
Adversarial attacks

Alexander Binder

University of Oslo (UiO)

March 24, 2021

Learning goals

� be able to explain how to use gradients for targeted and
untargeted attacks

� be able to explain why adversarial attacks can be created

� be able to categorise adversarial attacks

� be able to explain the principles behind black box attacks

� be able to summarise the working principles of attack types
shown in this lecture

� be able to explain two basic directions of defenses

... | 3

� ...

Outline | 4

1 Simple creation of adversarial samples

2 Why can we run these attacks at all??

3 A basic taxonomy of attacks

4 gradient and gradient sign attacks against white boxes

5 Attacks against black boxes

6 Outline of defenses

How a targeted attack can look like | 5

Goal: take an image, and create an image that looks very similar but has
a totally nonsense prediction for it!

� inputs: a pretrained neural network for multi-class classification f (·),
an input image x ,

� input image has prediction for a class c0 = argmaxc fc(x).

� goal: create a very similar image z ≈ x such that we predict a
specific other class a.
We want to have for a target class a 6= c0: a = argmaxc fc(z)
(different from the neural network prediction for x)

How a targeted attack can look like | 6

� for step t = 0 initialize z0 := x

� iterate in a while loop until a = argmaxc fc(zt) – target class a
has highest score:
· compute gradient of f for the target class a with respect to the

input data: ∇(zt)fa(zt)
· gradient ascent: apply it with a small stepsize η to the input

zt+1 = zt + η∇(zt)fa(zt)

· best practice: fa(·) not softmax. Use the logits from the last
linear layer before the softmax. Why?

� find a step size η small enough that differences are barely visible.

� plot the difference of the original image as loaded versus the
modified image, compute the mean absolute difference

This is a special form of attack: targeted towards a class, a whitebox one
– means you have access to the classifier internals

... | 7

Suppose you have an image x which is classified into class a and
you want it to be misclassified. fc(·) is the prediction for class c

Goal is to create an image z ≈ x such that:

a =argmaxc fc(x) is the orig pred.
fa(z) < max

c 6=a
fc(z)

‖x − z‖ < ε

where fc(·) can be either a softmax layer or the logits from the last
layer before it.

Similar idea: compute the gradient and (1st variant) perform
� gradient descent on fa: zt+1 = zt − η∇(zt)fa(zt)
� until misclassification: fa(z) < maxc 6=a fc(z)

... | 8

Suppose you have an image x which is classified into class a and
you want it to be misclassified:

fa(z) < max
c 6=a

fc(z)

‖x − z‖ < ε

where a =argmaxc fc(x)

Compute the gradient, perform either
� gradient descent on fa:

zt+1 = zt − η∇fa(zt)

� or a step in a direction with minimizes the score for fa and
maximizes the score for another class c 6= a for example:

gt = argmaxc 6=a∇fc(zt)
zt+1 = zt − η ???

... | 9

Suppose you have an image x which is classified into class a and
you want it to be misclassified.

Compute the gradient, perform either
� gradient descent on fa:

zt+1 = zt − η∇fa(zt)

� or a step in a direction with minimizes the score for fa and
maximizes the score for another class c 6= a for example:

gt = argmaxc 6=a∇fc(zt)
zt+1 = zt − η(∇fa(zt)−∇fgt (zt))

� Anotther form of attack: untargeted, a whitebox one.

Outline | 10

1 Simple creation of adversarial samples

2 Why can we run these attacks at all??

3 A basic taxonomy of attacks

4 gradient and gradient sign attacks against white boxes

5 Attacks against black boxes

6 Outline of defenses

... | 11

The decision boundaries as in the typical ML class is shown in
above graphic.

This naive view of
� smooth boundaries,
� with spaces densely occupied in by

training data between
is wrong. Boundaries in deep learning
problems are different!

The most important wrong assumption:
the whole space was densely filled with
training examples during training.

