
Generative Adversarial Networks (GAN)

Alexander Binder

University of Oslo (UiO)

April 28, 2021



Learning goals

� loss analysis: understanding what losses in classic GAN
minimize in a special case

� a better loss: Wasserstein-GANs [loss design]

� problems of GANs

� a better architecture: StyleGAN (there is StyleGAN2 out
btw) [architecture design]

� a better application: using GAN to inpaint and to create
with constraints [human in the loop, usability]

� a better training: small scale training [training with limited
data]



Recap on GANs: – the generator (for images) | 3

� G(·) generates output sample (image)
� G(·) maps a random input vector v ∼ Pv onto an output

image z = G(v)
� based on layers of upscale+convolution OR fractionally strided

convolutions + other layers
� trainable parameters



Recap on classic GANs with non-saturating discriminator
loss: – the discriminator | 4

� D(·) critic for the quality of the generated samples (images)
� D(·) maps an input sample x onto a classification probability

D(x) ∈ [0, 1]
� classification problem: D(x) = 1 – is certain that the input is

from the training dataset and not from G(·)
� for images typically a vanilla CNN: conv layers, batch norm,

residual connections
� trainable parameters



Recap on GANs: – the training | 5

Iterate:

� one step of generator: update parameters to create more realistic
images, to increase discriminator loss

� one step of discriminator: update parameters to be able to
discriminator generator images from real dataset images, to decrease
discriminator loss

min
w(G)

LG , LG = Ez∼Pz [− ln D(Gw(G)(z)) ]

D(G(z)) = 1⇒ − ln D(·) = 0, LG = 0
min
w(D)

LD , LD = Ex∼Pdata [− ln(D(x)) ] + Ez∼Pz [− ln(1− D(G(z))) ]

D(x) = 1,D(G(z)) = 0⇒ LD = 0



classic GAN training – single loss max−min-formulation | 6

next step:
� for a special choice of generator loss LG , show that training of

generator and discriminator can be written as a
max−min-formulation over a single objective function



classic GAN training – single loss max−min-formulation | 7

min
w(G)

LG , LG = Ez∼Pz [− ln D(G(z)) ]

min
w(D)

LD , LD = Ex∼Pdata [− ln(D(x)) ] + Ez∼Pz [− ln(1− D(G(z))) ]

Consider the original GAN formulation: replace the first term by
Ez∼Pz [ ln( 1− D(Gw(G)(z)) ) ] and Switch the second min to a max

(1) min
w(G)

LG , LG = Ez∼Pz [ ln( 1− D(G(z)) ) ]

(2) max
w(D)

LD , LD = Ex∼Pdata [ ln(D(x)) ] + Ez∼Pz [ ln(1− D(G(z))) ]



classic GAN training – single loss max−min-formulation | 8

Have now this modified GAN formulation:

(1) min
w(G)

LG , LG = Ez∼Pz [ ln( 1− D(G(z)) ) ]

(2) max
w(D)

LD , LD = Ex∼Pdata [ ln(D(x)) ] + Ez∼Pz [ ln(1− D(G(z))) ]

Minimizing (2) wrt G is equivalent to minimizing (1) wrt G.

Therefore can use eq (2) for both:

max
w(D)

min
w(G)

LGD , LGD = Ex∼Pdata [ ln(D(x)) ] + Ez∼Pz [ ln( 1− D(Gw(G)(z)) ) ]

Result: optimization problem with one loss function, as max−min



classic GAN training – single loss max−min-formulation | 9

A special case of GAN objective as max−min formulation

If one uses the modified generator loss LG = Ez∼Pz [ ln(1 −
D(G(z))) ],
and above discriminator loss LD = Ex∼Pdata [− ln(D(x)) ] +
Ez∼Pz [− ln(1− D(G(z))) ],

then one obtains as GAN objective:

max
w(D)

min
w(G)

LGD , LGD = Ex∼Pdata [ ln(D(x)) ] + Ez∼Pz [ ln( 1− D(Gw(G)(z)) ) ]

Next steps:

� what is the optimal solution for the discriminator D(·)?

� given that optimal solution, what does the generator G(·) try to
optimize?



classic GAN training – loss analysis for a special case:
optimal discriminator | 10

You can ask: what is for each x the best solution for the discriminator
D(·)?

LGD = Ex∼Pdata [ ln(D(x)) ] + Ez∼Pz [ ln( 1− D(Gw(G)(z)) ) ]

=
∫

x
Pdata(x) ln(D(x))dx +

∫
z

Pz (z) ln( 1− D(G(z)) )dz

=
∫

Pdata(x) ln(D(x)) + PG (x) ln( 1− D(x) )dx

argmaxD(x) a ln(D(x)) + b ln(1− D(x)) =?

