Generative Adversarial Networks (GAN), partl

Alexander Binder
University of Oslo (UiO)
May 5, 2021

UiO ¢ Department of Informatics
University of Oslo

Learning goals

today: none!

© this is not exam stuff, but outlook stuff

Where do we start 7

GAN inpainting from the last lecture

Superresolution

Problem: given a low-res image y, learn to interpolate higher
resolution variant x

SRCNN []
(PSNR fssJM; (22 asds /0 8025) (23. m dB m 8251) (23.14dB /0.3280)

EEEE

0869 from DIV2K [20] 1 SRResNet [14] EDSR+ (Ours) MDSR+ (Ours)
J] lédB foxaﬁs (23.71dB/0.8485) (2389dB/0.8563) (23.90 dB /0.8558)

\

k

from https://arxiv.org/abs/1707.02921

Simple idea:
(take high res images x, apply some blur operator k: y = k(x),
 then train a segmentation-type network on pairs or HR/LR: (x, y)

¢ runs into an ugly problem. Guess?

https://arxiv.org/abs/1707.02921

Superresolution

Problem: given a low-res image y, learn to interpolate higher resolution variant

X

Simple idea:

©

©
©
©

take high res images x, apply some blur operator k: y = k(x),
then train a segmentation/GAN-type network on pairs (x, y)
runs into an ugly problem. Guess?

training will overfit to the blur kernel k and not generalize to
real images, where the LR image is created with a different
kernel than your k used to generate training data.

next idea?

Superresolution

Problem: given a low-res image y, learn to interpolate higher resolution
variant x

next idea:

O]

try to solve optimization problem to learn the blur kernel involved in
creating the LR image x and the LR image

x, k = argmin, [ly — (x ® k) s || + ¢(x)

where | is a standard bilinear downsampling operation with stride s

can do a 2 step decomposition:

k = M(x) estimate kernel first
x = argmin, [y — (x @ k) Is || + ¢(x)

Superresolution

Problem: given a low-res image y, learn to interpolate higher resolution
variant x

next idea:

O]

try to solve optimization problem to learn the blur kernel involved in
creating the LR image x and the LR image

x, k = argmin, . [ly — (x @ k) {5 || + &(x)
can do a 2 step decomposition:
K =M(x,7)
x = argmin, |y — (x ® k) s || + ¢(x)
where y is an intermediate HR image estimate

can iterate this:

ki+1 = argmink”y — (Xi (9 k) xl/s || + d)(xi)
Xip1 = argmin, ||y — (x ® kiz1) s || + &(x)

A well performing not too complicated architecture:

https://arxiv.org/abs/2010.02631

© interpolates invisible information, invents structures

https://arxiv.org/abs/2010.02631

Neural networks to interpolate new views from scenes.

The original paper:
https://arxiv.org/abs/2003.08934

improvements:

10x faster, better
https://arxiv.org/abs/2007.11571

speed vs quality tradeoff, FPS > 1:
https://arxiv.org/abs/2103.10380

https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2007.11571
https://arxiv.org/abs/2103.10380

What is the problem?

Given many views of a scene from different angles,

Input Images Optimize NeRF
- A —‘-ra -] ,t: *'1 é" ﬁl :.'i' %

interpolate a view from a new viewing angle, possibly at a high
resolution:

Render new views

What is an image ?

© colors received on sensor elements as an average of many

incoming rays

pinhole camera

I sensor
cells

wall with folors

idealized model: color is received by a single ray.

pinhole camera

I sensor
cells

wall with

Question: How can we model the color arriving on a single
ray? Literature on Ray-Casting/Ray-Tracing.

pinhole camera

| sensor
cells

wall with

model ray as: r(t) = o + td where o is origin of the ray (camera sensor
position) and d is the direction vector of a ray.

Then one common model for simplified modeling of color arriving on a ray:
C(r(t)) = / “probability that ray reaches until” r(t) * color(r(t),d)...
r(t)ra
e x"density of material at” r(t)dt
:/T(t)c(r(t),d)a(r(t))dt

idea:

() T(t) — probability that ray reaches until r(t) (no blocking surface/particle
between sensor position o and r(t))

model ray as: r(t) = o + td where o is origin of the ray (camera sensor
position) and d is the direction vector of a ray.

Then one common model for simplified modeling of color arriving on a ray:

C(r(t))Z/T(t)C(r(t)»d)a(r(t))dt

idea:

(& T(t) — probability that ray reaches until r(t) (no blocking surface/particle
between sensor position o and r(t))

© c(r(t),d) what color is emitted at location r(t) in direction +d

© ¢(r(t),d) what color is emitted at location r(t) in direction +d

The history of physical valuables is a history of non-lambertian
materials

model ray as: r(t) = o + td where o is origin of the ray (camera sensor
position) and d is the direction vector of a ray.

