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Learning goals

© loss analysis: understanding what losses in classic GAN
minimize in a special case

a better loss: Wasserstein-GANs [loss design]
© problems of GANs

© a better architecture: StyleGAN (there is StyleGAN2 out
btw) [architecture design]

a better application: using GAN to inpaint and to create
with constraints [human in the loop, usability]

© a better training: small scale training [training with limited
data]




Recap on GANs: — the generator (for images)

©

G(+) generates output sample (image)

G(-) maps a random input vector v ~ P, onto an output
image z = G(v)

based on layers of upscale+convolution OR fractionally strided
convolutions + other layers

trainable parameters



Recap on classic GANs with non-saturating discriminator

loss: — the discriminator |4

@ D(-) critic for the quality of the generated samples (images)

© D(-) maps an input sample x onto a classification probability
D(x) € [0,1]

@ classification problem: D(x) =1 — is certain that the input is
from the training dataset and not from G(+)

© for images typically a vanilla CNN: conv layers, batch norm,
residual connections

© trainable parameters



Recap on GANs: — the training

Iterate:

© one step of generator: update parameters to create more realistic
images, to increase discriminator loss

) one step of discriminator: update parameters to be able to
discriminator generator images from real dataset images, to decrease
discriminator loss

minLe, Le = E;p.[—In D(Gu(6)(2))]

D(G(z)) =1= —InD(-) =0,Lg =0
min Lo, Lp = ExnPua[=In(D(x)) ] + Ezp, [~ In(1 — D(G(2)))]

D(x) =1,D(G(z)) =0 = Lp =0



classic GAN training — single loss max — min-formulation |6

next step:
@ for a special choice of generator loss L, show that training of
generator and discriminator can be written as a
max — min-formulation over a single objective function



classic GAN training — single loss max — min-formulation |7

min Lg, Le = E;op,[—InD(G(2))]

w(G)

min Lo, Lo = Exwp[ = In(DO)) ]+ Eenp.[ = In(1 = D(6(2)))]

Consider the original GAN formulation: replace the first term by
E.p,[In(1— D(Gy(c)(2)) )] and Switch the second min to a max

(1) mln Lg, L¢ = E;np,[In(1 — D(G(2)))]

(2) 2 Lo. Lo = Ecepa [ In(D(x))] + Ecer,[In(1 - D(G(2)))]



classic GAN training — single loss max — min-formulation |s

Have now this modified GAN formulation:
(1) "}ic;”) Lg, L = E;wp,[In(1 - D(G(2)))]

(2) max Lo. Lo = Euwp [In(D())] + Exv. [ (1~ D(G(2)]
Minimizing (2) wrt G is equivalent to minimizing (1) wrt G.

Therefore can use eq (2) for both:

maxmin Lop, Lep = EnPo[IN(D(x)) ] + Eznp,[In(1 — D(Gy(6)(2)) )]

Result: optimization problem with one loss function, as max — min



classic GAN training — single loss max — min-formulation |o

A special case of GAN objective as max — min formulation

If one uses the modified generator loss Lg = E,.p,[In(1 —
D(G(2)))],
and above discriminator loss Lp = Ecop,.[—In(D(x))] +

E.wp.[=In(1 = D(G(2)))],

then one obtains as GAN objective:

~—
a——

max min Lo, Lap = Exwry[IN(D()] + Exrmr [In( 1 = D(Gu(e)(2)

Next steps:

© what is the optimal solution for the discriminator D(-)?

N

> given that optimal solution, what does the generator G(-) try to
optimize?



classic GAN training — loss analysis for a special case:

optimal discriminator

You can ask: what is for each x the best solution for the discriminator
D(-)?

Lep = Exnpu [ IN(D(x)) ] + Eznp,[In(1 = D(Gu(6)(2))) ]
= / Paata(x) In(D(x))dx + / P,(z)In(1— D(G(2)) )dz

X z

= /Pdata(x) In(D(x)) 4+ Pg(x) In(1 — D(x) )dx

argmaxp,) aln(D(x)) + bin(1 — D(x)) =7

ey — 2 Pata(x)
D) =275 Paata(x) + Pc(x)

Have: solution for the optimal discriminator D(-)



classic GAN training — loss analysis for a special case:

optimal discriminator

for the above loss function Lgp for max-min-optimization, the
optimal discriminator would predict

% i P, ata(X)
DY) = 503 T Pel)

next:

© relationship of the optimization function Lgp to
Jensen-Shannon divergence.



classic GAN training — optimization function Lgp vs.

Jensen-Shannon divergence

compare Jensen-Shannon divergence to KL-divergence:

© KL-Divergence (0 if equal, positive if different, a dissimilarity
measure):

Dia(olla) = [ ptx)iog (20T ) a i has  density
= Z pilog (;:) if discrete

© JS-Divergence is a symmetrized variant (measure left and right
versus the average %):

Dss(pllq) = —DKL(P||p+q)+%D (q||P+q>



classic GAN training — optimization function Lgp vs.

Jensen-Shannon divergence

© relationship of the optimization function Lgp to Jensen-Shannon

divergence
* Pata(x H .
plug DM (x) = m in for D:

Lep = /Pdata(x) In(D(x)) + Pg(x)In(1 — D(x) )dx
. Pdata(X) _
= /Pdata(x) In(Pdata(X) + PG(X) Pdata(X) + PG(X)

= /Pdata(x) In( Pdat:(j)i‘;tixllc(x)) + Pg(x) In( Pdata(i;;(—{)f)PG(X))

= D1 (pllp + q) + Dke (qllp + q)

Pdata (X)

)+ Pe(x)In(1 )

looks already almost like JS-divergence already: we need Dy (+||2£2)



classic GAN training — optimization function Lgp vs.

