, needs many samples (order of

10k-100k)

Evaluation of GAN outputs: SSIM | 58

Alternative concept, out of class: Multiscale statistical similarity,
higher is better.

Originally from a paper from 2004:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1292216.

Core idea: take images, extract patches at different scales, compute
similarity measures between patches from two images.
https://arxiv.org/abs/2004.01864, average similarities over all those
patches

It can find mode collapse.
All three scores are not trained to approximate how realistic something
looks like to a human.
For now, the only way to go is to rely on evaluation by human raters,
which is costly, as you need to design a human study.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1292216
https://arxiv.org/abs/2004.01864

Evaluation of GAN outputs: Multiscale statistical similarity
| 59

(+) can detect mode collapse

Evaluation of GAN outputs: Perceptual Path Length
(PPL) | 60

� draw z1, z2 two random input codes. Could generate images G(z1),
G(z2). Instead:

� interpolate in code space along a circle between z1 and z2 using the
slerp(·) function

slerp(z1, z2, t) = sin((1− t)α)
sin(α) z1 + sin(tα)

sin(α) z2, cos(α) = z1 · z2
‖z1‖‖z2‖

Evaluation of GAN outputs: Perceptual Path Length
(PPL) | 61

� draw z1, z2 two random input codes. Could generate images G(z1),
G(z2). Instead:

� interpolate in code space along a circle between z1 and z2 using the
slerp(·) function

slerp(z1, z2, t) = sin((1− t)α)
sin(α) z1 + sin(tα)

sin(α) z2, cos(α) = z1 · z2
‖z1‖‖z2‖

� then take some feature map from a CNN φ(·) and look at the finite
difference between the features φ(·) of two very close generated
images G(s) , G(s+ε) along the slerp-path

gε(s) =
∥∥∥∥φ(G(s))− φ(G(s+ε))

ε

∥∥∥∥2
norm2 of directional deriv at φ(G(s))

s =slerp(z1, z2, t), s+ε = slerp(z1, z2, t + ε)

� compute the expectation gε(s) over random draws of z1, z2, t

Evaluation of GAN outputs: Perceptual Path Length
(PPL) | 62

� draw z1, z2 two random input codes. Could generate images G(z1),
G(z2). Instead:

� interpolate in code space along a circle between z1 and z2 using the
slerp(·) function

� then take some feature map from a CNN φ(·) and look at the norm
of the directional derivative of φ(G(s)) at slerp(z1, z2, t) along the
slerp-path

gε(s) =
∥∥∥∥φ(G(s))− φ(G(s+ε))

ε

∥∥∥∥2

s =slerp(z1, z2, t), s+ε = slerp(z1, z2, t + ε)

� compute the expectation of gε(s) over random draws of z1, z2, t

PPL = Ez1∼P(z),z2∼P(z),t∼U(0,1)[gε(slerp(z1, z2, t))]

Evaluation of GAN outputs: Perceptual Path Length
(PPL) | 63

� draw z1, z2 two random input codes. Interpolate in code space along
a circle between z1 and z2 using the slerp(·) function

� then take some feature map from a CNN φ(·) and look at the norm
of the directional derivative of φ(G(s)) along the slerp path:

gε(s) =
∥∥∥∥φ(G(s))− φ(G(s+ε))

ε

∥∥∥∥2

s =slerp(z1, z2, t), s+ε = slerp(z1, z2, t + ε)

� compute the expectation of gε(s) over random draws of z1, z2, t

PPL = Ez1∼P(z),z2∼P(z),t∼U(0,1)[gε(slerp(z1, z2, t))]

� meaning: expected/averaged directional derivative length along a
slerp-path between two images, as measured in some CNN feature
space. lower is better

Evaluation of GAN outputs: Perceptual Path Length
(PPL) | 64

� draw z1, z2 two random input codes. Interpolate in code space along
a circle between z1 and z2 using the slerp(·) function

� then take some feature map from a CNN φ(·) and look at the norm
of the directional derivative along the slerp path:

gε(s) =
∥∥∥∥φ(G(s))− φ(G(s+ε))

ε

∥∥∥∥2
, s+ε = slerp(z1, z2, t + ε)

� compute the expectation of gε(s) over random draws of z1, z2, t

PPL = Ez1∼P(z),z2∼P(z),t∼U(0,1)[gε(slerp(z1, z2, t))]

� lower is better. Why that makes sense? Generator seems to learn
to compress spaces with bad quality outputs – compressed spaces
have large derivatives in them

Evaluation of GAN outputs: Perceptual Path Length | 65

(+) can detect mode collapse
(+) ok correlation to human rating evaluation
(–) exploits a compression property of current GANs, might not

hold for all future architectures, thus correlation to human
rating evaluation may need to be checked from time to time

Evaluation of GAN outputs: other measures | 66

not exam stuff
� perception and recall as probability distribution overlap
� local intrinsic dimensionality

Outline | 67

1 classic GAN: Generator

2 classic GAN: Discriminator (generator quality measure)