The reality of decision boundaries | 12

The reality: see Fig3 in: https://arxiv.org/pdf/1802.08760.pdf as
example. In many regions heavily fragmented decision regions

https://arxiv.org/pdf/1802.08760.pdf

The reality of decision boundaries | 13

but why?

data distribution in high dimensional spaces | 14

We take images, and process them in a neural network. Layer by layer
activations get computed. If a layer has K neurons, then the space of all
possible activation vectors is a K -dimensional vector space:

data distribution in high dimensional spaces | 15

� neural networks map inputs into a high dimensional space. A large
fraction of the training data is mapped around a low-dimensional
manifold of the feature space – because similar images should end
up close to each other

� Outside of the zone of high training data density - the decision
boundaries (blueish colors in the fig below) are poorly defined. There
is hardly any data around to define them!

x

x

xx

x

x

o

o o
o

o
o

o

o
o

o
o

o
x

x

the high density data region (thin zone):

meaningful decision boundaries

Manifolds informally | 16

What are manifolds? curves are 1-dim manifolds, a curved 2-dim
hyperplane, like a torus, would be a 2-dim manifold.

Higher order manifolds cannot be drawn trivially, but defined
mathematically:

The set of points x ∈ Rd which are roots to a set of c
differentiable functions {x ∈ Rd : f1(x) = 0, . . . , fc(x) = 0}, are a
d − c-dimensional manifold.

Manifolds informally | 17

Why does this mapping onto a low-dim manifold happen?

An intuition, not claiming a truth / a universal truth / a truth free from
counter examples.

� One view: To learn means to express that some objects are more
similar than others. This requires to focus on what is defining
similarity and therefore to discard irrelevant information which does
not contribute to understand those similarities. To discard
information can be achieved by compressing data into a set of points
of lower dimensionality.

� A linear neuron would achieve this mapping similar things close
together by mapping inputs onto a lower-dim hyperplane – by
projection of all data (feature maps of the preceding layers) along
the direction defined ±w !!!

� Another view: To learn means to map objects to be more close to
each other than dissimilar ones. To map similar objects close
together in space cannot be achieved by uniformly distributing all
points. One has to create a non-uniform density of samples.

An intuition about the distribution of data in a high
dimensions | 18

In short:

� for high dimensional representations, large parts of the feature space
have low training data density (”outlier regions”), while most
training data is mapped onto some lower-dimensional subspace (like
a circle in 2-d).

� Therefore: Exist many directions in a high dim feature space such
that small step < ε, leads outside the zone the training data density
is high

� in zones with low training data densities – the decision boundaries of
several classes can lie very close together (bcs they were never
specified by learning from training labels!!).

� Therefore: in zones with low training data densities – a series of
small steps can lead to big changes in predicted labels

Manifolds informally | 19

What is the consequence?

takeaway

� data in feature maps is not uniformly distributed in the
space of all possible values of the feature map

� most samples are mapped onto thin regions around
lower-dimensional spaces

� The decision boundaries in outlier regions are not
(well-) specified by training

� adversarial attacks exploit this and create samples in
outlier regions

Outline | 20

1 Simple creation of adversarial samples

2 Why can we run these attacks at all??

3 A basic taxonomy of attacks

4 gradient and gradient sign attacks against white boxes

5 Attacks against black boxes

6 Outline of defenses

one way to classify attacks | 21

targeted vs untargeted attacks

� targeted: sample x to be classified into a certain fixed
class.

� untargeted: sample x to be misclassified relative to its
originally predicted label.

another way to classify attacks | 22

white box vs black box

� Black box: one has access to the outputs of prediction
models only.

� White box attacks: one has access to all details of the
prediction model as a whole. Can be quite realistic if
one can guess... (e.g. github of collaborators)

� Grey box attacks: anything in between, e.g. attacker
has access to some layers (federated learning), or to
training data used.

another way to classify attacks | 23

Most white box attacks follow the same idea: compute a gradient
of some sort.
� compute a gradient of the training loss function with one hot

labels for the predicted class (gradient descent), or for a target
class (gradient ascent)

� OR compute a gradient of the logits of the neural network, not
of the softmax (softmax saturates like a sigmoid), again for
the ground truth class or for the target class

some problems to adress when creating attacks | 24

Your result is possibly not a valid image for three reasons:

A Images after ToTensor() should be in [0, 1], for some pixels it can be
violated after the gradient updates.

B After optimization, our values for subpixels are floats . When saved,
the image subpixel values get rescaled to [0, ..., 255] and rounded to
the integers in that range. PIL usually expects inputs as integers in
{0, . . . , 255}. The rounding of floats to uint8 before saving an
image may change the prediction and destroy an adversarial
sample!!
you need to validate that your saved samples are still
adversarial.