Jensen-Shannon divergence

© relationship of the optimization function Lgp to Jensen-Shannon

divergence
plug DU (x) = —Pdafififf(’)c(x) in for D:
_ Pdata(X) PG(X)
Lep = /Pdata(x) In(Pdata(X) T PG(X)) + PG(X) In(Pdata(X) + PG(X))
N %Pdata(x) %PG(X)
= [ Panel g )+ P iy
Pdata(X) PG(X)

) + P (x) In( )

:/Pdara(x)ln((pdata(x)+PG(X))/2
—|—/Pdata(X)In(%)+PG(X)ln(%)

1
= 2DJ$(Pdata||PG) + 2 |n(§)

(Pdata(X) + PG(X))/2



classic GAN training — optimization function Lgp vs.

Jensen-Shannon divergence

The consequence from Lgp = 2D s(Paatal|Pg) + C:

A special case of GAN objective as max — min formulation

Suppose we use above modified GAN losses, and the discriminator
is the optimal one D(*)(x), then

the generator tries to learn to minimize the Jensen-Shannon-
Divergence between Djs(Puatal||Pg) to the true data distribution

Pdata-

Therefore the optimal generator solution would be Pg = Pyat,.

However often this cannot be optimized well.



classic GAN training — loss analysis: when it can fail to
learn |16

A special case of GAN objective as max — min formulation

Suppose we use above modified GAN losses, and the discriminator
is the optimal one D(*)(x), then

the generator tries to learn to minimize the Jensen-Shannon-
Divergence between Djs(Pyata||Pg) to the true data distribution

Pdata-

Therefore the optimal generator solution would be Pg = Pyat,.

next step:

© What is the problem with this 77



classic GAN training — loss analysis: when it can fail to

learn

|17

Problem: Suppose your two distributions have no overlap in their

probability supports, then the KL-divergence is constant, thus its
derivative will be zero.

AU(O,1) U(a,a+1)
Example: 1
Pasta(x) = U([0,1]) = 1[0 < x < 1]
Po,(x)=U([a,a+1]) =1[a< x < a+1]
00 — >

U +U Uo + U,
ad[0,1] = 2D5 = Dyy (Up|| 222 )+DKL(U||°—) 1

What is the consequence? Since the objective function is constant,
and not depending on a, there is no way by gradient methods to

make a converge so that Pg, = Pyara (given we use the optimal
discriminator ...).



classic GAN training — loss analysis: when it can fail to

learn |18

o) U(a,a+1) What is the consequence? For disjoint
supports, or if the supports are not disjoint but
have a very small probability overlap (eg
replace the two uniform distributions by normal
distributions which are far away from each

0 ——>  other),
0 a

@ then the learning of the generator suffers from vanishing
gradients, and does not progress in time horizons of PhD
students anymore




problems of GANs

mode collapse (last lecture)
poor convergence (see above)

hyperparameter sensitivity

© 60 0 06

a too good discriminator D(+) can lead to gradient vanishing
in G(+)



Recap on GANs: problems of GANs

© GANs are very sensitive to hyperparameter choices
for more details https://papers.nips.cc/paper/
7350-are-gans-created-equal-a-large-scale-study.pdf.

© a too good discriminator D(-) can lead to gradient vanishing
in G(-). This happens if D(G(y)) = 0 for a whole region
{z :||lz—= G(y)|| < €} around your current point G(y).


https://papers.nips.cc/paper/7350-are-gans-created-equal-a-large-scale-study.pdf
https://papers.nips.cc/paper/7350-are-gans-created-equal-a-large-scale-study.pdf

Recap on GANs: problems of GANs

© a too good discriminator D(-) can lead to gradient vanishing
in G(-). This happens if D(G(y)) = 0 for a whole region
{z :||lz— G(y)|| < €} around your current point G(y).

Vz:fz-G(y)ll <e: D(G(y)) =0
=V@D(z=G(y))=0

9D(G(y))
= owy

i aG



Outline

@ Loss Il - Generator loss using Wasserstein GAN



GANSs |l: Wasserstein distance — a different loss

O]

result: a different loss function for the generator, replacing the
discriminator D(-)

idea: measure and minimize a distance between probability
distributions p of training data and 7 of generated samples.

Wi(pu,7) = inf e(y)= inf )ZZdX,,xk (X7, Xk)

R
YEr(p,7) YEM () <2 1 1

The samples are x;, xx. d(x;, xx) is a distance between samples.
~v € ['(p, 7) is a joint probability distribution, such that

D i x) = ()
Zv(x,-,xk) = 7(x)

Looks complicated, will be explained in details!



Wasserstein distance preliminaries: the cost of moving

water

© Have n cauldrons X = {x1,%,...,%n}.
Cauldron x; contains the amount u(x;) of water.
For simplicity: 3 u(x) =1 (liter?)

) We want to redistribute the water. Distributing an
amount of 1 water from x; to xx costs us d(x;, x«).

©  We have a distribution function:
~(xi, xx) is the amount redistributed x; — x.

© It will have the following properties:
(P1): Ztargets « V(x5, xk) = p(x:) = no spilling of water
(P2): the final amount after distribution will be
Y ourees Y (Xiy XK) =1 T(xk).

© what is the cost of applying ~v(xi, xx)?



Wasserstein distance preliminaries: the cost of moving

water

© Have n cauldrons X = {x1,%,...,%n}.
Cauldron x; contains the amount u(x;) of water.
For simplicity: 3 u(x) =1 (liter?)

) We want to redistribute the water. Distributing an
amount of 1 water from x; to xx costs us d(x;, x«).

©  We have a distribution function:
~(xi, xx) is the amount redistributed x; — x.