Then one common model for simplified modeling of color arriving on a ray:
Clray) = [T()ele(®),a)or(e)e

idea:
(T(t) — probability that ray reaches until r(t) (no blocking surface/particle
between sensor position o and r(t))
© c(r(t),d) what color is emitted at location r(t) in direction +d

© o(r(t)) material density

model ray as: r(t) = o+ td
Then one common model for simplified modeling of color arriving on a ray:

C(ray)z/T(t)c(r(t),d)a(r(t))dt

© o(r(t)) material density

— proportional to the difference in probability that ray will be
stopped in a small interval [t1, t] passing from r(t) to r(t + dt)

) model assumption:
dT(t) = T(t) * (—o(r(t)))
= T(t) = exp(—/ o(r(t))dt)

@ higher density o, lower probability that ray goes through

C(ray) = / T(t)c(r(t),d)o(r(t))dt
How to learn something in it 77

1. Approximate integral by sum over points on the ray. The points will be
sampled according to some distribution.

C(ray) = Z Tici(1 — exp(—0id;))

i—1

Ti = exp()_ —owdi)

k=1

2. This is a differentiable function of o}, c;.

1. Approximate integral by sum over points on the ray. The points will be
sampled according to some distribution.

C(ray) = Z Tici(1 — exp(—0id;))

i—1

Ti= eXP(Z —0k0k)

k=1

3. Train a neural network to predict ¢(r,d), o(r) at every point r and
every direction d

in practice: train a neural network to predict c(r,d),o(r) on 5-d input
r = u(x,d) (position, viewing direction)

What loss ?

L= [C(r) = C(IB+I1Cr(r) — C0)I3

reR

where EC is from a coarse prediction network and Z'f is from a fine
prediction network

What models - coarse and fine ?

C(ray) ~ Z Tici(1 — exp(—0idi))

i—1

T = exp(z —0k0k)

k=1
What models - coarse and fine ?
8 Layer MLP (= fully connected layers): 5d input, output is 3+1 dims

() output ar(r) of the coarse network is used to sample points for the fine
network. How ?

Ef(r) = Z Tici(1 — exp(—0idi)) =: Zc,-w,-

Normalize all weights w; for a given ray. This gives a piece-wise constant
distribution of intervals along the ray. Then use the normalized weights W;
to sample points ry along the same ray for the fine network

They use some important tricks

© position encoding using a set of sine-cosine waves with
increasing frequencies.

v(p) = (sin(2%7p), cos(2%7p), sin(217p), cos(2 7p),

...,sin(2F 17p), cos(2L_17rp))

represent a point by its value over a set of waves. Authors:
higher dim representation, allows better to represent higher
frequency functions as it is an explicit mapping of the position
in a set of frequencies

@ the positional encoding is similar to the one in transformers!

© sampling of points along rays: not uniform, but randomly from
intervals

Figd in the paper ...

big idea: model color along a ray as a differentiable function.
train some internal function to it.

trained with images of one single scene

quality and eff res bounded by number of images (see paper
Table 2 for an ablation study)

allows to sample at any resolution, at any view

is an interpolation method (as machine learning always
does!!). Thus it invents content, but statistics learned from
one single scene.

© disadvantage: very slow (18 hours per scene to train?)
© papers which speed it up:
10x faster, better
https://arxiv.org/abs/2007.11571
speed vs quality tradeoff, FPS > 1:
https://arxiv.org/abs/2103.10380

https://arxiv.org/abs/2007.11571
https://arxiv.org/abs/2103.10380

https://arxiv.org/abs/2007.11571

©

space can be subdivided regularly into cubes (voxels)
2

given an initial density estimate o(-) over a set of cubes

continue to estimate only on those subset of cubes with
sufficiently large density o(-)

split cubes and refine further

focus sampling only on spaces

https://arxiv.org/abs/2007.11571

https://arxiv.org/abs/2007.11571

© see Fig 2 in the paper for the quick idea: do a hierarchical
voxel tree to cover the non-empty space with voxels. Have one
neural net per voxel, but with shared parameters across all
voxels. — see also sec A.2

@ why voxels 7 1. can be used efficiently in hierarchical tree
structures. 2. intersection of rays to voxels in such hierarchical
trees can be computed fast.

© prediction network a single MLP: Fig 9.

https://arxiv.org/abs/2007.11571

comes with some new tricks

©

©

making the voxels smaller: from time to time divide one voxel into 8,
then prune those voxels of the 8 smaller ones with too low density o
over sampled points within

prune vertex if min (0,1] 3 exp(—o(g(s))) > v

s~vertex

& o(g(s)) < exp(—7)

use a more complex representation g(p) of a point p along a ray:
take the feature vectors of the 8 vertices of a voxel g(p1),...,&(ps).
get g(p) as trilinear interpolation of their values:
x(g(p1),-..,8(ps)), then apply positional encoding on top of that.

the feature vectors of the 8 vertices is a generic 32-dim embedding
of the position.

Where to extend this to ?

©
©

other input modalities, eg. depth-only data or RGB-D

deformations for shape editing while adapting existing texture
to fit the edited shape https://arxiv.org/abs/2011.13650

put the human in the loop partially to save time in the end

https://arxiv.org/abs/2011.13650

Many other settings. Example:

© got a large number of classes (e.g. 1000), but each class has
maybe only 20 labeled samples? Example: tagged data ...
consider few-shot learning.

train a relative prediction: query sample is most similar to
which of the support sample sets?

train a model which randomly drawn sets of classes

learn a discriminative, class-agnostic similarity instead of a
fixed-classes classifier

For a conceptually easy paper see
https://arxiv.org/abs/1703.05175

© semi-supervised learning: make use of unlabeled data together
with labeled data
© be distrustive of results demonstrated on

MNIST /Fashion-MNIST /CIFAR-10 and other low-res,low
variation datasets.

https://arxiv.org/abs/1703.05175

Questions?!