C Image saving might introduce additional biases, e.g. changes in
subpixel values due to lossy compression, for example when saving as
jpg. Save images as png without lossy compression solves this.

some problems to adress when creating attacks | 25

Possible solutions for A and B:

Fix for the out of bounds problem is to perform a gradient descent in a
suitable subspace (if we use descent). Store in a temporary variable how
the input zt+1 would look like after an update:

tmp = zt − ε∇(zt)f (zt)

Find now all those dimensions of the input sample where the resulting
image would be out of bounds:

Bad = {d : tmpd ∗ std + mean < 0 or tmpd ∗ std + mean > 1}

In practice I like a safety margin. Then set the gradient to zero on this set
Bad of pixels, and apply it to update the current x for the next step.

Bad = {d : tmpd ∗ std + mean 6∈ [2/255, 253/255]}

hd := (∂f
∂z (d) (zt) if d 6∈ Bad , 0 else)

zt+1 = zt − εh

some problems to adress when creating attacks | 26

Assume we use a gradient descent:

tmp = zt − ε∇(zt)f (zt)
Bad = {d : tmpd ∗ std + mean 6∈ [2/255, 253/255]}

hd := (∂f
∂z(d) (zt) if d 6∈ Bad , 0 else)

zt+1 = zt − εh

Question:
� Why with this modified gradient h the objective function

cannot increase ? It will either decrease or stay constant.

some problems to adress when creating attacks | 27

A fix for the discretization problem is harder.

� One idea: at first optimize until target class has the highest score.
Test for termination, whether the image after discretization still fools
the net. If not, continue to increase the score.

� A more theoretically founded way: if g is the gradient, and v is a
vector such that g · v > 0, then for sufficiently small steps in the
direction of v the function ft (for which the gradient g was
computed) will increase.

For your given image x find a subpixel-value-rounded image x̂ (every
rgb subpixel it has two neighbors to round) such that
g · (x̂ − x) > 0, that is changing the image x to the rounded image
x̂ would increase the score:

g · (x̂ − x) =
∑

d
gd (x̂d − xd)

some problems to adress when creating attacks | 28

A fix for the discretization problem is harder.

� A more theoretically founded way: if g is the gradient, and v is a
vector such that g · v > 0, then for sufficiently small steps in the
direction of v the function ft (for which the gradient g was
computed) will increase.

For your given image x find a subpixel-value-rounded image x̂ (every
rgb subpixel it has two neighbors to round) such that
g · (x̂ − x) > 0, that is changing the image x to the rounded image
x̂ would increase the score:

g · (x̂ − x) =
∑

d
gd (x̂d − xd)

So you can choose for every subpixel here the one of the two
roundings for which gd (x̂ − x)d > 0.

� Caveat: |x̂d − xd | ≤ 1
255 could be still a too large step

Universal adversarial attacks | 29

So far we had to compute one perturbation for every input.

There are perturbations which can hinder predictions for large sets of
input images! However one cannot control anymore to what target class.

Universal adversarial attack: one perturbation which can be applied to
many input samples, and which has a chance to cause misclassifications
of a large percentage of them. 1

Success rates are 75%− 90% (and can be likely better if one would
cluster the space and compute a mix of perturbations) Moosavi-Dezfooli
et al. CVPR 2017: https://arxiv.org/pdf/1610.08401.pdf, Hayes et
al. https://arxiv.org/abs/1708.05207.

1directed?undirected?

https://arxiv.org/pdf/1610.08401.pdf
https://arxiv.org/abs/1708.05207

Universal adversarial attacks | 30

https://arxiv.org/pdf/1610.08401.pdf,
https://arxiv.org/abs/1708.05207

The algorithm is
unpleasantly simple. It is
out of exams.
Understanding what an
Universal Adversarial
Perturbation is, is exam
stuff.

https://arxiv.org/pdf/1610.08401.pdf
https://arxiv.org/abs/1708.05207

Outline | 31

1 Simple creation of adversarial samples

2 Why can we run these attacks at all??

3 A basic taxonomy of attacks

4 gradient and gradient sign attacks against white boxes

5 Attacks against black boxes

6 Outline of defenses

targeted Iterative gradient: | 32

key idea for graded knowledge

simple gradient for a fixed target class c: white box, targeted.
Iterate until class c is predicted.

xn+1 = xn + ε
∂fc
∂x (xn)

This is gradient ascent towards target class.
Important: it is much better if one uses logits and not the
softmax probabilities.