© It will have the following properties:
(P1): Ztargets « V(x5, xk) = p(x:) = no spilling of water
(P2): the final amount after distribution will be
Y ourees Y (Xiy XK) =1 T(xk).

© what is the cost of applying ~v(xi, xx)?

e(y) = Z Z ~v(xi, xi ) d(xi, xk)

sources i=1 targets k=1

amount-weighted sum of costs



for initial distribution p(x;),
per unit movement cost d(x;, xx), redistribution function ~y(x;, xx),
resulting in final distribution 7(xx) :== >, v(xi, k), we have as cost:

e(y) = Z Z (i, xi)d (i, xk)

i=1 k=1

Towards wasserstein distance: what is if 77 ... we have initial distribution
wu(x;), final distribution 7(xx) and we want to find the least-cost
redistribution ~y(x;, xx) from p(x;) to 7(xx) ?

We assume Y p(xi) =D, 7(x) =1



Towards wasserstein distance: what is if ?? ... we have initial distribution
wu(x;), final distribution 7(xx) and we want to find the least-cost
redistribution ~y(x;, xx) from p(x;) to 7(xx) ?

We assume Y p(xi) =D, 7(x) =1

any valid redistribution v(x;, xx) must satisfy:

(P1): 32 (6, %) = (i)

(P2): 7(x) = Zify(x,-,xk).

let be I'(u, T) the space of all redistributions satisfying (P1) and (P2)



for initial distribution p(x;),
per unit movement cost d(x;, xx), redistribution function ~y(x;, xx),

resulting in final distribution 7(xx) :== >, v(xi, k), we have as cost:
n n
(1) =Y ) xi x)d(, %)
i=1 k=1

Towards wasserstein distance: what is if ?? ... we have initial distribution
wu(x;), final distribution 7(xx) and we want to find the least-cost
redistribution ~y(x;, xx) from p(x;) to 7(xx) ?
We assume Z,-N(Xi) = Zk’l' xi) =
any valid redistribution v(x;, xx) must satisfy:
1): Zk ’Y(Xi,Xk) = M(Xf)
(P2): T(Xk) = Z,’Y(Xi,xk)-
let be I'(u, T) the space of all redistributions satisfying (P1) and (P2)

then the least cost redistribution is given by

inf e(y) = f iy Xk )d (i,
76:'?#,7) welrnu T)ZZ’Y % Xk) X Xk)

=1 k=1



GANSs |l: Wasserstein distance — a different loss

special case of Wasserstein distance for the discrete case

() Suppose we have a discrete space X = {x1,x2,...,Xn}, we have a
distance on it: d(x;i, x«)
(e.g. euclidean distance d(x;, xk) = ||xi — x«/|)-

)  We are given two probability distributions on p, 7 on X, for which
we want to compute a distance W4 (u, 7) between them.

©  Furthermore let be (i, 7) the space of all joint distributions
¥(xi, xx) over X X X such that ...
they have i and 7 as their marginal distribution,
meaning: >, v(xi, xx) = p(xi) and D v(xi, xk) = 7(xx)
Then we can define the Wasserstein distance as:

o~

Wi(u,7) = inf e(y)= inf d(xi, xk)y(xi, X
i, 7) = inf e(7) ()ZZ( 103 %)




GANSs Il: Wasserstein distance — properties

Wi(p,7) = inf e(y)= inf Zde,,xk)’yx,,xk)

ver(u) vel(w) 9 13

© the Wasserstein distance measures a distance between
probability distributions but it depends on a distance metric
d(xi, xx) between samples!
(e.g. for images one could use for x; feature maps from a
neural networks)

@ has a clear interpretation as the least cost to shift a
distribution p(+) into a distribution 7(-) when the cost to shift
one unit from x; to x is given as d(x;, xk)

©  v(xi, xk) is the redistribution function, is a joint probability



GANSs |l: Wasserstein distance — a different loss

discrete version — countable space X = {x1, x2, ...} with probability
for each element p(x):

W, s = inf e = inf d iy iy
(1, 7) et () Werw);kgl (%3, xi )y (X xk)

continuous version (no exam) — non-countable space like R with a
density p(x):

Wa(p, 1) = weirr(];ft,r) e(y) = weir?;fm) / d(x, x")y(x, x")dxdx’



recap discrete vs continuous probabilities

discrete — countable space X = {xi, x2, ...} with probability for each
element p(x):

> pla)f(x)

I

> p(xi, X, X1 (i, Xk, X1)

ikl

continuous version — non-countable space like R with a density p(x):

/ p(x)f(x)dx

/p(x7 X' x"YVF(x, x", x" ) dxdx" dx"”

3 pla) < /p(x)...dx



GANSs Il: Wasserstein distance — how to use it for GANs??

130

Steps to obtain a Wasserstein GAN

(A) Write the Wasserstein distance as a difference of two
expectations of a function f, maximized over the function f

Wi (Pdata, Pean) = e Exn P [F(X)] = Eympaan[f ()]

(B) Replace the expectations E[-] by mini-batch averages, one
time over the real data (for x ~ Pya,), one time over the
data from the generator (for y ~ Pgan)

(C) Represent the function f, the so-called critic, by a neural net.

