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Learning goals

� an overview of different questions in explainability

� some selected aspects:
· low-dimensional embeddings of a set of samples: t-SNE
· samples maximizing activations in a feature layer
· nearest examples with respect to a metric defined by a

feature layer
· explanations of a single decision: see slide 8 for

methods shown in this lecture
· you do not need to memorize LRP formulas for the

exam, but simple formulas like gradient times input
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1 A coarse overview

2 t-SNE: visualize similarity of samples from a learned model
by a 2D embedding

3 samples maximizing activations in a feature layer

4 Learning something from the metric defined by a feature
map around a chosen sample: Finding similar examples for
a given sample

5 per-sample explanations
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� ...
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There are many ways to explain a prediction
� provide similar examples relative to a single sample (see

literature on: similarity search, information retrieval)
� point to the most important regions for one single sample

(compute scores for dimensions - single sample explanations)
� visualize relations between sets of samples - similarity

embeddings (tSNE etc.)
� be able to answer questions of some fixed type (visual question

answering? VQA with inputs and heatmaps?)
� be able to answer a wider range of questions using exploration

of the environment (embodied QA?) or external sources
(reasoning?)

Some of these settings like reasoning go a lot beyond direct
explanations of predictions.
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There are many ways to explain a prediction ... continuing:
� plug in the model to generate samples.
� provide examples which are similar but with a differing

prediction (see literature on: counterfactuals
https://arxiv.org/abs/1904.07451, pertinent negatives
https://arxiv.org/abs/1802.07623)

� provide examples which are similar and contain the minimal
content to have a similar prediction (pertinent positives
https://arxiv.org/abs/1906.00117)

� training explainable models (whatever explainability means)
Some of these settings like reasoning go a lot beyond direct
explanations of predictions.

https://arxiv.org/abs/1904.07451
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1906.00117
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Related to explainable AI, and very important for the success of
products !!!
� bridging the gap to human perception, understanding, and

usage:
· visualization
· human-computer interface design courses

ML/AI is not much worth without HCI.

In this lecture we can focus on a few aspects.
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In this lecture we can cover only a few aspects (a lecture into coding LRP
for pytorch takes me alone 1 hour!).

� model interpretation (two approaches)
· t-SNE embeddings (pytorch + scikit learn): show similarities

for features from a dataset
· compute which inputs activate a feature most

� decision interpretation (one unlabeled test sample as compared to a
dataset)
· Gradient, sensitivity, gradient times input
· LIME
· guided backprop
· LRP and Deep Taylor
· measuring the quality of your explanations
· applications to finding biases in your data, to identify

systematic failcases
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1 A coarse overview

2 t-SNE: visualize similarity of samples from a learned model
by a 2D embedding

3 samples maximizing activations in a feature layer

4 Learning something from the metric defined by a feature
map around a chosen sample: Finding similar examples for
a given sample

5 per-sample explanations
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Suppose you have feature maps of 200 images, how to visualize the
similarities between these feature maps ?

Technical problem: how to plot a number of d-dimensional features
in 2-dims such that the distances are meaningfully preserved?
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One way is to visualize the similarities between samples by
projecting each xi ∈ Rd into 2 dimensions – according to their
similarities and look at them. One way is t-SNE (L. van der
Maaten): http://www.jmlr.org/papers/volume9/
vandermaaten08a/vandermaaten08a.pdf

https:
//scikit-learn.org/stable/auto examples/manifold/plot lle digits.
html#sphx-glr-auto-examples-manifold-plot-lle-digits-py

Working principle: Given high dimensional data points
Dn = (x1, . . . , xn), goal is to map each xi ∈ Dn onto a
2-dimensional data point yi such that yi , yj which have similar
distances to each other as the samples xi , xj from the set Dn.

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py
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� given two samples i , j with features xi , xj

� step 1: compute the probability that i would vote for j as being his
neighbor based on a gaussian model which is centered on xi as mean

pj|i ∝ exp(−‖xi − xj‖2/2σ2)

pj|i = exp(−‖xi − xj‖2/2σ2)∑
k:k 6=i exp(−‖xi − xk‖2/2σ2) ⇒

∑
j

pj|i = 1

� symmetrize:

pij =
pj|i + pi|j

2N , pii = 0

Reason? Ensures that
∑

i pij >
1

2n , so each point, even an outlier
has some large interactions to his neighbors. Otherwise points i
which are very far outliers may contribute little to the embedding
because pi|j ≈ 0.
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What did we obtain?