D(∗)(x) = a
a + b = Pdata(x)

Pdata(x) + PG (x)

Have: solution for the optimal discriminator D(·)



classic GAN training – loss analysis for a special case:
optimal discriminator | 11

for the above loss function LGD for max-min-optimization, the
optimal discriminator would predict

D(∗)(x) = Pdata(x)
Pdata(x) + PG(x)

next:
� relationship of the optimization function LGD to

Jensen-Shannon divergence.



classic GAN training – optimization function LGD vs.
Jensen-Shannon divergence | 12

compare Jensen-Shannon divergence to KL-divergence:

� KL-Divergence (0 if equal, positive if different, a dissimilarity
measure):

DKL(p||q) =
∫

p(x) log
(

p(x)
q(x)

)
dx if has a density

=
∑

i
pi log

(
pi
qi

)
if discrete

� JS-Divergence is a symmetrized variant (measure left and right
versus the average p+q

2 ):

DJS(p||q) = 1
2DKL

(
p||p + q

2

)
+ 1

2DKL

(
q||p + q

2

)



classic GAN training – optimization function LGD vs.
Jensen-Shannon divergence | 13

� relationship of the optimization function LGD to Jensen-Shannon
divergence

plug D(∗)(x) = Pdata(x)
Pdata(x)+PG (x) in for D:

LGD =
∫

Pdata(x) ln(D(x)) + PG (x) ln( 1− D(x) )dx

=
∫

Pdata(x) ln( Pdata(x)
Pdata(x) + PG (x) ) + PG (x) ln( 1− Pdata(x)

Pdata(x) + PG (x) )

=
∫

Pdata(x) ln( Pdata(x)
Pdata(x) + PG (x) ) + PG (x) ln( PG (x)

Pdata(x) + PG (x) )

= DKL (p||p + q) + DKL (q||p + q)

looks already almost like JS-divergence already: we need DKL
(
·|| p+q

2
)



classic GAN training – optimization function LGD vs.
Jensen-Shannon divergence | 14

� relationship of the optimization function LGD to Jensen-Shannon
divergence

plug D(∗)(x) = Pdata(x)
Pdata(x)+PG (x) in for D:

LGD =
∫

Pdata(x) ln( Pdata(x)
Pdata(x) + PG (x) ) + PG (x) ln( PG (x)

Pdata(x) + PG (x) )

=
∫

Pdata(x) ln(
1
2 Pdata(x)

(Pdata(x) + PG (x))/2 ) + PG (x) ln(
1
2 PG (x)

(Pdata(x) + PG (x))/2 )

=
∫

Pdata(x) ln( Pdata(x)
(Pdata(x) + PG (x))/2 ) + PG (x) ln( PG (x)

(Pdata(x) + PG (x))/2 )

+
∫

Pdata(x) ln( 1
2 ) + PG (x) ln( 1

2 )

= 2DJS(Pdata||PG ) + 2 ln( 1
2 )



classic GAN training – optimization function LGD vs.
Jensen-Shannon divergence | 15

The consequence from LGD = 2DJS(Pdata||PG ) + C :

A special case of GAN objective as max−min formulation

Suppose we use above modified GAN losses, and the discriminator
is the optimal one D(∗)(x), then

the generator tries to learn to minimize the Jensen-Shannon-
Divergence between DJS(Pdata||PG ) to the true data distribution
Pdata.

Therefore the optimal generator solution would be PG = Pdata.

However often this cannot be optimized well.



classic GAN training – loss analysis: when it can fail to
learn | 16

A special case of GAN objective as max−min formulation

Suppose we use above modified GAN losses, and the discriminator
is the optimal one D(∗)(x), then

the generator tries to learn to minimize the Jensen-Shannon-
Divergence between DJS(Pdata||PG ) to the true data distribution
Pdata.

Therefore the optimal generator solution would be PG = Pdata.

next step:

� What is the problem with this ??



classic GAN training – loss analysis: when it can fail to
learn | 17

Problem: Suppose your two distributions have no overlap in their
probability supports, then the KL-divergence is constant, thus its
derivative will be zero.

Example:

Pdata(x) = U([0, 1]) = 1[0 ≤ x ≤ 1]
PGa (x) = U([a, a + 1]) = 1[a ≤ x ≤ a + 1]

U(0,1)
1

0
0

U(a,a+1)

a

a 6∈ [0, 1]⇒ 2DJS = DKL(U0||
U0 + Ua

2 ) + DKL(Ua||
U0 + Ua

2 ) = 1

What is the consequence? Since the objective function is constant,
and not depending on a, there is no way by gradient methods to
make a converge so that PGa = Pdata (given we use the optimal
discriminator ...).



classic GAN training – loss analysis: when it can fail to
learn | 18

U(0,1)
1

0
0

U(a,a+1)

a

What is the consequence? For disjoint
supports, or if the supports are not disjoint but
have a very small probability overlap (eg
replace the two uniform distributions by normal
distributions which are far away from each
other),

� then the learning of the generator suffers from vanishing
gradients, and does not progress in time horizons of PhD
students anymore



problems of GANs | 19

� mode collapse (last lecture)
� poor convergence (see above)
� hyperparameter sensitivity
� a too good discriminator D(·) can lead to gradient vanishing

in G(·)



Recap on GANs: problems of GANs | 20

� GANs are very sensitive to hyperparameter choices
for more details https://papers.nips.cc/paper/
7350-are-gans-created-equal-a-large-scale-study.pdf.

� a too good discriminator D(·) can lead to gradient vanishing
in G(·). This happens if D(G(y)) = 0 for a whole region
{z : ‖z − G(y)‖ < ε} around your current point G(y).

https://papers.nips.cc/paper/7350-are-gans-created-equal-a-large-scale-study.pdf
https://papers.nips.cc/paper/7350-are-gans-created-equal-a-large-scale-study.pdf


Recap on GANs: problems of GANs | 21

� a too good discriminator D(·) can lead to gradient vanishing
in G(·). This happens if D(G(y)) =≈ 0 for a whole region
{z : ‖z − G(y)‖ < ε} around your current point G(y).