3 A classic GAN skeleton code in pytorch

4 Where to go next?

5 Evaluation of GAN outputs

6 a better model I - Progressive Growing

7 Application II – Cross Domain mappings

a better model I - Progressive Growing | 68

� Karras et al. ICLR 2018: https://arxiv.org/abs/1710.10196
� from same authors further development: StyleGAN

https://arxiv.org/abs/1812.04948 (next lecture) and StyleGAN2
� Basic idea: do not train complex problem from scratch. Better: train a

sequence of increasingly harder problems - at increasing resolutions
� reminiscent: teacher student learning, curriculum learning, layer-wise

pretraining.

from Karras et al. https://arxiv.org/abs/1710.10196

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
�

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
�

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
� initialize with weighted residual:

yl = 0.01 ∗ conv3x3(zl) + 0.99 ∗ zl

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
� increase weight of conv, decrease for residual:

yl = 0.05 ∗ conv3x3(zl) + 0.95 ∗ zl

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
� increase weight of conv, decrease for residual:

yl = 0.1 ∗ conv3x3(zl) + 0.9 ∗ zl

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
� increase weight of conv, decrease for residual:

yl = 0.2 ∗ conv3x3(zl) + 0.8 ∗ zl

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
� increase weight of conv, decrease for residual:

yl = 0.5 ∗ conv3x3(zl) + 0.5 ∗ zl

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
� increase weight of conv, decrease for residual:

yl = 0.7 ∗ conv3x3(zl) + 0.3 ∗ zl

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 69

when done with a given resolution (e.g. 16 × 16), then add module to increase
resolution to e.g. 32 × 32:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

zl = upscaleNN(yl−1)

drawback: does not add any finer details!
� add 3x3 convolution in top

y (∗)
l = conv3x3(zl)

What drawback does it have when initialized?
� increase weight of conv, decrease for residual:

yl = 0.99 ∗ conv3x3(zl) + 0.01 ∗ zl

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 70

when done with a given resolution (e.g. 16 × 16), then add module on top of
the generator:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� 2x nearest neighbor upscaling – increases the
resolution x2

� on top of that: a 3x3-convolution weighted with a
factor α. Added to it: the feature map from the
2x upscaling, weighted with a factor 1 − α

zl = upscaleNN(yl−1)
yl = αconv3x3(zl) + (1 − α)zl

� phasing in of conv3x3 during training:
start with α = 0 – have only the 2x upscaling,
increase until α = 1, then the resulting mapping is
only concat of the upscaling and the conv3x3:
yl = conv3x3(upscaleNN(yl−1))

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – a different model | 71

when done with a given resolution add in on top of the discrimator:

from Karras et al. https:

//arxiv.org/abs/1710.10196

� start: stride2 avg pooling – decreases the
resolution x0.5

� want: a 3x3-convolution, then avgpool to scale
down

� weighted both with a factors α and 1 − α

zl = avgpool2(yl−1)
yl = α avgpool2(conv3x3(yl−1)) + (1 − α)zl

� phasing in of conv3x3 during training:
start with α = 0 – have only the stride2 avgpool,
increase until α = 1, after that the resulting
mapping is only:
yl = avgpool2(conv3x3(yl−1))

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing | 72

Phasing in new network layers using weight α in D(·) and G(·)

GANs II: Progressive Growing | 73

several additional tricks (2 shown here)
� feature maps: normalize in every feature map the vector

consisting of all channels for one spatial position aka pixel
(h,w) by

f [c, h,w] = f [c, h,w]√
1
C
∑C

c=1 f [c, h,w]2 + ε
, ε = 10−8

� weights: in every forward pass use rescaled weights wsc = w/k
where k =

√
CHW /2 is the constant of the He-initializer

https://arxiv.org/abs/1502.01852 (satellite paper to resnets).
https:

//towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2

https://arxiv.org/abs/1502.01852
https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2
https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2

GANs II: Progressive Growing – Results I | 74

from Karras et al. https://arxiv.org/abs/1710.10196

https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – Results II | 75

from Karras et al. https://arxiv.org/abs/1710.10196

https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – Results III | 76

from Karras et al. https://arxiv.org/abs/1710.10196

the variability in the data impacts the quality. Idea: Want to train a GAN on ...
?

https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – Results IVa | 77

from Karras et al. https://arxiv.org/abs/1710.10196 ... Did I just spot ...?

https://arxiv.org/abs/1710.10196

GANs II: Progressive Growing – Results IVb | 78

ones sees two similarly looking people

Real Life: you must be relatives somehow (Wow, genes can
recombine and produce such a little wonder)
GANs: you must be fakes and the algorithm sucks

GANs II: Progressive Growing – Results IVb | 78

ones sees two similarly looking people

Real Life: you must be relatives somehow (Wow, genes can
recombine and produce such a little wonder)
GANs: you must be fakes and the algorithm sucks

GANs II: Progressive Growing – Results IVb | 78

ones sees two similarly looking people

Real Life: you must be relatives somehow (Wow, genes can
recombine and produce such a little wonder)
GANs: you must be fakes and the algorithm sucks

offtopic? | 79

Will people treat contacts with less respect if they know that the
contacts are non-real avatars coupled with an conversational
algorithm?
� You worthless conversational bot! (I have no one else to look

down upon.)
� Would verbal aversion against bots affect self-learning bots?
� Do you know where the word “sabotage” originates from?