� pij is a model of interaction strength between two samples
with features xi , xj

next step:
� find for xi a synthetic sample yi ∈ R2 and a model of

interaction strength qij between low-dimensional
representatives yi and yj
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� learn a similar, but heavy-tailed distribution model of yi voting for yj
as neigbor:

qij ∝ (1 + ‖yi − yj‖2)−1

qij = (1 + ‖yi − yj‖2)−1∑
k,l :k 6=l (1 + ‖yk − yl‖2)−1

� how to optimize for qij? Minimize Kullback-Leibler-Divergence:

{qij , {i , j}} = argmin{qij}KL(P||Q) = argmin{qij}
∑

ij
pij log

(
pij
qij

)

� minimize for yi by computing the gradient of KL(P||Q) with respect
to yi (Q depends on yi )

Why for the yi use a heavy tailed probability?
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https://lvdmaaten.github.io/publications/papers/JMLR 2008.pdf:
“This allows a moderate distance in the high-dimensional space to be
faithfully modeled by a much larger distance in the map and, as a result,it
eliminates the unwanted attractive forces between map points that
represent moderately dissimilar datapoints.”

Idea is the following: in high dimensional spaces many points can have
intermediate distance to each other, resulting in an intermediate
interaction probability pij .

https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
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What means choosing a heavy tailed probability for the model of the yi ?
A heavy tailed probability assigns a relatively high probability to points far
away. Therefore those points xi , xj with intermediate distance in the
original space can be assigned to points yi , yj in the 2-d model which are
far away (and still result in an intermediate-valued qij which fits well to
the intermediate pij .)

By this t-sne can focus on putting only those points i and j close in the
embedding yi , yj for which the original points xi and xj are really close
(and have a high pij).

Properties and limitations of t-SNE:

https://distill.pub/2016/misread-tsne/ – what one gets out from t-sne,
depends a lot on the perplexity parameter choice, and it may be very
different from the original distances. Its a visualization, not some kind of
truth. Results need to be validated.

https://distill.pub/2016/misread-tsne/
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1 A coarse overview

2 t-SNE: visualize similarity of samples from a learned model
by a 2D embedding

3 samples maximizing activations in a feature layer

4 Learning something from the metric defined by a feature
map around a chosen sample: Finding similar examples for
a given sample

5 per-sample explanations
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Consider those images/ input samples x̂ which activate a channel c of a
feature map z most

s(1)
c (x) =

∑
h,w

z2[0, c, h,w ](x)

s(2)
c (x) =

∑
h,w

max(0, z [0, c, h,w ])(x)

x̂ = argmaxx∈Datasc(x)

It shows what a channel focuses most on in your given dataset. If the
dataset has the same distribution, as your training dataset, then one can
claim to infer what the feature layer has learned from the training data
(why this is not valid if using another dataset?)

� order inputs x according to s(x) in descending order and visualize
them

� explains properties of feature map, not a single decision or relations
in a set of samples.
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1 A coarse overview

2 t-SNE: visualize similarity of samples from a learned model
by a 2D embedding

3 samples maximizing activations in a feature layer

4 Learning something from the metric defined by a feature
map around a chosen sample: Finding similar examples for
a given sample

5 per-sample explanations
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� select a layer/feature map h(·)

� given a sample x and its feature map h(x), find the closest examples
in a test set, given a norm ‖ · ‖ or metric d(h(x), h(xi ))

sort xi according to ‖h(xi )− h(x)‖

� PRO: uses learned similarities around x . h(·) = hw (·)

� limitation: if ‖h(xi )− h(x)‖ is small in a layer, it does not guarantee
that the final prediction will be similar for xi and x or that the
internal reasoning will be similar for xi and x . Could diverge in
higher layers! Extreme case: h(·) = input layer and adversarials.

difference to t-SNE and dataset driven activation maximization: this tries
to explain similarities to a single sample x as defined by a chosen feature
map, not visualize a set of samples or what activates a feature map most
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1 A coarse overview

2 t-SNE: visualize similarity of samples from a learned model
by a 2D embedding

3 samples maximizing activations in a feature layer

4 Learning something from the metric defined by a feature
map around a chosen sample: Finding similar examples for
a given sample