∀ z :‖z − G(y)‖ < ε : D(G(y)) = 0
⇒∇(z)D(z = G(y)) = 0

⇒∂D(G(y))
∂wd

= ∇(z)D(z = G(y)) ∂G
∂wd

= 0



Outline | 22

1 Loss II - Generator loss using Wasserstein GAN

2 StyleGan

3 Training GANs with smaller dataset sizes

4 Inpainting to make GANs useful



GANs II: Wasserstein distance – a different loss | 23

� result: a different loss function for the generator, replacing the
discriminator D(·)

� idea: measure and minimize a distance between probability
distributions µ of training data and τ of generated samples.

W1(µ, τ) = inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

n∑
i=1

n∑
k=1

d(xi , xk)γ(xi , xk)

The samples are xi , xk . d(xi , xk) is a distance between samples.
γ ∈ Γ(µ, τ) is a joint probability distribution, such that∑

k
γ(xi , xk) = µ(xi )∑

i
γ(xi , xk) = τ(xk)

Looks complicated, will be explained in details!



Wasserstein distance preliminaries: the cost of moving
water | 24

� Have n cauldrons X = {x1, x2, . . . , xn}.
Cauldron xi contains the amount µ(xi ) of water.
For simplicity:

∑
xi
µ(xi ) = 1 (liter?)

� We want to redistribute the water. Distributing an
amount of 1 water from xi to xk costs us d(xi , xk ).
� We have a distribution function:

γ(xi , xk ) is the amount redistributed xi → xk .
� It will have the following properties:

(P1):
∑

targets k γ(xi , xk ) = µ(xi ) – no spilling of water
(P2): the final amount after distribution will be∑

sources i γ(xi , xk ) =: τ(xk ).
� what is the cost of applying γ(xi , xk )?

e(γ) =
n∑

sources i=1

n∑
targets k=1

γ(xi , xk )d(xi , xk )

amount-weighted sum of costs



Wasserstein distance preliminaries: the cost of moving
water | 24

� Have n cauldrons X = {x1, x2, . . . , xn}.
Cauldron xi contains the amount µ(xi ) of water.
For simplicity:

∑
xi
µ(xi ) = 1 (liter?)

� We want to redistribute the water. Distributing an
amount of 1 water from xi to xk costs us d(xi , xk ).
� We have a distribution function:

γ(xi , xk ) is the amount redistributed xi → xk .
� It will have the following properties:

(P1):
∑

targets k γ(xi , xk ) = µ(xi ) – no spilling of water
(P2): the final amount after distribution will be∑

sources i γ(xi , xk ) =: τ(xk ).
� what is the cost of applying γ(xi , xk )?

e(γ) =
n∑

sources i=1

n∑
targets k=1

γ(xi , xk )d(xi , xk )

amount-weighted sum of costs



� for initial distribution µ(xi ),
per unit movement cost d(xi , xk ), redistribution function γ(xi , xk ),
resulting in final distribution τ(xk ) :=

∑
i γ(xi , xk ), we have as cost:

e(γ) =
n∑

i=1

n∑
k=1

γ(xi , xk )d(xi , xk )

� Towards wasserstein distance: what is if ?? ... we have initial distribution
µ(xi ), final distribution τ(xk ) and we want to find the least-cost
redistribution γ(xi , xk ) from µ(xi ) to τ(xk ) ?
We assume

∑
i µ(xi ) =

∑
k τ(xk ) = 1

� any valid redistribution γ(xi , xk ) must satisfy:
(P1):

∑
k γ(xi , xk ) = µ(xi )

(P2): τ(xk ) =
∑

i γ(xi , xk ).
� let be Γ(µ, τ) the space of all redistributions satisfying (P1) and (P2)
� then the least cost redistribution is given by

inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

n∑
i=1

n∑
k=1

γ(xi , xk )d(xi , xk )



� for initial distribution µ(xi ),
per unit movement cost d(xi , xk ), redistribution function γ(xi , xk ),
resulting in final distribution τ(xk ) :=

∑
i γ(xi , xk ), we have as cost:

e(γ) =
n∑

i=1

n∑
k=1

γ(xi , xk )d(xi , xk )

� Towards wasserstein distance: what is if ?? ... we have initial distribution
µ(xi ), final distribution τ(xk ) and we want to find the least-cost
redistribution γ(xi , xk ) from µ(xi ) to τ(xk ) ?
We assume

∑
i µ(xi ) =

∑
k τ(xk ) = 1

� any valid redistribution γ(xi , xk ) must satisfy:
(P1):

∑
k γ(xi , xk ) = µ(xi )

(P2): τ(xk ) =
∑

i γ(xi , xk ).
� let be Γ(µ, τ) the space of all redistributions satisfying (P1) and (P2)
� then the least cost redistribution is given by

inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

n∑
i=1

n∑
k=1

γ(xi , xk )d(xi , xk )



� for initial distribution µ(xi ),
per unit movement cost d(xi , xk ), redistribution function γ(xi , xk ),
resulting in final distribution τ(xk ) :=

∑
i γ(xi , xk ), we have as cost:

e(γ) =
n∑

i=1

n∑
k=1

γ(xi , xk )d(xi , xk )