The softmax will be problematic if fc(x) is close to one, because
then gradients are near zero, while in earlier stages with larger
gradients one needs much smaller step sizes.

untargeted Iterative gradient: | 33

key idea for graded knowledge

white box, untargeted. Iterate until prediction switches from the
original class either

c0 = argmaxc fc(x0)

xn+1 = xn − ε
∂fc0

∂x (xn)

This is gradient descent away from target class.

or c∗ = argminc fc(xn)

xn+1 = xn + ε
∂fc∗

∂x (xn)

This is gradient ascent towards the least probable class.

Use logits, not softmax.

untargeted Iterative gradient: | 34

Remarks
� gradient descent away from target class case: Note the sign

difference to the targeted case.
� The prediction switches when the current label is not the

original label of image x0, that is:
argmaxc fc(xn) 6= argmaxc fc(x0).

� one can also combine the descent from the original class and
the ascent towards another class.

� The softmax will be problematic if fc(x) is close to one,
because then gradients are near zero.

Projected gradient descent (PGD) | 35

� untargeted Iterative gradient with one added restriction:
keeping of the current result xt close by ε with respect to the
original sample x0.

� projection onto ε-radius balls around the original sample x0
with respect to well known-norms `2, `∞ are common and easy
to solve.
Example: the projection on the ε-ball around x0:
{x : ‖x − x0‖ ≤ ε} is easy with the euclidean norm:

πBε(x0),‖·‖2(xt) = x0 + ε
xt − x0
‖xt − x0‖

Projected gradient descent (PGD) | 36

� projection in general depends on a set S and a norm ‖ · ‖. It is
the nearest point from that set under a norm.

πS,‖·‖(xt) = inf
x∈S
‖xt − x‖

Projection onto an arbitrary set can be very difficult to solve!

Projected gradient descent (PGD) | 37

either c∗ = argmaxc fc(x0)

with x̃n+1 = xn − ε
∂fc∗
∂x (xn)

or c0 ∈ C \ {c∗}

with x̃n+1 = xn + ε
∂fc0

∂x (xn)

project: xn+1 = πBε(x0),‖·‖?(x̃n+1)

? stands for: it depends on what norm one wants to use. Again:
either-or can be combined by adding those gradient updates.

Projected gradient descent (PGD) | 38

`2-clipping to a maximal deviation of ε > 0 around x0:

πBε(x0),‖·‖2(xt) = x0 + ε
xt − x0
‖xt − x0‖

for the `∞-norm: ‖v‖∞ = maxd |vd |:
`∞-clipping to a maximal deviation of ε > 0 around x0:

clipto(ε) clips the changes of an image in every subpixel to
at most ε difference to the original image x0. The operations
are applied to every dimension d :

clip∗(ε)(xd) = max(0, (x0)d − ε, xd)
clipto(ε)(xd) = min(255, (x0)d + ε, clip∗(γ)(xd))
πBε(x0),‖·‖∞(x) = (clipto(ε)(xd), d = 1, . . .)

Fast gradient sign: | 39

https://arxiv.org/pdf/1412.6572.pdf:

L(c, f (xn)) is the loss of predictor f for the class label c. In case of
cross-entropy loss

L(c, f (x)) = − log p(Y = c|X = x)

key idea for graded knowledge

Let c∗ be the predicted class label. Then the fast gradient sign is
based on the sign of the gradient of the training loss:

xn+1 = xn + εsign(∂L(c∗, f)
∂x (xn))

Idea: This maximizes the loss between the prediction on xn and its
true label. ε chosen so large that 1 iteration is sufficient.

https://arxiv.org/pdf/1412.6572.pdf

Fast gradient sign: | 40

Why sign ? Figure 1 in https://arxiv.org/pdf/1611.02770.pdf on a
complex dataset, ImageNet, suggests that fast sign is not good
actually - but fast.

One possible advantage: distorting the gradient by taking the sign
may help to avoid getting stuck in local extrema, thus increasing
attack success rates at the cost of sometimes decreased quality.