5 per-sample explanations
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coarse idea:

� have input sample x = (x1, . . . , xD), a prediction f (x) (classification
or any other setting)

� question: which parts of x are important for the prediction f (x)?
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� compute gradient
� use its square of a partial derivative ∂f

∂xd
(x) as a score for the

relevance of an input dimension xd :

rd (x) =
(
∂f
∂xd

(x)
)2

(+) easy to implement
(+) fast to compute
(–) see below what sensitivity explains, often not the question you

wanted to ask
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The main drawback:
What the gradient explains

� The gradient does not explain which pixels are most
contributing to the prediction of a cat.

� The gradient explains which pixels are most sensitive to
change the prediction of a cat.

Most sensitive to change 6= most contributing
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Compare: where a function has highest value vs where a function has
highest slope.

input dimensions/pixels

highest value, low gradienthighest slope

A math example:

f (x) = w · x
∂f
xd

(x) = wd

Explanation for a single score: wd ignores sign of input for classification.
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Use as explanation:

rd (x) = ∂f
xd

(x) xd

R = ∇f (x) · x

(+) works well for shallow smaller nets (LeNet) and sigmoid networks

(+) motivation as a heuristic: close to Taylor decomposition as
explanation for a point x0 close to the point x to be explained, if x0
is chosen orthogonal to the gradient (∇f (x) · x0 = 0).

f (x0) ≈ f (x) +∇f (x)(x0 − x) +O(‖x − x0‖2)
f (x) ≈ f (x0) +∇f (x)(x − x0) +O(‖x − x0‖2)

This is an explanation relative to a point x0 such that ‖x − x0‖ < ε
Further ignore the constant contribution f (x0) in the Taylor series
because it is independent of input dimension for the explanation, to
arrive at “Gradient × Input”.
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(–) can be uninformative for deep ReLU-networks due to gradient
shattering problem:
Montufar NIPS 2014 https://papers.nips.cc/paper/
5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf.
Balduzzi 2017
http://proceedings.mlr.press/v70/balduzzi17b/balduzzi17b.pdf. See:

Worth reading: works of Marco Ancona

https://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
https://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
http://proceedings.mlr.press/v70/balduzzi17b/balduzzi17b.pdf
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Integrated Gradient: Axiomatic attribution for deep networks
Sundararajan et al., ICML 2017

a heuristic very similar to the gradient times input idea:

Rd (x) = (xd − x (0)
d ) 1

m

m∑
k=1

∂f
∂xd
|z=x (0)+ k

m (x−x (0))

� Averages over partial derivatives along multiple points
x (0) + r

R (x − x (0)) along a path from x (0) to x .

(+) Why that can be better than gradient × input? Averaging gradients
smoothes out the gradient shattering.

(+)(–) IG gets better and slower when hundreds of points are used (+ slows
down).
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Understanding Integrated Gradients with SmoothTaylor for Deep
Neural Network Attribution (not introducing a new explanation
method)1

� Used (global) Taylor approximation with averaged multiple
roots with fixed variance σ2 around x

Rd (x) = 1
R

R∑
r=1

(xd − z(r)
d ) ∂f

∂xd

∣∣∣∣
z(r)

, z(r) ∼ N(x , σ2I) (1)

� measure explanation quality by correlation to predictor scores
under averaged iterative region alteration

� measure smoothness by total variation

1GSW Goh, S Lapuschkin, L Weber, W Samek, A Binder, ICPR 2020
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� Explanation quality and total variation smoothness degenerates
when the sampling variance is very small. Contradicts the idea of
being close to x for good Taylor approximations.