� Towards wasserstein distance: what is if ?? ... we have initial distribution
µ(xi ), final distribution τ(xk ) and we want to find the least-cost
redistribution γ(xi , xk ) from µ(xi ) to τ(xk ) ?
We assume

∑
i µ(xi ) =

∑
k τ(xk ) = 1

� any valid redistribution γ(xi , xk ) must satisfy:
(P1):

∑
k γ(xi , xk ) = µ(xi )

(P2): τ(xk ) =
∑

i γ(xi , xk ).
� let be Γ(µ, τ) the space of all redistributions satisfying (P1) and (P2)
� then the least cost redistribution is given by

inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

n∑
i=1

n∑
k=1

γ(xi , xk )d(xi , xk )



GANs II: Wasserstein distance – a different loss | 26

special case of Wasserstein distance for the discrete case

� Suppose we have a discrete space X = {x1, x2, . . . , xn}, we have a
distance on it: d(xi , xk )
(e.g. euclidean distance d(xi , xk ) = ‖xi − xk‖).

� We are given two probability distributions on µ, τ on X , for which
we want to compute a distance W1(µ, τ) between them.

� Furthermore let be Γ(µ, τ) the space of all joint distributions
γ(xi , xk ) over X × X such that ...
they have µ and τ as their marginal distribution,
meaning:

∑
k γ(xi , xk ) = µ(xi ) and

∑
i γ(xi , xk ) = τ(xk )

Then we can define the Wasserstein distance as:

W1(µ, τ) = inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

n∑
i=1

n∑
k=1

d(xi , xk )γ(xi , xk )



GANs II: Wasserstein distance – properties | 27

W1(µ, τ) = inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

n∑
i=1

n∑
k=1

d(xi , xk)γ(xi , xk)

� the Wasserstein distance measures a distance between
probability distributions but it depends on a distance metric
d(xi , xk) between samples!
(e.g. for images one could use for xi feature maps from a
neural networks)

� has a clear interpretation as the least cost to shift a
distribution µ(·) into a distribution τ(·) when the cost to shift
one unit from xi to xk is given as d(xi , xk)

� γ(xi , xk) is the redistribution function, is a joint probability



GANs II: Wasserstein distance – a different loss | 28

discrete version – countable space X = {x1, x2, . . .} with probability
for each element p(x):

W1(µ, τ) = inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

n∑
i=1

n∑
k=1

d(xi , xk)γ(xi , xk)

continuous version (no exam) – non-countable space like R with a
density p(x):

W1(µ, τ) = inf
γ∈Γ(µ,τ)

e(γ) = inf
γ∈Γ(µ,τ)

∫
d(x , x ′)γ(x , x ′)dxdx ′



recap discrete vs continuous probabilities | 29

discrete – countable space X = {x1, x2, . . .} with probability for each
element p(x): ∑

i
p(xi )f (xi )∑

i,k,l
p(xi , xk , xl )f (xi , xk , xl )

continuous version – non-countable space like R with a density p(x):∫
p(x)f (x)dx∫
p(x , x ′, x ′′)f (x , x ′, x ′′)dxdx ′dx ′′

∑
i

p(xi )...
!←→
∫

x
p(x)...dx



GANs II: Wasserstein distance – how to use it for GANs??
| 30

Steps to obtain a Wasserstein GAN

(A) Write the Wasserstein distance as a difference of two
expectations of a function f , maximized over the function f

W1(Pdata,PGAN) = max
f∈Lip1

Ex∼Pdata [f (x)]− Ey∼PGAN [f (y)]

(B) Replace the expectations E [·] by mini-batch averages, one
time over the real data (for x ∼ Pdata), one time over the
data from the generator (for y ∼ PGAN)

(C) Represent the function f , the so-called critic, by a neural net.

(D) Train the critic neural net using above max-objective turned
into a min (typically with some gradient norm penalty)

(E) Interleave the train-critic-step with the step which optimizes
the generator



step (A) | 31

Kantorovich-Rubinstein Duality Theorem

The Wasserstein distance for a metric can be computed as
(Kantorovich-Rubinstein Duality Theorem, see a theorem in
chapter 5 of the book by Cedric Villani, Optimal Transport:
Old and New):

W1(µ, τ) = inf
γ∈Γ(µ,τ)

∫
X×X

d(x , y)γ(x , y)dxdy

= sup
f ∈Lip1

Ex∼µ[f (x)]− Ey∼τ [f (y)]

f ∈ Lip1 ⇔ |f (x)− f (y)| ≤ 1 · ‖x − y‖2 ∀x , y



step (B): Replace the expectations E [·] by mini-batch
averages | 32

use µ = Pdata ≈ Unif (Dn), τ = PGAN

W1(µ, τ) = sup
f ∈Lip1

Ex∼Pdata [f (x)]− Ey∼PGAN [f (y)]

≈ sup
f ∈Lip1

1
b

b∑
xi∼Dn

f (xi )−
1
b

b∑
vi∼ input codes

f (G(vi ))

Thus the generator objective becomes:

inf
w(G)

sup
f ∈Lip1

1
b

b∑
xi∼Dn

f (xi )−
1
b

b∑
vi∼ input codes

f (G(vi ))



step (B): What is the generator loss ? | 33

Generator loss? we want to minimize the above, thus optimize for a given
f (·): Optimize for weights w(G) of G :

inf
w(G)

1
b

b∑
xi∼Dn

f (xi )−
1
b

b∑
vi∼ input codes

f (G(vi ))

this does not depend on Dn or the first term as a whole, thus (and
replacing inf by a finite set min):

The generator loss for a Wasserstein GAN

min
w(G)

L(G), L(G) = − 1
b

b∑
vi∼input codes

f (G(vi ))



step (B): What is the discriminator loss ? | 34

discriminator loss?