(D) Train the critic neural net using above max-objective turned
into a min (typically with some gradient norm penalty)

(E) Interleave the train-critic-step with the step which optimizes
the generator




step (A)

Kantorovich-Rubinstein Duality Theorem

The Wasserstein distance for a metric can be computed as
(Kantorovich-Rubinstein Duality Theorem, see a theorem in
chapter 5 of the book by Cedric Villani, Optimal Transport:
Old and New):

Wi(ir) = nf [ dxy)y(xy)dedy
yer(p,m) Jaxx

= sup Expu[f(x)] = Eynr[f(y)]
feLip

felip & [f(x) = fy)l <1-lIx—ylla Vx,y




step (B): Replace the expectations E[-] by mini-batch

averages

use pu = Pdata ~ Unif(D,,), T = PGAN

Wi(p, ) = sup EXNPdata[f(X)] - EyNPGAN[f(y)]

feLipy
b
A osup — Z f(xi) — b > f(G(vi))
fEL’pl xi~Dp v~ input codes
Thus the generator objective becomes:
b
inf sup — Z fx,)—— Z f(G(v))

w(G) fELlpl xi~Dp, vi~ input codes



step (B): What is the generator loss ?

Generator loss? we want to minimize the above, thus optimize for a given
f(-): Optimize for weights w(G) of G:

b b
1
inf — g X;) — — g f(G(v;
W(G)bx,va,7 ( ) bv,Ninputcodes ( ( ))

this does not depend on D, or the first term as a whole, thus (and
replacing inf by a finite set min):

b

_ 1
Mr:ng)L(G), L(G)=—3 > f(G(w)

( vi~input codes




step (B): What is the discriminator loss 7

discriminator loss?
Note: f(-) = D(-) for the above function f

We want to maximize the distance for a given G by changing D(-)

b b
1 1
sup E D(x;) — b § : b(6(v))
DelLipy xi~D, vi~ input codes

if you want a minimum problem, multiply above with —1

The discriminator loss for a Wasserstein GAN

Optimize for weights w(D) for D — note D(-) = f():

b b

1 1
. D(x;) + - D(G(v;
W(DTDIQUPI b x-~zdata (X ) i b v-~inp¥codes ( (V ))




steps (C,D): Represent the function f (the critic) by a

neural net.

f= someCNN()
f.loadweights ()
critic_optimizer=torch.nn.optim.AdamW(f.parameters(),lr=...)

later in the code during training of the GAN:

samples=generator.sample() .detach()

L= #that diff of averages with f + regularizer term
L.backward ()

critic_optimizer.step()



ensuring Lipschitz property

Problem: need to ensure f € Lip;. Two options:

(1) Spectral normalization of every trainable convolution weight W
https://arxiv.org/abs/1802.05957 (Miyato et al., ICLR 2018) —
(details for this are out of class)

(2) add to Lp a gradient penalty term R(f) like
WGAN-GP Gulrajani et al. https://arxiv.org/abs/1704.00028
or WGAN-LP Petzka et al.
https://openreview.net/pdf?id=B1hYRMbCW

R(N) = = S I(I9F(z)]l — 1)7] (WGAN-LP)

R(f) = %Z[max(o, IV£(z)|| — 1)3] (WGAN-LP)

Zi

zi = tx; + (1 — t)y,', t~ U([O7 1]),X,' ~ Dn,y,' ~ G()


https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1704.00028
https://openreview.net/pdf?id=B1hYRMbCW

ensuring Lipschitz property (out of class)

For a quick intuition why restraining the gradient norm works:

if in the one-dimensional case |f'(z)| < 1, then

F(x) = F(y) = / T P(2)dz

z=y
= 1f0) -~ f0)l =1 [ F@de < [ IR (@)l
z=y z=y
S/ Cldz=x-y<|x—y
7=y

= [f(x) =)l < [x -y

for more insights on why Lipshitz regularization leads to better
GAN training:
https://arxiv.org/pdf/1811.09567.pdf


https://arxiv.org/pdf/1811.09567.pdf

GANs Il: WGAN code examples

https://github.com /jalola/improved-wgan-pytorch

WGAN-GP (Gulrajani et al.) https://arxiv.org/pdf/1704.00028.pdf
and WGAN-LP (Petzka et al)
https://openreview.net/pdf?7id=B1hYRMbCW. GAN training can
take days for one hyperparameter setting!!!


https://github.com/jalola/improved-wgan-pytorch
https://arxiv.org/pdf/1704.00028.pdf
https://openreview.net/pdf?id=B1hYRMbCW

GANSs Il: Wasserstein distance vs KL-divergence

© mathematical difference:
KL-Div Dkr(p|lq) = X, p(x) log p(x) — p(x) log g(x) is not
symmetric, does not satisfy triangle inequality. Wasserstein
distance is a distance metric (symmetric, triangle inequality).
@ practical advantage of Wasserstein-distance: takes metric d(-)
in sample space for the samples x; into account

III Vs

123 123

[ ] L]

123 123
both comparisons will have same KL-Divergence



GANSs |l: Wasserstein distance — a different loss

Using a CNN as a discriminator and above loss formulation, will we
be able to compute such a minimum over this function class?

sup f(z)?
feLipy

If not, what are possible deviations?



Outline

@® StyleGan



StyleGan

Karras et al. https://arxiv.org/abs/1812.04948
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(a) Traditional (b} Style-based generator


https://arxiv.org/abs/1812.04948

DCGAN for comparison

Latent z Latent z Noi
atent 7 € aenf € Synthesis network g 101
[Normalize | [Normalize | [Constaxaxsiz]

{ Mapping &
Fully-connected] network f N
PixclNorm.
Cony 3x3
[PixelNorm |
[ axa

(a) Traditional (b) Style-based generator

G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x (4 pixel image. Notably, no
fully connected or pooling layers are used.



StyleGan
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(a) Tradinonal (b) Style-based generator

Karras et al. https://arxiv.org/abs/1812.04948

first idea: do not input a
latent vector to get a
random output.

Instead add random noise
(B) to every feature map.