This is white box, untargeted. Fast – bcs one aims at usually at 1
iteration, but often coarse images as results.
� pro: fast
� con: coarse images
� attack success rate can get low

https://arxiv.org/pdf/1611.02770.pdf

Iterative gradient sign: | 41

https://arxiv.org/pdf/1607.02533.pdf

We assume that we use the training loss for class c and predictor f
in sample xn: L(c, f)(xn)

Variant 1: Let c∗ be the predicted class label for the original
sample x0 := x , and we maximize the loss to it

xn+1 = clipto(γ)(xn + εsign(∂L(c∗, f)
∂x (xn)))

– walk in the direction that increases the loss between original class
label and predictions. clip changes to γ relative to original image.

https://arxiv.org/pdf/1607.02533.pdf

Iterative gradient sign: | 42

Variant 2:

xn+1 = clipto(γ)(xn − εsign(∂L(c∗(xn), f)
∂x (xn)))

where c∗(xn) = argmincp(Y = c|X = xn) is the least likely
prediction class of image xn in the current iteration – walk in the
direction of the least likely class – converges faster than variant 1,
see Fig2 in https://arxiv.org/pdf/1607.02533.pdf. This method
works on non-trivial datasets!

Note the sign difference between variant 1 and variant 2. This is
white box, untargeted.

https://arxiv.org/pdf/1607.02533.pdf

Gradient-based attacks | 43

You compute the gradient with respect to your input sample, not
with respect to trainable parameters.

Carlini-Wagner Attack | 44

Carlini & Wagner: https://arxiv.org/pdf/1608.04644.pdf,
https://arxiv.org/pdf/1705.07263.pdf This is white box, targeted.

key idea for graded knowledge

� Goal: synth an image x which is close to a target image
x0 and which is classified as target class t

� optimize an objective of two components,
� first component ‖x − x0‖2 makes synth an image x

which is close to a target image x0

� second component measures whether target class has
highest score already

� use logit outputs of the classifier when possible
� white box, targeted

https://arxiv.org/pdf/1608.04644.pdf
 https://arxiv.org/pdf/1705.07263.pdf

Carlini-Wagner Attack (targeted) | 45

Given a target class t, and let fc(x) be the logits output of a classifier for
class c (not the softmax!). Solve the following optimization problem

min
x
‖x − x0‖2 + c max(d(x), 0)

d(x) = max
c 6=t

fc(x)− ft(x)

Why this objective?

� understand: d(x) > 0 means: ft(x) < maxc 6=t fc(x), which means
that the prediction has not reached the target class t yet.

� cap d(x) at zero, so that one does not minimize the objective by
making the prediction of ft(x) very large (d(x) very negative) while
wandering far away from the start image x0.

Important: it uses logits (the output of the last layer), not the softmax
probabilities. Advantage: no problems with softmax saturation, no
protection by defensive distillation. But: one cannot always access the
logits!

Carlini-Wagner Attack (targeted) | 46

Given a target class t, and let fc(x) be the logits output of a classifier for
class c (not the softmax!). Solve the following optimization problem

min
x
‖x − x0‖2 + c max(d(x), 0)

d(x) = max
c 6=t

fc(x)− ft(x)

Why this objective?

� ‖x − x0‖2 makes synth an image x which is close to a target image x0

Important: it uses logits (the output of the last layer), not the softmax
probabilities. Advantage: no problems with softmax saturation, no
protection by defensive distillation. But: one cannot always access the
logits!

Carlini-Wagner Attack (untargeted) | 47

Let c be the currently predicted class. Thus fc(x) > maxt 6=c ft(x).

Goal: max
t 6=c

ft(x) > fc(x)⇔ 0 > fc(x)−max
t 6=c

ft(x)

Let ft(x) be the logits output of a classifier for class t (not the softmax!).
Solve the following optimization problem

min
x
‖x − x0‖2 + c max(d(x),−η), η > 0

d(x) = fc(x)−max
t 6=c

ft(x)

Why this objective?

� ‖x − x0‖2 makes synth an image x which is close to a target image x0

Important: it uses logits (the output of the last layer), not the softmax
probabilities. Advantage: no problems with softmax saturation, no
protection by defensive distillation. But: one cannot always access the
logits!