Note: f (·) = D(·) for the above function f

We want to maximize the distance for a given G by changing D(·)

sup
D∈Lip1

1
b

b∑
xi∼Dn

D(xi )−
1
b

b∑
vi∼ input codes

D(G(vi ))

if you want a minimum problem, multiply above with −1
The discriminator loss for a Wasserstein GAN

Optimize for weights w(D) for D – note D(·) = f ()̇:

min
w(D):D∈Lip1

− 1
b

b∑
xi∼data

D(xi ) + 1
b

b∑
vi∼input codes

D(G(vi ))



steps (C,D): Represent the function f (the critic) by a
neural net. | 35

f= someCNN()
f.loadweights()
critic_optimizer=torch.nn.optim.AdamW(f.parameters(),lr=...)
...
later in the code during training of the GAN:
...
samples=generator.sample().detach()
L= #that diff of averages with f + regularizer term
L.backward()
critic_optimizer.step()



ensuring Lipschitz property | 36

Problem: need to ensure f ∈ Lip1. Two options:

(1) Spectral normalization of every trainable convolution weight W
https://arxiv.org/abs/1802.05957 (Miyato et al., ICLR 2018) –
(details for this are out of class)

(2) add to L̂D a gradient penalty term R(f ) like
WGAN-GP Gulrajani et al. https://arxiv.org/abs/1704.00028
or WGAN-LP Petzka et al.
https://openreview.net/pdf?id=B1hYRMbCW

R(f ) = 1
n
∑

zi

[(‖∇f (zi )‖ − 1)2] (WGAN-LP)

R(f ) = 1
n
∑

zi

[max(0, ‖∇f (zi )‖ − 1)2] (WGAN-LP)

zi = txi + (1− t)yi , t ∼ U([0, 1]), xi ∼ Dn, yi ∼ G(·)

https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1704.00028
https://openreview.net/pdf?id=B1hYRMbCW


ensuring Lipschitz property (out of class) | 37

For a quick intuition why restraining the gradient norm works:

if in the one-dimensional case |f ′(z)| ≤ 1, then

f (x)− f (y) =
∫ z=x

z=y
f ′(z)dz

⇒ |f (x)− f (y)| = |
∫ z=x

z=y
f ′(z)dz | ≤

∫ z=x

z=y
|f ′(z)|dz

≤
∫ z=x

z=y
1dz = x − y ≤ |x − y |

⇒ |f (x)− f (y)| ≤ |x − y |

for more insights on why Lipshitz regularization leads to better
GAN training:
https://arxiv.org/pdf/1811.09567.pdf

https://arxiv.org/pdf/1811.09567.pdf


GANs II: WGAN code examples | 38

https://github.com/jalola/improved-wgan-pytorch

WGAN-GP (Gulrajani et al.) https://arxiv.org/pdf/1704.00028.pdf
and WGAN-LP (Petzka et al)
https://openreview.net/pdf?id=B1hYRMbCW. GAN training can
take days for one hyperparameter setting!!!

https://github.com/jalola/improved-wgan-pytorch
https://arxiv.org/pdf/1704.00028.pdf
https://openreview.net/pdf?id=B1hYRMbCW


GANs II: Wasserstein distance vs KL-divergence | 39

� mathematical difference:
KL-Div DKL(p||q) =

∑
x p(x) log p(x)− p(x) log q(x) is not

symmetric, does not satisfy triangle inequality. Wasserstein
distance is a distance metric (symmetric, triangle inequality).

� practical advantage of Wasserstein-distance: takes metric d(·)
in sample space for the samples xi into account

vs
1 2 3 1 2 3

1 2 31 2 3

vs

both comparisons will have same KL-Divergence



GANs II: Wasserstein distance – a different loss | 40

Using a CNN as a discriminator and above loss formulation, will we
be able to compute such a minimum over this function class?

sup
f ∈Lip1

f (z) ?

If not, what are possible deviations?



Outline | 41

1 Loss II - Generator loss using Wasserstein GAN

2 StyleGan

3 Training GANs with smaller dataset sizes

4 Inpainting to make GANs useful



StyleGan | 42

Karras et al. https://arxiv.org/abs/1812.04948

https://arxiv.org/abs/1812.04948


DCGAN for comparison | 43



StyleGan | 44

� first idea: do not input a
latent vector to get a
random output.

� Instead add random noise
(B) to every feature map.

� Reason: randomness from
input vector can get
smoothed out as it passes
through many layers

Karras et al. https://arxiv.org/abs/1812.04948

https://arxiv.org/abs/1812.04948


StyleGan | 45

� second big idea: input styles
using adaptive instance
normalization

AI(x , y) = ys
x − µ(x)
σ(x) + yb

Karras et al. https://arxiv.org/abs/1812.04948

https://arxiv.org/abs/1812.04948


Adaptive instance normalization | 46

AI(x , y) = ys
x − µ(x)
σ(x) + yb

Difference to batchnormalization?
� batchsize= 1, same as layer normalization
� ys , yb are not directly trainable parameters as in BN but come

as inputs from a trainable network



StyleGan | 47

� style vectors ys , yb are
learnt as an output of an
8-layer FC network.