Reason: randomness from
input vector can get
smoothed out as it passes
through many layers


https://arxiv.org/abs/1812.04948

StyleGan
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(a) Tradinonal (b) Style-based generator

Karras et al. https://arxiv.org/abs/1812.04948

second big idea: input styles
using adaptive instance
normalization

Al(x,y) :)’SX;(—ZgX) + Y


https://arxiv.org/abs/1812.04948

Adaptive instance normalization

x — pi(x)
Al(x =y
( 7.y) yS U(X) + Yb
Difference to batchnormalization?
© batchsize= 1, same as layer normalization

© Vs, ¥p are not directly trainable parameters as in BN but come
as inputs from a trainable network



StyleGan
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© style vectors ys, yp, are
learnt as an output of an
8-layer FC network.
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(a) Tradinonal (b) Style-based generator

Karras et al. https://arxiv.org/abs/1812.04948


https://arxiv.org/abs/1812.04948

StyleGan
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(a) Tradinonal (b) Style-based generator

Karras et al. https://arxiv.org/abs/1812.04948


https://arxiv.org/abs/1812.04948

StyleGan

Latent z € 2 | Latent z € Z Synthesis network Noise
[ T .J
H Mappin; .
Eipoms] | et/ o © smaller tricks (out of class):
—Mmm 1.using bilinear up- and

downsampling. 2.
cross-apply style vectors

PixelNorm H
4x4|
=

oI from different runs. 3.
; Truncate large variations in
e the style space W.
+
(a) Tradinonal (b) Style-based generator

Karras et al. https://arxiv.org/abs/1812.04948


https://arxiv.org/abs/1812.04948
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StyleGan

Style-vectors can be recombined from two different runs at different
levels



StyleGan2

another set of large changes: StyleGan2 (out of class)
https://arxiv.org/abs/1912.04958

including giving up progressive growing


https://arxiv.org/abs/1912.04958

Outline

© Training GANs with smaller dataset sizes



Training GANs with smaller dataset sizes

Karras et al. Training Generative Adversarial Networks with Limited
Data, NeurlPS 2020, https://papers.nips.cc/paper/2020/hash/
8d30aa96e72440759f74bd2306c1fa3d-Abstract.html

Takeaway for in-class
@ how to create measures to quantify overfitting

@ how to use data augmentation in GANs so that the GANs do
not start to reproduce the augmentations.

© how to tune augmentation probabilities based on overfitting
measures

© how one can apply transfer learning in GANs: to discriminator
and freezing lowest layers


https://papers.nips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html
https://papers.nips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html

Training GANs with smaller dataset sizes
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FID median/min/max (3 runs)
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(a) Convergence of FFHQ (256 x 256) (b) Discriminator outputs, 50k

t=OM IM M 6M BM I0M I2M 1
Training progress (reals shown to D)

(c) Discriminator outputs, 20k

M

Figure 1: (a) Convergence with different training set sizes. “140k”™ means that we amplified the 70k
dataset by 2 x through z-flips; we do not use data amplification in any other case. (b,c) Evolution of
discriminator outputs during training. Each vertical slice shows a histogram of D (), i.e., raw logits.

© GANs overfit

© overfitting can be measured by comparing discriminator scores on:
training data, generated data, withheld real images



Training GANs with smaller dataset sizes
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(b) Ours (c) Effect of augmentation probability p

© solution is to use data augmentation for generator and discriminator

examples: horizontal flip, rotations, color augmentation

©

© risk/problem is: the generator may learn to produce augmented
images.



Training GANs with smaller dataset sizes

FID
s

5{A B
S T TR T pom o o oW o PO T T TR} T
() Isotropic image scaling (b) Random 90° rotations () Color transformations

Figure 3: Leaking behavior of three example augmentations, shown as FID w.r.t. the probability of
executing the augmentation. Each dot represents a complete training run, and the blue Gaussian
mixture is a visualization aid. The top row shows generated example images from selected training
runs, indicated by uppercase letters in the plots.

© solution is to use data augmentation for generator and discriminator

© risk/problem is: the generator may learn to produce augmented
images.

© solution: allow to not execute each data augmentation with a
probability 1 — p € [0, 1]

@ if pis too large, then it starts to leak the augmentation into the
generator



Training GANs with smaller dataset sizes

o v
% %
20 = 20
N N =
Jo—e —we | — e
T Goom —— e " Geom —— Nae
— Coor — Cutom — Color — Cuow
Fo0 97 Wi w6 0% 10 pies 07 Wi s a5 1o yo0 42 04 06 5 1o -ow W S W W 3w v
(a) FFHQ-2k (b) FFHQ-10k (c) FFHQ-140k (d) Convergence, 10k, Geom

Figure 4: (a-c) Impact of p for different augmentation categories and dataset sizes. The dashed gray
line indicates baseline FID without augmentations. (d) Convergence curves for selected values of p
using geometric augmentations with 10k training images.

) solution is to use data augmentation for generator and discriminator

© risk/problem is: the generator may learn to produce augmented
images.

© solution: allow to not execute each data augmentation with a
probability 1 — p € [0, 1]

© observation: different augmentations are differently effective,
depends on: dataset size and p.



Training GANs with smaller dataset sizes
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Figure 4: (a-c) Impact of p for different augmentation categories and dataset sizes. The dashed gray
line indicates baseline FID without augmentations. (d) Convergence curves for selected values of p
using geometric augmentations with 10k training images.

solution is to use data augmentation for generator and discriminator

risk /problem is: the generator may learn to produce augmented
images.

solution: allow to not execute each data augmentation with a
probability 1 — p € [0, 1]

next problem: how to select the best p?



Training GANs with smaller dataset sizes

() solution is to use data augmentation for generator and discriminator

© risk/problem is: the generator may learn to produce augmented
images.