� Therefore: To average gradients at points sufficiently far away is
important. Evidence for the effect of gradient shattering. Explains
why IG works better with many roots than gradient times input.
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Ribeiro et al, ICML 2016 https://arxiv.org/pdf/1602.04938.pdf

The first thing to understand: the decisions made by a linear model
are easily explainable

g(x) =
∑

d
wd xd

rd := wd xd

The contribution of a single decision can be explained easily. If it
has a bias, there is an unexplained component though – the bias b,
which cannot be naturally assigned into contributions of single
dimensions d :

g(x) =
∑

d
wd xd + b

rd := wd xd

https://arxiv.org/pdf/1602.04938.pdf
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The idea of Lime: given a test sample x learn a locally linear
approximation to f around x .

f (x) ≈ A(x) =
∑

d
wd xd

rd (x) = wd xd

How to get to the locally linear approximation A(x)?
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K-Lasso

� train lasso

w ← argminw
1

2n
∑

i
(f (zi )− w · zi )2 + λ‖w‖1

� `1-norm induces sparsity (makes many weights to be zero)

� select K dimensions with highest weights

� train a linear/ridge regression with only those dimensions to obtain
A(x)

� parameters: sampling radius size, K , λ

A large sampling radius allows to learn correlations between neighboring
data points more than just the gradient.
One thing to be taken care is: for a too small sampling radius LIME
converges to the gradient – which answers a different question.
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(+) good for problems where using a sparse subset of features
makes well sense, e.g. tabular/ columnar data (finance, lab
measurements). Some setups do not go well with sparse
subsets:

(–) need to train a model for every input sample
(–) explanation sensitive to radius parameter – need to validate /

test choices of this parameter
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A heuristic variation on the gradient times input idea - applied in feature
map space. https://arxiv.org/abs/1610.02391

� given a feature map u(x) with components u[c, h,w ](x) having C
channels, width W , height H, and a predictor f (x) = g(u(x)) where
g(·) are some layers on top of u.

C
o
n
v
-B
lo
c
k

Gradient times input in the space of u would be:

R[c, h,w ] = ∇u g |u(x) � u(x) = ∂g
∂u[c, h,w ]

∣∣∣∣
u(x)

u[c, h,w ](x)

https://arxiv.org/abs/1610.02391
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C
o
n
v
-B
lo
c
k

Gradient times input in the space of u would be:

R[c, h,w ] = ∇u g |u(x) � u(x) = ∂g
∂u[c, h,w ]

∣∣∣∣
u(x)

u[c, h,w ](x)

Grad-Cam replaces the partial derivative ∂g
∂u[c,h,w ] by a spatially averaged

version

αc = 1
HW

∑
h,w

∂g
∂u[c, h,w ]

∣∣∣∣
u(x)
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C
o
n
v
-B
lo
c
k

Grad-Cam replaces the partial derivative ∂g
∂u[c,h,w ] by a spatially averaged

version
αc = 1

HW
∑
h,w

∂g
∂u[c, h,w ]

∣∣∣∣
u(x)

R[h,w ] = ReLU(
C∑

c=1
αc u[c, h,w ])

and applies a weighted sum
∑

c over all channels in this layer+ a ReLU
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Grad-Cam replaces the partial derivative ∂g
∂u[c,h,w ] by a spatially averaged

version
αc = 1

HW
∑
h,w

∂g
∂u[c, h,w ]

∣∣∣∣
u(x)

R[h,w ] = ReLU(
C∑

c=1
αc u[c, h,w ])

high level view:

� gradient times input in feature space of a chosen layer

� with spatial averaging of gradients
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� the spatial averaging helps to smooth with gradient shattering
� the relu suppresses spatial locations with approximately

irrelevant contributions to the score
� need to choose a feature map as free parameter, in principle

extendible to an overlay of responses of multiple layers (why
choose only a single layer?)

(+) simple to implement
(–) low resolution unless one does pixel-wise multiplication with

guided backprop (but then why not using guided BP right
away?)
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Backpropagation with a heuristic to cancel out parts of the
backpropagated scores:
Consider a relu activation neuron g(z) = relu(w · z + b):

� this receives in the forward
pass the value vector
z = z(x) from the layers
below.

� In the backward pass it
received the derivative with
respect to itself ∂E

∂g (z) from
the layers above.

g(z)x

m
a
n
y
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e
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n
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y
e
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pass: g(z)

backward 

pass

Loss function
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Guided backprop says: do backprop but zero out incoming gradient
∂E
∂g (z) when passing to through g() if:

� the inputs to the activation of the neuron are negative z < 0

� the gradient arriving at this neuron is negative ∂E
∂g (z) < 0

Why?

