
Generative Adversarial Networks (GAN), part1

Alexander Binder

University of Oslo (UiO)

May 5, 2021



Learning goals

� today: none!

� this is not exam stuff, but outlook stuff



Where do we start ? | 3

GAN inpainting from the last lecture



Superresolution | 4

Problem: given a low-res image y , learn to interpolate higher
resolution variant x

from https://arxiv.org/abs/1707.02921

Simple idea:
� take high res images x , apply some blur operator k: y = k(x),
� then train a segmentation-type network on pairs or HR/LR: (x , y)
� runs into an ugly problem. Guess?

https://arxiv.org/abs/1707.02921


Superresolution | 5

Problem: given a low-res image y , learn to interpolate higher resolution variant
x

Simple idea:
� take high res images x , apply some blur operator k: y = k(x),
� then train a segmentation/GAN-type network on pairs (x , y)
� runs into an ugly problem. Guess?
� training will overfit to the blur kernel k and not generalize to

real images, where the LR image is created with a different
kernel than your k used to generate training data.

� next idea?



Superresolution | 6

Problem: given a low-res image y , learn to interpolate higher resolution
variant x

next idea:

� try to solve optimization problem to learn the blur kernel involved in
creating the LR image x and the LR image

x , k = argmink,x‖y − (x ⊗ k) ↓s ‖+ φ(x)

where ↓s is a standard bilinear downsampling operation with stride s

� can do a 2 step decomposition:

k = M(x) estimate kernel first
x = argminx‖y − (x ⊗ k) ↓s ‖+ φ(x)



Superresolution | 7

Problem: given a low-res image y , learn to interpolate higher resolution
variant x

next idea:
� try to solve optimization problem to learn the blur kernel involved in

creating the LR image x and the LR image

x , k = argmink,x‖y − (x ⊗ k) ↓s ‖+ φ(x)

� can do a 2 step decomposition:

K = M(x , ŷ)
x = argminx‖y − (x ⊗ k) ↓s ‖+ φ(x)

where ŷ is an intermediate HR image estimate
� can iterate this:

ki+1 = argmink‖y − (xi ⊗ k) ↓s ‖+ φ(xi )
xi+1 = argminx‖y − (x ⊗ ki+1) ↓s ‖+ φ(x)



... | 8

A well performing not too complicated architecture:

https://arxiv.org/abs/2010.02631
� interpolates invisible information, invents structures

https://arxiv.org/abs/2010.02631


... | 9

� ...



... | 10

Neural networks to interpolate new views from scenes.

The original paper:
https://arxiv.org/abs/2003.08934

improvements:

10x faster, better
https://arxiv.org/abs/2007.11571

speed vs quality tradeoff, FPS � 1:
https://arxiv.org/abs/2103.10380

https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2007.11571
https://arxiv.org/abs/2103.10380


... | 11

What is the problem?

Given many views of a scene from different angles,

interpolate a view from a new viewing angle, possibly at a high
resolution:



... | 12

What is an image ?
� colors received on sensor elements as an average of many

incoming rays

sensor 

cells

pinhole camera

wall with colors

� idealized model: color is received by a single ray.

sensor 

cells

pinhole camera

wall with colors

� Question: How can we model the color arriving on a single
ray? Literature on Ray-Casting/Ray-Tracing.



... | 13

sensor 

cells

pinhole camera

wall with colors

model ray as: r(t) = o + td where o is origin of the ray (camera sensor
position) and d is the direction vector of a ray.

Then one common model for simplified modeling of color arriving on a ray:

C(r(t)) =
∫

r(t)∈ray
“probability that ray reaches until” r(t) ∗ color(r(t), d)...

∗“density of material at” r(t)dt

=
∫

T (t)c(r(t), d)σ(r(t))dt

idea:
� T (t) – probability that ray reaches until r(t) (no blocking surface/particle

between sensor position o and r(t) )



... | 14

sensor 

cells

pinhole camera

wall with colors

model ray as: r(t) = o + td where o is origin of the ray (camera sensor
position) and d is the direction vector of a ray.

Then one common model for simplified modeling of color arriving on a ray:

C(r(t)) =
∫

T (t)c(r(t), d)σ(r(t))dt

idea:
� T (t) – probability that ray reaches until r(t) (no blocking surface/particle

between sensor position o and r(t) )
� c(r(t), d) what color is emitted at location r(t) in direction ±d



... | 15

� c(r(t),d) what color is emitted at location r(t) in direction ±d

The history of physical valuables is a history of non-lambertian
materials



... | 16

sensor 

cells

pinhole camera

wall with colors

model ray as: r(t) = o + td where o is origin of the ray (camera sensor
position) and d is the direction vector of a ray.

Then one common model for simplified modeling of color arriving on a ray:

C(ray) =
∫

T (t)c(r(t), d)σ(r(t))dt

idea:
� T (t) – probability that ray reaches until r(t) (no blocking surface/particle

between sensor position o and r(t) )
� c(r(t), d) what color is emitted at location r(t) in direction ±d
� σ(r(t)) material density



... | 17

sensor 

cells

pinhole camera

wall with colors

model ray as: r(t) = o + td
Then one common model for simplified modeling of color arriving on a ray:

C(ray) =
∫

T (t)c(r(t), d)σ(r(t))dt

� σ(r(t)) material density

– proportional to the difference in probability that ray will be
stopped in a small interval [t1, t2] passing from r(t) to r(t + δt)

� model assumption:
dT (t) = T (t) ∗ (−σ(r(t)))

⇒ T (t) = exp(−
∫ t

t0

σ(r(t))dt)

� higher density σ, lower probability that ray goes through



... | 18

sensor 

cells

pinhole camera

wall with colors

C(ray) =
∫

T (t)c(r(t),d)σ(r(t))dt

How to learn something in it ??