© solution: allow to not execute each data augmentation with a
probability 1 — p € [0, 1]

) next problem: how to select the best p?

© define two measures to measure the overfitting, D(x) € (—o0, +00)
as logits:
_ E[Dtrain] - E[Dval]
E[Dtrain] - E[Dgenerated]

rr = EXNTrainData[ Sign( Dtrain (X)) ]

rv

© 0 - no overfitting, 1 - bad overfitting



Training GANs with smaller dataset sizes

2 10k = S0k -2k 10k 50k = 140K — 3 10k — S0k — 140k 10k — S0k — L0k
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(a) roy target sweep (b) 7 target sweep  (c) Evolution of p over training (d) Evolution of 7,

Figure 5: Behavior of our adaptive augmentation strength heuristics in FFHQ. (a,b) FID for different
training set sizes as a function of the target value for r,, and ry. The dashed horizontal lines indicate
the best fixed augmentation probability p found using grid search, and the dashed vertical line marks
the target value we will use in subsequent tests. (c) Evolution of p over the course of training using
heuristic r,. (d) Evolution of 7 values over training. Dashes correspond to the fixed p values in (b).

© if one keeps r, or r; approximately constant by

initializing p =0
adjusting p every 4 epochs ...



Training GANs with smaller dataset sizes
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Figure 6: (a) Training curves for FFHQ with different training set sizes using adaptive augmentation.
(b) The supports of real and generated images continue to overlap. (¢) Example magnitudes of the
gradients the generator receives from the discriminator as the training progresses.

solution is to use data augmentation for generator and discriminator

allow to not execute each data augmentation with a probability
1-pel0,1]

Define two measures in [0, 1] to measure the overfitting:
ry = EXNTrainData[Sign(Dfl’ain(X))]

run an algorithm: initializing p = 0, adjusting p every 4 epochs to
keep r; =~ 0.6




Training GANs with smaller dataset sizes
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Figure 7: (a-c) FID as a function of training set size, reported as median/min/max over 3 training runs.
(d) Average of 10k random images generated using the networks trained with Sk subset of FFHQ.
ADA matches the average of real data, whereas the zy-translation augmentation in bCR
leaked to the generated images, significantly blurring the average image.

FFHQ (236 % 250) 2K 10k 140k Baseline
D T Hp)
Bascline 7880:231 3073:048  3.66+010 100 M 100
N 0] | 5649728 277027 378008

© i s
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TL6lioss 23022 348:019 0
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(a) Comparison methods (b) Discriminator capacity sweeps

Figure 8: (a) We report the mean and standard deviation for each comparison method, calculated over
3 training runs. (b) FID as a function of discriminator capacity, reported as median/min/max over
3 training runs. We scale the number of feature maps uniformly across all layers by a given factor
(x-axis). The baseline configuration (no scaling) is indicated by the dashed vertical line.

) solution is to use data augmentation for generator and discriminator

© run an algorithm: initializing p = 0, adjusting p every 4 epochs to
keep r; = 0.6



Training GANs with smaller dataset sizes
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Figure 9: Transfer leaming FFHQ starting from a pre-trained CELEBA-HQ model. both 256 x 256

(a) Training convergence for our baseline method and Freeze-D [26]. (b) The same confi gurations
with ADA. (c) FIDs as a function of dataset size. (d) Effect of source and target datasets.

the effect of transfer learning for the discriminator

freeze only the layers for the 3-4 highest resolutions, its a tunable
parameter



raining GANs with smaller dataset sizes

METFACES (new dataset) BRECAHAD  AFHQ CAT, DoG, WILD (512%) CIFAR-10
1336 img, 1024°, wansfer learning from FFHQ 1944 img, 5127 5153 img. 4739 img 4738 i 50k, 10 cls, 322

Figure 10: Example generated images for several datasets with limited amount of training data, trained
using ADA. We use transfer learning with METFACES and train other datasets from scratch. See
Appendix A for uncurated results and real images, and Appendix D for our training configurations.

© the effect of transfer learning for the discriminator

© freeze only the layers for the 3-4 highest resolutions, its a tunable
parameter



Outline

@ Inpainting to make GANs useful



Why inpainting?

What is required to know for GAN inpainting?
© what problem it solves
@ challenges for this setup
© not the model details



Why inpainting?

© create content subject to constraints

© can iteratively postprocess bad regions using
different-+specialized generators (e.g. for vegetation, building
facades, ears of humans, teeth, water waves)



Challenges in inpainting |

© local consistency of the inpainted patch

© solution: use a discriminator on the patch



Challenges in inpainting Il

© global consistency of the image as a whole

© solution: use a discriminator on the whole image



Challenges in inpainting Il

© informing the generators about local statistics of the image

© e.g. what textures / structures should appear in the white
patches?

© how to build a model that can provide such an information to
the generative part of it?



One example paper

https://arxiv.org/abs/1801.07892 Yu et al. CVPR 2018

3 oo [ e

ST
Raw  Input and Mask Coarse Result
Coarse Network Refinement Network

Figure 2: Overview of our improved generative inpainting framework. The coarse network is trained with reconstruction loss
explicitly, while the refinement network is trained with reconstruction loss, global and local WGAN-GP adversarial loss.

Two stage architecture
© stage 1: direct, coarse reconstruction

© stage 2: apply reconstruction loss and two discriminators


https://arxiv.org/abs/1801.07892

One example paper — first, coarse reconstruction stage

Dilated Conv.