� if the activation of the neuron is negative g(z) < 0, then g(z) is a
suppressing neuron. rule: Ignore gradients from suppressing neurons,
pass through only gradient signal from firing neurons

� if the gradient arriving at this neuron is negative. rule: ignore
gradients which decrease the function value, look only at gradients
which increase the prediction

� its a heuristic to look only at one end of effects: activating signals
and gradients
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Need to take the absolute value to get something useful. Sign has
no meaning in there.
(+) gives often clean heatmaps, high resolution heatmaps
(+) very easy to implement using a backward hooks at ReLUs
(–) its a heuristic, no theoretical underpinning. Not really sure

what it does.
(–) open what to do with non-relu activations
(–) high precision but lack of sensitivity to explanation for

different classes
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� take an input x = (x1, . . . , xD). Occlude a subset S ⊂ {x1, . . . , xD}
of dimensions by some value x 7→ ˜̃x .

� measure rS(x) = f (x)− f (˜̃x) as sensitivity of the subset S

� order subsets S according rS(x) to find the most sensitive subsets
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Choice of subset scale matters! Example

� simplest case: subset consists of single dimension S = {xd}

� using subsets of more than one element allows to capture
correlations in f , example

f (x) = max(|x1|, |x2|) + |x3|

only changing x1 to a value x1 = 0 wont change f (x), thus would
mask sensitivity of f to inputs in x1, x2.

� images: what pixel size to occlude ? 5× 5 ? or superpixels from a
superpixel segmentation algorithm? or extended superpixels to cover
boundaries?
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need to have a clear idea how to occlude a region

� can be simple for certain financial tasks. example: replace an input
dimension value by the median, or measure for (median,
25%-,75%-quantile) and choose the largest sensitivity over quantiles

� images – can get more complicated ... black square ? from another
image ? gray square?

� uncertainty? −→ compute statistic e.g. median over multiple
occlusions of the same region if there is no good unique occlusion

� images: can use GAN inpainting (deepfill) to generate occlusions
which do not result in outliers
https://openaccess.thecvf.com/content/ACCV2020/html/
Agarwal Explaining image classifiers by removing input features
using generative models ACCV 2020 paper.html

https://openaccess.thecvf.com/content/ACCV2020/html/Agarwal_Explaining_image_classifiers_by_removing_input_features_using_generative_models_ACCV_2020_paper.html
https://openaccess.thecvf.com/content/ACCV2020/html/Agarwal_Explaining_image_classifiers_by_removing_input_features_using_generative_models_ACCV_2020_paper.html
https://openaccess.thecvf.com/content/ACCV2020/html/Agarwal_Explaining_image_classifiers_by_removing_input_features_using_generative_models_ACCV_2020_paper.html
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(+) direct measurement of local sensitivity
(+) super simple to implement: create n copies of an image, do

mod in each copy, run forward pass
(+) forward pass only, black-box compatible
(–) need to decide on occlusion region size and how to occlude
(–) slow, really
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� Starting point of many methods: a prediction f (x) over a sample
x = (x1, . . . , xd , . . . , xD)

� Many methods compute a score rd (x) such that rd (x) tells how
much one dimension xd from x contributes to the prediction

� one way to achieve this, is first order Taylor decomposition around
some point x (0)

f (x) ≈ f (x (0)) + ∇f |x0
· (x − x (0)) =

∑
d

∂f
∂xd

∣∣∣∣
x0

(xd − x (0)
d ) =

∑
d

rd (x)

rd (x) := ∂f
∂xd

∣∣∣∣
x0

(xd − x (0)
d )

� linearizes relatively to x (0). Explains the difference of prediction in x
relative to the prediction made in x (0). Note: a relative explanation!

� the next method applies such an idea for every layer, and stacks
decompositions
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� given: A. trained model f , B. a prediction f (x) for input
x = (x1, . . . , xd , . . . , xD).

� general case: To compute a relevance score rd (x) for every
input dimension xd of input x explaining the prediction f (x),
such that approximately:

f (x) ≈
D∑

d=1
rd (x) ← decomposition with constraints (2)

image LRP-α-β
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� Divide and conquer: decompose network in layers

� Taylor approximation per layer/neuron

� easier to find roots for one layer

� better robustness to gradient shattering for certain choices of x (0)
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The next two slides and the slide which root for which layer you do
not need to memorize.
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LRP-β: given: have computed already Rk as relevance of neuron output
zk =

∑
i wikxi + b,

Ri←k(x) = RkMi←k = RkMi←k(wik , xi )

Ri←k(x) = Rk

(
(1 + β) (wikxi )+∑

i′ (wi′kxi′ )+
− β (wikxi )−∑

i′ (wi′kxi′ )−

)
(3)

� β controls ratio of negative to positive evidence β
1+2β

.