Karras et al. https://arxiv.org/abs/1812.04948

https://arxiv.org/abs/1812.04948


StyleGan | 48

� third big idea: uses
progressive growing

Karras et al. https://arxiv.org/abs/1812.04948

https://arxiv.org/abs/1812.04948


StyleGan | 49

� smaller tricks (out of class):
1.using bilinear up- and
downsampling. 2.
cross-apply style vectors
from different runs. 3.
Truncate large variations in
the style space W.

Karras et al. https://arxiv.org/abs/1812.04948

https://arxiv.org/abs/1812.04948


StyleGan | 50



StyleGan | 51

Style-vectors can be recombined from two different runs at different
levels



StyleGan2 | 52

another set of large changes: StyleGan2 (out of class)
https://arxiv.org/abs/1912.04958

including giving up progressive growing

https://arxiv.org/abs/1912.04958


Outline | 53

1 Loss II - Generator loss using Wasserstein GAN

2 StyleGan

3 Training GANs with smaller dataset sizes

4 Inpainting to make GANs useful



Training GANs with smaller dataset sizes | 54

Karras et al. Training Generative Adversarial Networks with Limited
Data, NeurIPS 2020, https://papers.nips.cc/paper/2020/hash/
8d30aa96e72440759f74bd2306c1fa3d-Abstract.html

Takeaway for in-class
� how to create measures to quantify overfitting
� how to use data augmentation in GANs so that the GANs do

not start to reproduce the augmentations.
� how to tune augmentation probabilities based on overfitting

measures
� how one can apply transfer learning in GANs: to discriminator

and freezing lowest layers

https://papers.nips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html
https://papers.nips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html


Training GANs with smaller dataset sizes | 55

� GANs overfit

� overfitting can be measured by comparing discriminator scores on:
training data, generated data, withheld real images



Training GANs with smaller dataset sizes | 56

� solution is to use data augmentation for generator and discriminator

� examples: horizontal flip, rotations, color augmentation

� risk/problem is: the generator may learn to produce augmented
images.



Training GANs with smaller dataset sizes | 57

� solution is to use data augmentation for generator and discriminator

� risk/problem is: the generator may learn to produce augmented
images.

� solution: allow to not execute each data augmentation with a
probability 1− p ∈ [0, 1]

� if p is too large, then it starts to leak the augmentation into the
generator



Training GANs with smaller dataset sizes | 58

� solution is to use data augmentation for generator and discriminator

� risk/problem is: the generator may learn to produce augmented
images.

� solution: allow to not execute each data augmentation with a
probability 1− p ∈ [0, 1]

� observation: different augmentations are differently effective,
depends on: dataset size and p.



Training GANs with smaller dataset sizes | 59

� solution is to use data augmentation for generator and discriminator

� risk/problem is: the generator may learn to produce augmented
images.

� solution: allow to not execute each data augmentation with a
probability 1− p ∈ [0, 1]

� next problem: how to select the best p?



Training GANs with smaller dataset sizes | 60

� solution is to use data augmentation for generator and discriminator

� risk/problem is: the generator may learn to produce augmented
images.

� solution: allow to not execute each data augmentation with a
probability 1− p ∈ [0, 1]

� next problem: how to select the best p?

� define two measures to measure the overfitting, D(x) ∈ (−∞,+∞)
as logits:

rv = E [Dtrain]− E [Dval ]
E [Dtrain]− E [Dgenerated ]

rt = Ex∼TrainData[ sign(Dtrain(x)) ]

� 0 - no overfitting, 1 - bad overfitting



Training GANs with smaller dataset sizes | 61

� if one keeps rv or rt approximately constant by
· initializing p = 0
· adjusting p every 4 epochs ...



Training GANs with smaller dataset sizes | 62

� solution is to use data augmentation for generator and discriminator

� allow to not execute each data augmentation with a probability
1− p ∈ [0, 1]

� Define two measures in [0, 1] to measure the overfitting:

rt = Ex∼TrainData[sign(Dtrain(x))]

� run an algorithm: initializing p = 0, adjusting p every 4 epochs to
keep rt ≈ 0.6



Training GANs with smaller dataset sizes | 63

� solution is to use data augmentation for generator and discriminator
� run an algorithm: initializing p = 0, adjusting p every 4 epochs to

keep rt ≈ 0.6



Training GANs with smaller dataset sizes | 64

� the effect of transfer learning for the discriminator

� freeze only the layers for the 3-4 highest resolutions, its a tunable
parameter



Training GANs with smaller dataset sizes | 65

� the effect of transfer learning for the discriminator

� freeze only the layers for the 3-4 highest resolutions, its a tunable
parameter



Outline | 66

1 Loss II - Generator loss using Wasserstein GAN

2 StyleGan

3 Training GANs with smaller dataset sizes

4 Inpainting to make GANs useful



Why inpainting? | 67

What is required to know for GAN inpainting?
� what problem it solves
� challenges for this setup
� not the model details



Why inpainting? | 68

� create content subject to constraints
� can iteratively postprocess bad regions using

different+specialized generators (e.g. for vegetation, building
facades, ears of humans, teeth, water waves)



Challenges in inpainting I | 69

� local consistency of the inpainted patch

� solution: use a discriminator on the patch



Challenges in inpainting II | 70

� global consistency of the image as a whole

� solution: use a discriminator on the whole image



Challenges in inpainting III | 71

� informing the generators about local statistics of the image

� e.g. what textures / structures should appear in the white
patches?