GANs II: Progressive Growing – Results V | 80

from Karras et al. https://arxiv.org/abs/1710.10196

https://arxiv.org/abs/1710.10196

Application I - morph images | 81

� a trained generator G(·), some feature space encoder f (·), Take 2
images, preprocess+scale them (to 64 ×64 , 1000 × 1000)

� find z1, z2 by
z1 = argminz‖f (x1)− f (G(z))‖
z2 = argminz‖f (x2)− f (G(z))‖

I suggest multiple starting points z (0) for starting the optimization.

� interpolate K points between z1 and z2 by some function
interp(z1, z2, λ). If you do it lazy, then you just do linear
interpolation:

interp(z1, z2, λ) = λz1 + (1− λ)z2

If you want to get a better interpolation, see the slerp function in
https://github.com/soumith/dcgan.torch/issues/14. Then:

z(λ) = interp(z1, z2, λ)
G(z(λ))→ interpolated face

� Visualize your interpolated results

https://github.com/soumith/dcgan.torch/issues/14

Application - Cross Domain mappings to a subdomain | 82

Unsupervised Cross Domain Generation
https://arxiv.org/abs/1611.02200 - maps faces to emoji without ground
truth labels for what to map on what. Special case here: target domain is
included in the source domain.

Tricks:

� mapping g ◦ f is decoder-encoder with decoder g and encoder f .
Here the encoder is pretrained, not trained as feature layer from a
well-trained discriminative neural network. Success comes from this
very well given encoder.

https://arxiv.org/abs/1611.02200

Application - Cross Domain mappings to a subdomain | 83

Tricks:

� source domain includes the target domain!

� Plus additional constraints: eq (6) an emoji is mapped to almost
itself,

� eq(5): a similar autoencoder constraint (compare: one side of a
cycle gan) - measured in encoder feature space

� 3-class GAN loss (eq 3) (original data, fake face, fake emoji)

Application - Cross Domain mappings to a subdomain | 84

Tricks:

� Implicit tricks: Target domain is more smooth than source,
variability of results is more likely acceptable (the other way round is
much harder to achieve).

Sketches to Shoes, Handbags to Shoes, Male to Female and the other
way round: https://arxiv.org/abs/1706.00826

https://arxiv.org/abs/1706.00826

Outline | 85

1 classic GAN: Generator

2 classic GAN: Discriminator (generator quality measure)

3 A classic GAN skeleton code in pytorch

4 Where to go next?

5 Evaluation of GAN outputs

6 a better model I - Progressive Growing

7 Application II – Cross Domain mappings

Application - Cross Domain mappings via CycleGAN | 86

Core idea: do not input some abstract code z ∈ [−1,+1]D into the
generator for getting a zebra. Input an image z = Image into the
generator to get a zebra! – see: https://arxiv.org/abs/1703.10593

from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix, run the code
to get a feeling for the quality of results!

https://arxiv.org/abs/1703.10593
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

Application II – Cross Domain mappings via CycleGAN | 87

See Fig 3 in https://arxiv.org/abs/1703.10593: you now have a
generator G mapping from horses to zebras, and one generator F
mapping back.

G : Horses → Zebras
F : Zebras → Horses

F ◦ G : Zebras → Zebras
G ◦ F : Horses → Horses

Now you can map Horses onto Zebras and back using the two
generators (by training the 2 GANs)!
In practice Domain to Domain Transfer requires additional
constraints to make it work in practice!1

1This is what I expect you to understand here!

https://arxiv.org/abs/1703.10593

Application - Cross Domain mappings via CycleGAN | 88

How to train?

clear idea: GAN losses for generators for both domains + cycle
reconstruction losses for both directions.
Cycle reconstruction losses for both directions: eq(2) below. Additional
constraint: take an image x , map it to another domain by F , and map it
back by G , should result in something similar:

F ◦ G(x) ≈ x
‖F ◦ G(x)− x‖1 = additional loss term to added to the loss

What kind of training uses as loss: F ◦ G such that ‖F ◦ G(x)− x‖1?
Full objective is in eq(3):

Application - Cross Domain mappings via CycleGAN | 89

Pictures from https://github.com/junyanz/CycleGAN

https://github.com/junyanz/CycleGAN

Application - Cross Domain mappings via CycleGAN | 90

Pictures from https://github.com/junyanz/CycleGAN

Question: For what applications is CycleGAN a bad idea?

https://github.com/junyanz/CycleGAN

... | 91

Questions?!

	classic GAN: Generator
	classic GAN: Discriminator (generator quality measure)
	A classic GAN skeleton code in pytorch
	Where to go next?
	Evaluation of GAN outputs
	a better model I - Progressive Growing
	Application II – Cross Domain mappings