� negative to total evidence: β
1+2β

β→∞→ 0.5,
It is fixed independent of network inputs(!).

� bounded relevance scale: |Ri←k | ≤ (1 + β)|Rk | (not true for LRP-ε!)
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Got Ri←k from Rk . How to compute Ri ?

Ri :=
∑

k:i is input to k
Ri←k (4)

Same as in backpropagation
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What could be a possible explanation of a prediction? | 56



which root for which layer? | 57

Name Formula layers

LRP-ε
∑

k Rk

(
xi wik∑

i xi wik+b+ε sign(z)

)
Linear

LRP-β = 0
∑

k Rk

(
(xi wik)+∑

i (xi wik)+

)
conv

LRP-γ
∑

k Rk

(
γ(xi wik)++(xi wik)∑

i γ(xi wik)++γ(b)++
∑

i (xi wik)+b

)
conv

LRP-zβ
∑

k Rk

(
xi wik−li (wij )++hi (wij )−∑

i xi wik+b−li (wij )++hi (wij )−

)
first conv
layer

LRP-w2 ∑
k Rk

w2
ik∑

i w2
ik

same

Its a mere serving suggestion. Define a loss and measure the
quality of your explanations and choose by that!
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No method is better than all others on all reasonable use cases, which
includes LRP/Deep Taylor

(–) Technically one root per layer. Need to validate choices by
measuring explanation quality.

(–) using everywhere LRP-ε reduces to ∇f (x)� x

(–) poor recall due to sparsity, gradient based methods often have better
recall.

(+) high precision, gradient based methods often have lower precision

(+) good results for several applications / evaluation papers with certain
presets (ignore biases, use hybrid LRP-β, γ), RNNs such as LSTMs,
high-dimensional data

(+) reasonably fast when properly implemented, e.g.

Evaluating Explanation Methods for Deep Learning in Security,
Warnecke, Arp, Wressnegger, Rieck, 2020 IEEE European
Symposium on Security and Privacy (EuroS&P)

(+) tunable resolution heatmaps, lots of tuning options
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LRP experience:
� linear layers: LRP-ε
� conv-layers: LRP-β,LRP-γ
� attention weighted layers:

f =
∑

i
wi (v)vi

treat weights wi (v) as if they were constant weights, apply
LRP-ε to the resulting linear layer in vi obtain relevances R(vi )
for vi

f =
∑

i
wi vi

R(f ) 7−→ R(vi )
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No method is better than all others on all reasonable use cases.
� if the performance measure is sensitivity under small changes

of a single dimension/pixel, then you need only the gradient!
� can we evaluate somehow ?
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One approach: measure correlation to predictor sensitivity under change
of regions.
https://ieeexplore.ieee.org/abstract/document/7552539,
https://arxiv.org/abs/1509.06321 (disclaimer: own work)

� choose region size, compute average heatmap score for each region

� Idea: use relevance scores (from any method) r to order regions.

� modify regions in the implied order

� measure decrease of prediction f (x) under modifications

� key idea: if most important pixels get the highest score, then
prediction will decrease fast, as more and more pixels get modified

https://ieeexplore.ieee.org/abstract/document/7552539
https://arxiv.org/abs/1509.06321
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� Idea: measure area under graph - averaged over many runs
and images (red line)

� can compare against random orderings of pixels
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� Idea: measure area under graph - averaged over many runs
and images (red line)

� can compare against random orderings of pixels
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In practice,
� compute average decrease for many

different modifications of the same
region

� evaluation does not need image
labels

Evaluating the visualization of what a Deep Neural Network has learned, Samek
et al., IEEE TNNLS 2017
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https://ieeexplore.ieee.org/abstract/document/7552539,
https://arxiv.org/abs/1509.06321 (disclaimer: own work)

� choose region size

� compute average heatmap score per region

� sort regions descendingly

� sequentially perturb each region according to sorting oder

� measure sensitivity under sequential occlusion

� downside: occlusion as above creates outliers!!! Experiments were
performed in 2015. Today: use GAN-inpainting or the like (see
above).