__:HHHDDDDDDDDDHHH

. Raw Input and Mask
Coarse Netwark

© stage 1 takes an image x as input, adds white patches x — h(w) in
random positions as input and reconstructs the image x based on
h(x) as f(h(x)) using the model 7(-)

© Training loss: weighted pixel-wise reconstruction loss
L(x, £(x)) = [I(f(h(x)) = x) ©v(h(x))1

The weight y(h(x)) is 1 on pixels without white patches, and on white

patches it decreases to zero as a function of the distance to the nearest
non-masked pixel:

v(h(x)) = ', I = pixel distance to nearest non-masked pixel



One example paper — first, coarse reconstruction stage

Dilated Conv.

HHHDDDDDDDDDHHH

Raw Input and Mask
Coarse Network

© stage 1 takes an image x as input, adds white patches x — h(w) in
random positions as input and reconstructs the image x based on
h(x) as f(h(x)) using the model 7(-)

© Training loss: weighted pixel-wise reconstruction loss

L(x, £(x)) = [I(F(h(x)) = x) © v(h(x))llx
v(h(x)) = ', I = pixel distance to nearest non-masked pixel
© Idea: less weight on reconstruction quality for the coarse first stage

for pixels far away from a non-masked pixel. Enforce a more truthful
reconstruction on unmasked pixels and close to them.



example paper — first, coarse reconstruction stage

Inpainting network Inpainting network has two
p encoder-decoder architecture stacked together, with each
HHDDDDDDDDDHH H[ der-decoder of network i

] Dilated Conv. K5S1C32 - K3S2C64 - K3S1C64 - K3S2CI28 -
K3S1C128 - K3S1C128 - K3D2S1C128 - K3D4SIC128 -

Raw  Inputand Mask Coarse Result K3D8SIC128 - K3D16S1C128 - K3SIC128 - K3S1C128 -
Coarse Network resize (2x) - K3S1C64 - K3S1C64 - resize (2x) - K3S1C32

- K3S1C16 - K3S1C3 - clip.

Prediction model:

©
©

takes an image with random white patches, outputs an image

start: 5 standard convolution layers, 2 with stride 2. Result: feature
map compressed to 1/4.

Creates a bottleneck: lower resolution, higher no. feature channels.
then 4 dilated convolution layers.

then (conv-conv-upsample 2x ) — repeated two times. to obtain the
original image size back.

then 3x convolutions, last with output with 3 channels



One example paper — dilated convolution

Dilated convolutions?
https://github.com /vdumoulin/conv_arithmetic

©

©

dilation factor 1: take every pixel from input feature map (the
usuall)

dilation factor 2: take every second pixel from input feature
map
dilation factor n: take every n — th pixel from input feature
map

allows to process larger fields of view — good for reconstruction
tasks to obtain a multiscale global view of the information in
the image


https://github.com/vdumoulin/conv_arithmetic

One example paper — second, fine reconstruction stage |77

Dilated Conv.

HHDDDMQQDQQDHHH&HHHDDDDDDDDDHH i

Ra Input and Mask Coarse Result

Coarse Network Refinement Network

Figure 2: Overview of our improved generative inpainting framework. The coarse network s trained with reconstruction loss
explicitly, while the refinement network is trained with reconstruction loss, global and local WGAN-GP adversarial loss.

Training loss: three losses summed

© loss 1: weighted pixel-wise reconstruction loss
1(F(h(x)) = x) ©v(h(x))ll1

© loss 2: discriminator on patch. WGAN-GP :)

© loss 3: discriminator on the whole image. WGAN-GP



One example paper — second, fine reconstruction stage |7s

wie e

Raw  Inputand Mask Coarse Result
Goarse Network Refnemant Ne work

Figure 2 Oveniw of urmprovd gnertiv npining ramewock. Thecorse etwork s rined it reconsirctonos
explicitly, while the ki loss. global and local WGAN-GP adversarial loss.

Finer stage prediction model:

() two streams, concatenated before final
3 convolutions down to three channels,
which are same final convolutions as in

stage 1 model. o .
[oopmos- [y
& stream 1: 5 convolutions, dilations, iy fenters Gﬁﬂﬂﬂﬂ
(conv-conv-upsample) twice repeated e T
as in stage 1 model. Without stream 2
it would be the same model again. Henentie o o

() stream 2: informs about patch
statistics from non-masked regions,
explained next!



One example paper — second, fine reconstruction stage |79

oosin Stream 2: contextual attention. idea:
N HHHDDEEE‘D e compute how good a patch from
Mk cﬁ.DDHH P coarsely reconstructed image matches
ook HHDDDDEE@ODM s any of the background patches from the
non-masked regions of this image.

Attertion Map Calor Coding

© if we had a background patch of spatial size 3 x 3 in some feature
space f, from the non-masked regions of this image, and a patch f,
from the coarsely reconstructed image, then we could compute the

cosine angle as similarity measure

fb'fv
s(fo, f,) = 2 v
S T

@ if we had N background patches, we could compute a softmax of
similarities over all those N patches fb(') from non-masked regions:

p(fb(l), fb(z), cel, fb(N)|fv) = softmax (s(fb(l), f),... ,s(fb(N), fv)>



One example paper — second, fine reconstruction stage |so

P . Stream 2: contextual attention. idea: compute
{[ﬂ]ngmp o how good a patch from coarsely reconstructed

I = , _
gﬁ: {[ﬂmmu o HHH%{; image matches any of the background patches

from the non-masked regions of this image.

Atention Map Coor Coding

@ if we had N background patches, we could compute a softmax of
similarities over all those N patches fb(') from non-masked regions:

_ fb . fv
A

p(fb(l), fb(z), cel, fb(N)|fv) = softmax (s(fb(l), f),... ,s(fb(N), fv)>

s(fba fv)

© This tells a probability of similarities of background patches
(non-masked regions) to f,

© how to implement that efficiently?