Outline | 48

1 Simple creation of adversarial samples

2 Why can we run these attacks at all??

3 A basic taxonomy of attacks

4 gradient and gradient sign attacks against white boxes

5 Attacks against black boxes

6 Outline of defenses

overcoming black boxes | 49

Generally make use of (x , f (x)), where f (x) is the output of the
blackbox. Two ideas.
� surrogate attacks: train an approximation to f (=the

surrogate) and attack the surrogate (hope: attacks from
surrogate would generalize to the actual target networks)

� boundary attacks: feel your way along the decision boundary
while moving closer to the sample which one wants to corrupt.
But always stay on the wrong side of the decision boundary

overcoming black boxes I: Surrogate attacks | 50

https://arxiv.org/pdf/1602.02697.pdf
Setting: can observe only output f (x) of target classifier.

key idea for graded knowledge

� train a replacement g(x) which mimicks f (x) and after
that white-box attack the replacement g(x).

� iterate training. at every step increase the training data
set by augmenting the existing samples along the
gradient of the surrogate

https://arxiv.org/pdf/1602.02697.pdf

overcoming black boxes I: Surrogate attacks | 51

Some finer details:

� iterate the following training. At each step r train a surrogate g
mimicking f
· input many samples x into f as queries, collect probability

labels f (x)
· train g using a dataset Sr of (x , f (x))
· note: can use cross-entropy with soft labels as well

L(g(x), f) =
∑

c
−fc log gc(x)

Cross-entropy works NOT ONLY with one hot labels!
· enlarge existing training dataset by augmentation:

Sr+1 = Sr ∪ {x + λsign(
∑

c fc(x)∇gc(x)), x ∈ Sr}
Here one uses only the gradient of the surrogate.

� perform white box attacks on your trained surrogate g(x)

overcoming black boxes I: Surrogate attacks | 52

� out of exams: uses a slightly different adversarial attack for the
surrogate:
Compute a saliency score for a target class t and every dimension i
of a sample (image) x

S(x , t)[i] =
{

0 if ∂ft
∂xi

< 0 or
∑

c:c 6=t
∂fc
∂xi

> 0
∂ft
∂xi
|
∑

c:c 6=t
∂fc
∂xi
| else

idea: a dimension i of an input x is salient if either the gradient for the
target class is positive or the sum of gradients along all other classes is
negative.

goal: sparse selection of dimensions. May help to suppress noise from
dimensions where the gradient of the surrogate does not match the
gradient of the target due to a falsely learnt surrogate.

Results on larger networks known??

overcoming black boxes I: Boundary attacks | 53

key idea for graded knowledge

� input is target image. output: synth image. synth image
should look like target image, but have differing or wrong
prediction (see examples in the paper)

� idea: move along decision boundary to the predicted class of
target image, but always “on the wrong side” of the decision
boundary.

� Principle: do not use gradients. Use rejection sampling to
define moves.

� Sample perturbations from a distribution. Accept perturbed
image if it is adversarial and one gets closer to the target.

� for accept/ reject one needs only the predicted label, no
probabilities. The box is as black is it can get for this attack.

� See Fig 4 and Fig 7 in the paper.

... | 54

https://openreview.net/pdf?id=SyZI0GWCZ
from the paper of Brendel and Bethge:

https://openreview.net/pdf?id=SyZI0GWCZ

... | 55

... | 56

an exemplary result from the paper:

Other attack ideas | 57

� Training set poisoning: how to add samples, such that training
will render your predictor useless

� attacks which aim to extract some kind of answers:
· Membership inference attacks: Shokri et

al. https://arxiv.org/abs/1610.05820 – was a training sample
used to train a model?

· Reconstruction Attacks: Dosovitsky et
al. https://arxiv.org/abs/1506.02753 – given a feature map or
a gradient, what was the input sample? Relevant for Federated
Learning

https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1506.02753

Outline | 58

1 Simple creation of adversarial samples

2 Why can we run these attacks at all??

3 A basic taxonomy of attacks

4 gradient and gradient sign attacks against white boxes

5 Attacks against black boxes

6 Outline of defenses

Defenses: Two exemplary directions | 59

� Adversarial hardening: make an ML model more robust to
adversarials by training it with normal and adversarial samples
e.g. https://arxiv.org/abs/1706.06083, however this is not
easy to achieve. It does not generalize easily to different types
of attacks: see https://arxiv.org/abs/1805.09190 and
https://arxiv.org/abs/1904.13000. See also
https://openreview.net/forum?id=SyJ7ClWCb which does
hardening by using image transformations.