https://ieeexplore.ieee.org/abstract/document/7552539
https://arxiv.org/abs/1509.06321
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� Measuring explanation quality wrt outliers as baseline is problematic.
What is a meaningful inlier modification in an image?
Explaining image classifiers by removing input features using
generative models, Agarwal & Nguyen, ACCV 2020
https://openaccess.thecvf.com/content/ACCV2020/papers/
Agarwal Explaining image classifiers by removing input features
using generative models ACCV 2020 paper.pdf

https://openaccess.thecvf.com/content/ACCV2020/papers/Agarwal_Explaining_image_classifiers_by_removing_input_features_using_generative_models_ACCV_2020_paper.pdf
https://openaccess.thecvf.com/content/ACCV2020/papers/Agarwal_Explaining_image_classifiers_by_removing_input_features_using_generative_models_ACCV_2020_paper.pdf
https://openaccess.thecvf.com/content/ACCV2020/papers/Agarwal_Explaining_image_classifiers_by_removing_input_features_using_generative_models_ACCV_2020_paper.pdf
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� correlation to human intuition
� correlation to bounding boxes
� important precision versus recall measures can differ a lot

among methods
· gradient-based: lower precision, higher recall (due to noise)
· lrp/guided BP/deep LIFT: higher precision, lower recall (due to

sparsity)
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A. Iterative Dataset Design (medical imaging): Identify what you
need to label for the next round

B. improving model performance in small-sample size tasks:
LRP-guided training to improve cross-domain few shot learning
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Case A: Iterative Dataset Design (medical imaging):
Identify what you need to label for the next round
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� some problems: labels very costly, unlabeled data abundant
� biochemistry etc
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� improve model via growing the dataset
� decide what unlabeled data to add into next iteration of train

and test set

� Interpretability for efficiency in the selection step before
labelling!
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� improve model via growing the dataset
� decide what unlabeled data to add into next iteration of train

and test set – precursor to labelling.

� Interpretability for efficiency in the selection step before
labelling!
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Original HE images with necrosis regions:

Hägele, Seegerer, Lapuschkin, Bockmayr, Samek, Klauschen, Müller, Binder,
Resolving challenges in deep learning-based analyses of histopathological images
using explanation methods,
Nat Sci Rep 2020
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Finding unlabeled subclasses: Training without labeled necrosis samples.

Hägele, Seegerer, Lapuschkin, Bockmayr, Samek, Klauschen, Müller, Binder,
Resolving challenges in deep learning-based analyses of histopathological images
using explanation methods,
Nat Sci Rep 2020
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� left heatmap: false positive scores on unlabeled subclass.

� right heatmap: after augmenting training dataset with necrosis
samples (labeled as negative)

training
image

test
image

heatmap
with bias

heatmap
w/o bias

� test error unable to detect bad performance on missing subclasses

Hägele, Seegerer, Lapuschkin, Bockmayr, Samek, Klauschen, Müller, Binder,
Resolving challenges in deep learning-based analyses of histopathological images
using explanation methods,
Nat Sci Rep 2020
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Training with necrosis samples.

your version1 labels and test set error cannot discover it

Hägele, Seegerer, Lapuschkin, Bockmayr, Samek, Klauschen, Müller, Binder,
Resolving challenges in deep learning-based analyses of histopathological images
using explanation methods,
Nat Sci Rep 2020
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Case B: improving model performance in
small-sample size tasks:

Explanation-Guided Training for Cross-Domain
Few-Shot Classification2

https://arxiv.org/abs/2007.08790

2J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder, ICPR 2020

https://arxiv.org/abs/2007.08790


Explanation-Guided Training for Cross-Domain Few-Shot
Classification | 79

Motivation:
� Improve overall model performance beyond smaller

modifications.
� Choose a low sample size setup with a somewhat challenging

task.



Explanation-Guided Training for Cross-Domain Few-Shot
Classification | 80

Steps:

� compute prediction with
original model p(f ) based on
feature maps f

� compute explanation scores
R(·) for selected feature maps
f 7−→ R(f ) ∈ [−1,+1]d

� re-weight selected feature
maps:

flrp = (1 + R(f ))� f (5)

� train: optimize sum of two losses: original features and reweighted
features

L = L(y , p(f )) + λL(y , p(flrp)) (6)

� prediction time: use unweighted features p(f )



Explanation-Guided Training for Cross-Domain Few-Shot
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� observation: consistent improvement (3 models, several datasets).