One example paper — second, fine reconstruction stage |s1

Stream 2: contextual attention. idea: compute
how good a patch from coarsely reconstructed
oL image matches any of the background patches
u from the non-masked regions of this image.

g:

Coarse Result

© if we had N background patches, we c_ould compute a softmax of
similarities over all those N patches fb(') from non-masked regions:

p(FD £ M) = softmax (s(fb‘”, £, ... s(FM, fv)>

© This tells a probability of similarities of bg patches to f,. How to
implement that efficiently?

© extract N background patches of spatial size 3 x 3 in some feature
space with ¢ channels (after 5 initial convolutions). result: a feature
map of shape (n, ¢, 3,3). Make them kernels in a convolution with n
output channels



One example paper — second, fine reconstruction stage |s2

Stream 2: contextual attention. idea: compute how
good a patch from coarsely reconstructed image
matches any of the background patches from the
non-masked regions of this image.

@ if we had N background patches, we could compute a softmax of
similarities over all those N patches fb(') from non-masked regions:

p(fb(l)7 17(2)’ el fb(N)|fv) = softmax (s(fb(l), ). .. ,s(fb(N), fv)>

© How to implement that efficiently?

 extract N background patches of spatial size 3 x 3 in some feature
space with ¢ channels (after 5 initial convolutions). Result: a feature
map of shape (n, c,3,3). Make them kernels in a convolution with n
output channels

@ run this convolution over the whole feature map to get inner product
scores (fb(l) N PR fb(N) - f,,) for the whole image



One example paper — second, fine reconstruction stage |s3

Stream 2: contextual attention. idea: compute how
good a patch from coarsely reconstructed image
matches any of the background patches from the
non-masked regions of this image.

Atenion Map Coor Codng

) extract N background patches of spatial size 3 x 3 in some feature
space with ¢ channels (after 5 initial convolutions). Result: a feature
map of shape (n, ¢, 3,3). Make them kernels in a convolution with n
output channels

© run this convolution over the whole feature map to get inner product
scores (fb(l) o PR fb(N) - f,) for the whole image

© computations: (N, c,3,3)*(1,c, h,w) — (1, N, h,w) (...padding).
N channels. At position (h', w’) of the feature map (1, N, h, w) it
tells N similarities to the N background patches - each in its own
channel i € {1,..., N}.



One example paper — second, fine reconstruction stage |ss

. Stream 2: contextual attention. idea: compute how
Hn[*m&u e good a patch from coarsely reconstructed image
o= = il
B | ooopmne ™ G matches any of the background patches from the
non-masked regions of this image.

Atenion Map Coo Codng

@ if we had N background patches, we could compute a softmax of
similarities over all those N patches fb(') from non-masked regions:

p(FD £ W)y = softmax (s(fb‘l’, £, s(EV, fv)>

extract N background patches of spatial size 3 x 3 in some feature
space with ¢ channels (after 5 initial convolutions). Result: a feature
map of shape (n, ¢, 3,3). Make them kernels in a convolution with n
output channels

©

O]

run this convolution over the whole feature map to get inner product
scores (fb(l) N PR fb(N) - f,) for the whole image

© normalize feature maps, apply channel-wise softmax to get
p(F1£,),i € {1,..., N}



One example paper — second, fine reconstruction stage |ss

vz Stream 2: contextual attention. idea:

HHHDDEEE‘D e compute how good a patch from
ansnione |- (1] { coarsely reconstructed image matches
crmrenn | [J00CHEEE i s any of the background patches from the

non-masked regions of this image.

Attention Map Color Coding

© now we have the softmax scores p(fl,(i)|fv) for every position in the
image

 smoothen the scores by sum pooling over neighboring pixels
("attention propagation’)

© use them as input for a fractionally strided convolution layer
(deconvolutional filters in the paper). The weights of the fractionally
strided convolution layer are fixed to be the extracted background

patches fb(l), fb(2), e fb(N)

©  What 7 This computes then in the resulting output feature map a
weighted copy of the kernels!



the generator: fractionally strided convolutions

For multiple input channels the working principle is analogous.

fractionally strided
conv, multiple channels

element-wise product of window
and the kernel, summed over ch

— 12
i< o|5
213 iy 3
212 oty add
715
86 sum into
5|7 output
ol feature
alo eature
E— map

stride 1 = move kenel by 1 element

3

12 2] — [10-2+6
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< o — o
18 murenly add
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One example paper — second, fine reconstruction stage |s7

vz Stream 2: contextual attention. idea:
- UHHDDEEE‘D P compute how good a patch from
e o] coarsely reconstructed image matches
cunorens 1 [J000DBEE. e any of the background patches from the

non-masked regions of this image.

Attention Map Golor Coding

© now we have the softmax scores p(f,J(i)|fv) for every position in the
image

© use them as input for a fractionally strided convolution layer. The
weights of the fractionally strided convolution layer are fixed to be
the extracted background patches fb(l), fb(z), ey fb(N)

This computes then in the resulting output feature map a weighted
copy of the kernels!

 example on how to use neural network toolbox layers to achieve a
similarity measuring task within a network.



Gan inpainting further ideas

How to include an object type GAN ?

©
©

as third stream in the second stage

use a feature map over the coarse result to input local image
statistics into the GAN generator code z.

in principle a user could select from which region to sample
background patches to inform the inpainter. Does not need to
be fixed!

fusing GANs with neural style transfer can be useful in GAN
inpainting beyond pure artistic creation goals.



Gan inpainting further ideas

Points taken here from:

©
©
©

local critic (masked patch level)
global critic

how to obtain local statistics and use them to inform a
generative process

how to do that with neural network layers (convolution,
fractionally strided convolution)

think how to put a user in the loop at testing time (beyond
PhD research)



Questions?!
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