� how to build a model that can provide such an information to
the generative part of it?



One example paper | 72

https://arxiv.org/abs/1801.07892 Yu et al. CVPR 2018

Two stage architecture
� stage 1: direct, coarse reconstruction
� stage 2: apply reconstruction loss and two discriminators

https://arxiv.org/abs/1801.07892


One example paper – first, coarse reconstruction stage | 73

� stage 1 takes an image x as input, adds white patches x 7→ h(w) in
random positions as input and reconstructs the image x based on
h(x) as f (h(x)) using the model f (·)

� Training loss: weighted pixel-wise reconstruction loss

L(x , f (x)) = ‖(f (h(x))− x)� γ(h(x))‖1

The weight γ(h(x)) is 1 on pixels without white patches, and on white
patches it decreases to zero as a function of the distance to the nearest
non-masked pixel:

γ(h(x)) = γ l , l = pixel distance to nearest non-masked pixel



One example paper – first, coarse reconstruction stage | 74

� stage 1 takes an image x as input, adds white patches x 7→ h(w) in
random positions as input and reconstructs the image x based on
h(x) as f (h(x)) using the model f (·)

� Training loss: weighted pixel-wise reconstruction loss

L(x , f (x)) = ‖(f (h(x))− x)� γ(h(x))‖1

γ(h(x)) = γ l , l = pixel distance to nearest non-masked pixel

� Idea: less weight on reconstruction quality for the coarse first stage
for pixels far away from a non-masked pixel. Enforce a more truthful
reconstruction on unmasked pixels and close to them.



One example paper – first, coarse reconstruction stage | 75

Prediction model:

� takes an image with random white patches, outputs an image

� start: 5 standard convolution layers, 2 with stride 2. Result: feature
map compressed to 1/4.
Creates a bottleneck: lower resolution, higher no. feature channels.

� then 4 dilated convolution layers.

� then (conv-conv-upsample 2x ) – repeated two times. to obtain the
original image size back.

� then 3x convolutions, last with output with 3 channels



One example paper – dilated convolution | 76

Dilated convolutions?
https://github.com/vdumoulin/conv arithmetic
� dilation factor 1: take every pixel from input feature map (the

usual!)
� dilation factor 2: take every second pixel from input feature

map
� dilation factor n: take every n − th pixel from input feature

map
� allows to process larger fields of view – good for reconstruction

tasks to obtain a multiscale global view of the information in
the image

https://github.com/vdumoulin/conv_arithmetic


One example paper – second, fine reconstruction stage | 77

Training loss: three losses summed

� loss 1: weighted pixel-wise reconstruction loss
‖(f (h(x))− x)� γ(h(x))‖1

� loss 2: discriminator on patch. WGAN-GP :)

� loss 3: discriminator on the whole image. WGAN-GP



One example paper – second, fine reconstruction stage | 78

Finer stage prediction model:

� two streams, concatenated before final
3 convolutions down to three channels,
which are same final convolutions as in
stage 1 model.

� stream 1: 5 convolutions, dilations,
(conv-conv-upsample) twice repeated
as in stage 1 model. Without stream 2
it would be the same model again.

� stream 2: informs about patch
statistics from non-masked regions,
explained next!



One example paper – second, fine reconstruction stage | 79

Stream 2: contextual attention. idea:
compute how good a patch from
coarsely reconstructed image matches
any of the background patches from the
non-masked regions of this image.

� if we had a background patch of spatial size 3× 3 in some feature
space fb from the non-masked regions of this image, and a patch fv
from the coarsely reconstructed image, then we could compute the
cosine angle as similarity measure

s(fb, fv ) = fb · fv
‖fb‖‖fv‖

� if we had N background patches, we could compute a softmax of
similarities over all those N patches f (i)

b from non-masked regions:

p(f (1)
b , f (2)

b , . . . , f (N)
b |fv ) = softmax

(
s(f (1)

b , fv ), . . . , s(f (N)
b , fv )

)



One example paper – second, fine reconstruction stage | 80

Stream 2: contextual attention. idea: compute
how good a patch from coarsely reconstructed
image matches any of the background patches
from the non-masked regions of this image.

� if we had N background patches, we could compute a softmax of
similarities over all those N patches f (i)

b from non-masked regions:

s(fb, fv ) = fb · fv
‖fb‖‖fv‖

p(f (1)
b , f (2)

b , . . . , f (N)
b |fv ) = softmax

(
s(f (1)

b , fv ), . . . , s(f (N)
b , fv )

)
� This tells a probability of similarities of background patches

(non-masked regions) to fv
� how to implement that efficiently?



One example paper – second, fine reconstruction stage | 81

Stream 2: contextual attention. idea: compute
how good a patch from coarsely reconstructed
image matches any of the background patches
from the non-masked regions of this image.