1. Approximate integral by sum over points on the ray. The points will be
sampled according to some distribution.

C(ray) ≈
∑

i
Tici (1− exp(−σiδi ))

Ti = exp(
i−1∑
k=1
−σkδk)

2. This is a differentiable function of σi , ci .



... | 19

1. Approximate integral by sum over points on the ray. The points will be
sampled according to some distribution.

C(ray) ≈
∑

i
Tici (1− exp(−σiδi ))

Ti = exp(
i−1∑
k=1
−σkδk)

3. Train a neural network to predict c(r,d), σ(r) at every point r and
every direction d

in practice: train a neural network to predict c(r,d), σ(r) on 5-d input
r = u(x,d) (position, viewing direction )



... | 20

What loss ?

L =
∑
r∈R
‖Ĉc(r)− C(r)‖22 + ‖Ĉf (r)− C(r)‖22

where Ĉc is from a coarse prediction network and Ĉf is from a fine
prediction network

What models - coarse and fine ?



... | 21

C(ray) ≈
∑

i

Tici (1− exp(−σiδi ))

Ti = exp(
i−1∑
k=1

−σkδk )

What models - coarse and fine ?
� 8 Layer MLP (= fully connected layers): 5d input, output is 3+1 dims

� output Ĉf (r) of the coarse network is used to sample points for the fine
network. How ?

Ĉf (r) =
∑

i

Tici (1− exp(−σiδi )) =:
∑

i

ciwi

Normalize all weights wi for a given ray. This gives a piece-wise constant
distribution of intervals along the ray. Then use the normalized weights ŵi
to sample points rk along the same ray for the fine network



... | 22

They use some important tricks
� position encoding using a set of sine-cosine waves with

increasing frequencies.

γ(p) =
(

sin(20πp), cos(20πp), sin(21πp), cos(21πp),

. . . , sin(2L−1πp), cos(2L−1πp)
)

represent a point by its value over a set of waves. Authors:
higher dim representation, allows better to represent higher
frequency functions as it is an explicit mapping of the position
in a set of frequencies

� the positional encoding is similar to the one in transformers!
� sampling of points along rays: not uniform, but randomly from

intervals
Fig4 in the paper ...



... | 23

� big idea: model color along a ray as a differentiable function.
train some internal function to it.

� trained with images of one single scene
� quality and eff res bounded by number of images (see paper

Table 2 for an ablation study)
� allows to sample at any resolution, at any view
� is an interpolation method (as machine learning always

does!!). Thus it invents content, but statistics learned from
one single scene.



... | 24

� disadvantage: very slow (18 hours per scene to train?)
� papers which speed it up:

10x faster, better
https://arxiv.org/abs/2007.11571
speed vs quality tradeoff, FPS � 1:
https://arxiv.org/abs/2103.10380

https://arxiv.org/abs/2007.11571
https://arxiv.org/abs/2103.10380


... | 25

https://arxiv.org/abs/2007.11571

� space can be subdivided regularly into cubes (voxels)

� given an initial density estimate σ(·) over a set of cubes
� continue to estimate only on those subset of cubes with

sufficiently large density σ(·)
� split cubes and refine further
� focus sampling only on spaces

https://arxiv.org/abs/2007.11571


... | 26

https://arxiv.org/abs/2007.11571

� see Fig 2 in the paper for the quick idea: do a hierarchical
voxel tree to cover the non-empty space with voxels. Have one
neural net per voxel, but with shared parameters across all
voxels. – see also sec A.2

� why voxels ? 1. can be used efficiently in hierarchical tree
structures. 2. intersection of rays to voxels in such hierarchical
trees can be computed fast.

� prediction network a single MLP: Fig 9.

https://arxiv.org/abs/2007.11571


... | 27

comes with some new tricks

� making the voxels smaller: from time to time divide one voxel into 8,
then prune those voxels of the 8 smaller ones with too low density σ
over sampled points within

prune vertex if min
s∼vertex

(0, 1] 3 exp(−σ(g(s))) > γ

⇔ σ(g(s)) < exp(−γ)

� use a more complex representation g(p) of a point p along a ray:
take the feature vectors of the 8 vertices of a voxel g̃(p1), . . . , g̃(p8),
get g̃(p) as trilinear interpolation of their values:
χ(g̃(p1), . . . , g̃(p8)), then apply positional encoding on top of that.

� the feature vectors of the 8 vertices is a generic 32-dim embedding
of the position.



... | 28

Where to extend this to ?
� other input modalities, eg. depth-only data or RGB-D
� deformations for shape editing while adapting existing texture

to fit the edited shape https://arxiv.org/abs/2011.13650
� put the human in the loop partially to save time in the end

https://arxiv.org/abs/2011.13650


... | 29

Many other settings. Example:
� got a large number of classes (e.g. 1000), but each class has

maybe only 20 labeled samples? Example: tagged data ...
consider few-shot learning.
· train a relative prediction: query sample is most similar to

which of the support sample sets?
· train a model which randomly drawn sets of classes
· learn a discriminative, class-agnostic similarity instead of a

fixed-classes classifier
· For a conceptually easy paper see

https://arxiv.org/abs/1703.05175
� semi-supervised learning: make use of unlabeled data together

with labeled data
� be distrustive of results demonstrated on

MNIST/Fashion-MNIST/CIFAR-10 and other low-res,low
variation datasets.

https://arxiv.org/abs/1703.05175


... | 30

Questions?!