https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1805.09190
https://arxiv.org/abs/1904.13000
https://openreview.net/forum?id=SyJ7ClWCb

Defenses: Two exemplary directions | 60

� problem 1: Mind the adaptive attacker: Attacker may use
models with defenses and attack those defense-augmented
model to create better evasive adversarials

� problem 2: the attacker is patient: damage can be done even
if 1% of attacks passes

Defenses: Two exemplary directions | 61

� no matter whether harden or detect:
� problem 1: Mind the adaptive attacker: Attacker may use

models with defenses and attack those defense-augmented
model to create better evasive adversarials

� problem 2: the attacker is patient: damage can be done even
if 1% of attacks passes

Adversarial detection – some directions | 62

� Idea: measure change of prediction on input x when the input
is transformed.

� Hypothesis: predictions on adversarial perturbations change
stronger than clean data.

Example 1: use `1-norm to measure changes in
https://arxiv.org/abs/1704.01155 of the prediction f (·) under
some transformation t(·):

s = ‖f (x)− f (t(x))‖1

in https://arxiv.org/abs/1704.01155 they proposed for t(·) a 2× 2
median filter blur (replace lower left pixel by the median of pixels in
a 2× 2 neighborhood) and color-range squeezing.

https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1704.01155

another defense | 63

Example 2: https://arxiv.org/abs/1705.08378 follows a detection
idea by using a more complex transformation
� measure entropy of distribution of subpixel values. Entropy

defined on pi - probability of pixel value in the image being
i ∈ {0 . . . , 255}.

� discretize each rgb-pixel value in 2, 4 or 6 intervals (binning),
depending on the value of the entropy

� on high-entropy images: also apply a convolution with some
averaging filter, if this makes the resulting image closer to the
original image

� Table 11: a defense aware attacker still succeeds 67% of all
the time ...

� statistic s not defined?

https://arxiv.org/abs/1705.08378

out of class | 64

https://openreview.net/forum?id=SyJ7ClWCb uses image
transformations to remove attacks, but it does not measure the
impact of image transformations on destroying predictions on clean
samples. What is interesting is to consider the TV-regularization as
smoothing (on those pixels which are not kept randomly) and the
image quilting as potential transformations.

https://openreview.net/forum?id=SyJ7ClWCb

on transferability of attacks: outside of exams | 65

https://arxiv.org/pdf/1611.02770.pdf

non-targeted attacks generalize better across different models than
targeted ones.

Chapter 5, table 4: non-targeted ensemble attacks. It helps to
optimize against an ensemble of different classifiers to get strong
attacks that are valid for many architectures.

https://arxiv.org/pdf/1611.02770.pdf

Some papers: outside of exams | 66

� https://arxiv.org/pdf/1511.04599.pdf – deepfool: whitebox,
untargeted, works on Imagenet

� http://www.evolvingai.org/fooling Fooling as art

� https://arxiv.org/pdf/1707.08945.pdf – design attacks on images
that look like physical-world plausible changes. hide them or make
them look natural. Adversarial stickers for objects :-D .

� https://arxiv.org/pdf/1707.07397.pdf 3d print adversarial objects.

� https://arxiv.org/pdf/1705.07263.pdf detection is hard

https://arxiv.org/pdf/1511.04599.pdf
http://www.evolvingai.org/fooling
https://arxiv.org/pdf/1707.08945.pdf
https://arxiv.org/pdf/1707.07397.pdf
https://arxiv.org/pdf/1705.07263.pdf

Foolbox – from 0 to attack in 10 minutes | 67

https://github.com/bethgelab/foolbox#example
very simple coding:

https://github.com/bethgelab/foolbox/blob/master/examples/
single attack pytorch resnet18.py

https://github.com/bethgelab/foolbox#example
https://github.com/bethgelab/foolbox/blob/master/examples/single_attack_pytorch_resnet18.py
https://github.com/bethgelab/foolbox/blob/master/examples/single_attack_pytorch_resnet18.py

Your coding hw | 68

This is Mr. Shout, a friend of Alex.

... | 69

Questions?!

	Simple creation of adversarial samples
	Why can we run these attacks at all??
	A basic taxonomy of attacks
	gradient and gradient sign attacks against white boxes
	Attacks against black boxes
	Outline of defenses