� if we had N background patches, we could compute a softmax of
similarities over all those N patches f (i)

b from non-masked regions:

p(f (1)
b , f (2)

b , . . . , f (N)
b |fv ) = softmax

(
s(f (1)

b , fv ), . . . , s(f (N)
b , fv )

)
� This tells a probability of similarities of bg patches to fv . How to

implement that efficiently?

� extract N background patches of spatial size 3× 3 in some feature
space with c channels (after 5 initial convolutions). result: a feature
map of shape (n, c, 3, 3). Make them kernels in a convolution with n
output channels



One example paper – second, fine reconstruction stage | 82

Stream 2: contextual attention. idea: compute how
good a patch from coarsely reconstructed image
matches any of the background patches from the
non-masked regions of this image.

� if we had N background patches, we could compute a softmax of
similarities over all those N patches f (i)

b from non-masked regions:

p(f (1)
b , f (2)

b , . . . , f (N)
b |fv ) = softmax

(
s(f (1)

b , fv ), . . . , s(f (N)
b , fv )

)
� How to implement that efficiently?

� extract N background patches of spatial size 3× 3 in some feature
space with c channels (after 5 initial convolutions). Result: a feature
map of shape (n, c, 3, 3). Make them kernels in a convolution with n
output channels

� run this convolution over the whole feature map to get inner product
scores (f (1)

b · fv , . . . , f (N)
b · fv ) for the whole image



One example paper – second, fine reconstruction stage | 83

Stream 2: contextual attention. idea: compute how
good a patch from coarsely reconstructed image
matches any of the background patches from the
non-masked regions of this image.

� extract N background patches of spatial size 3× 3 in some feature
space with c channels (after 5 initial convolutions). Result: a feature
map of shape (n, c, 3, 3). Make them kernels in a convolution with n
output channels

� run this convolution over the whole feature map to get inner product
scores (f (1)

b · fv , . . . , f (N)
b · fv ) for the whole image

� computations: (N, c, 3, 3) ? (1, c, h,w) 7→ (1,N, h,w) (...padding).
N channels. At position (h′,w ′) of the feature map (1,N, h,w) it
tells N similarities to the N background patches - each in its own
channel i ∈ {1, . . . ,N}.



One example paper – second, fine reconstruction stage | 84

Stream 2: contextual attention. idea: compute how
good a patch from coarsely reconstructed image
matches any of the background patches from the
non-masked regions of this image.

� if we had N background patches, we could compute a softmax of
similarities over all those N patches f (i)

b from non-masked regions:

p(f (1)
b , f (2)

b , . . . , f (N)
b |fv ) = softmax

(
s(f (1)

b , fv ), . . . , s(f (N)
b , fv )

)
� extract N background patches of spatial size 3× 3 in some feature

space with c channels (after 5 initial convolutions). Result: a feature
map of shape (n, c, 3, 3). Make them kernels in a convolution with n
output channels

� run this convolution over the whole feature map to get inner product
scores (f (1)

b · fv , . . . , f (N)
b · fv ) for the whole image

� normalize feature maps, apply channel-wise softmax to get
p(f (i)

b |fv ), i ∈ {1, . . . ,N}



One example paper – second, fine reconstruction stage | 85

Stream 2: contextual attention. idea:
compute how good a patch from
coarsely reconstructed image matches
any of the background patches from the
non-masked regions of this image.

� now we have the softmax scores p(f (i)
b |fv ) for every position in the

image

� smoothen the scores by sum pooling over neighboring pixels
(’attention propagation’)

� use them as input for a fractionally strided convolution layer
(deconvolutional filters in the paper). The weights of the fractionally
strided convolution layer are fixed to be the extracted background
patches f (1)

b , f (2)
b , . . . , f (N)

b

� What ? This computes then in the resulting output feature map a
weighted copy of the kernels!



the generator: fractionally strided convolutions | 86

For multiple input channels the working principle is analogous.



One example paper – second, fine reconstruction stage | 87

Stream 2: contextual attention. idea:
compute how good a patch from
coarsely reconstructed image matches
any of the background patches from the
non-masked regions of this image.

� now we have the softmax scores p(f (i)
b |fv ) for every position in the

image
� use them as input for a fractionally strided convolution layer. The

weights of the fractionally strided convolution layer are fixed to be
the extracted background patches f (1)

b , f (2)
b , . . . , f (N)

b
This computes then in the resulting output feature map a weighted
copy of the kernels!

!

� example on how to use neural network toolbox layers to achieve a
similarity measuring task within a network.



Gan inpainting further ideas | 88

How to include an object type GAN ?
� as third stream in the second stage
� use a feature map over the coarse result to input local image

statistics into the GAN generator code z .
� in principle a user could select from which region to sample

background patches to inform the inpainter. Does not need to
be fixed!

� fusing GANs with neural style transfer can be useful in GAN
inpainting beyond pure artistic creation goals.



Gan inpainting further ideas | 89

Points taken here from:
� local critic (masked patch level)
� global critic
� how to obtain local statistics and use them to inform a

generative process
� how to do that with neural network layers (convolution,

fractionally strided convolution)
� think how to put a user in the loop at testing time (beyond

PhD research)



... | 90

Questions?!


	Loss II - Generator loss using Wasserstein GAN
	StyleGan
	Training GANs with smaller dataset sizes
	Inpainting to make GANs useful