LRP-: explanation-guided training using LRP. T: transductive inference.

miniImagenet 1-shot 1-shot-T 5-shot 5-shot-T
RN 58.31±0.47% 61.52±0.58% 72.72±0.37% 73.64±0.40%

LRP-RN 60.06±0.47% 62.65±0.56% 73.63±0.37% 74.67±0.39%
CAN 64.66±0.48% 67.74±0.54% 79.61±0.33% 80.34±0.35%

LRP-CAN 64.65±0.46% 69.10±0.53% 80.89±0.32% 82.56±0.33%
mini-CUB 1-shot 1-shot-T 5-shot 5-shot-T

RN 41.98±0.41% 42.52±0.48% 58.75±0.36% 59.10±0.42%
LRP-RN 42.44±0.41% 42.88±0.48% 59.30±0.40% 59.22±0.42%

CAN 44.91±0.41% 46.63±0.50% 63.09±0.39% 62.09±0.43%
LRP-CAN 46.23±0.42% 48.35±0.52% 66.58±0.39% 66.57±0.43%
mini-Cars 1-shot 1-shot-T 5-shot 5-shot-T

RN 29.32±0.34% 28.56±0.37% 38.91±0.38% 37.45±0.40%
LRP-RN 29.65±0.33% 29.61±0.37% 39.19±0.38% 38.31±0.39%

CAN 31.44±0.35% 30.06±0.42% 41.46±0.37% 40.17±0.40%
LRP-CAN 32.66±0.46% 32.35±0.42% 43.86±0.38% 42.57±0.42%

mini-Places 1-shot 1-shot-T 5-shot 5-shot-T
RN 50.87±0.48% 53.63±0.58% 66.47±0.41% 67.43±0.43%

LRP-RN 50.59±0.46% 53.07±0.57% 66.90±0.40% 68.25±0.43%
CAN 56.90±0.49% 60.70±0.58% 72.94±0.38% 74.44±0.41%

LRP-CAN 56.96±0.48% 61.60±0.58% 74.91±0.37% 76.90±0.39%
mini-Plantae 1-shot 1-shot-T 5-shot 5-shot-T

RN 33.53±0.36% 33.69±0.42% 47.40±0.36% 46.51±0.40%
LRP-RN 34.80±0.37% 34.54±0.42% 48.09±0.35% 47.67±0.39%

CAN 36.57±0.37% 36.69±0.42% 50.45±0.36% 48.67±0.40%
LRP-CAN 38.23±0.45% 38.48±0.43% 53.25±0.36% 51.63±0.41%
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� observation: consistent improvement (3 models, several datasets)

5-way 1-shot miniImagenet Cars Places CUB Plantae
GNN 64.47±0.55% 30.97±0.37% 54.64±0.56% 46.76±0.50% 37.39±0.43%

LRP-GNN 65.03±0.54% 32.78±0.39% 54.83±0.56% 48.29±0.51% 37.49±0.43%
5-way 5-shot miniImagenet Cars Places CUB Plantae

GNN 80.74±0.41% 42.59±0.42% 72.14±0.45% 63.91±0.47% 54.52±0.44%
LRP-GNN 82.03±0.40% 46.20±0.46% 74.45±0.47% 64.44±0.48% 54.46±0.46%



Explanation-Guided Training for Cross-Domain Few-Shot
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� combined with the feature
transform from: (Cross-domain
few-shot classification via learned
feature-wise transformation,
HY Tseng, HY Lee, JB Huang, MH
Yang, ICLR 2020), it improves
synergistically:

5-way 1-shot Cars Places CUB Plantae
RN 29.40±0.33% 48.05±0.46% 44.33±0.43% 34.57±0.38%

FT-RN 30.09±0.36% 48.12±0.45% 44.87±0.44% 35.53±0.39%
LRP-RN 30.00±0.32% 48.74±0.45% 45.64±0.42% 36.04±0.38%
LFT-RN 30.27±0.34% 48.07±0.46% 47.35±0.44% 35.54±0.38%

LFT-LRP-RN 30.68±0.34% 50.19±0.47% 47.78±0.43% 36.58±0.40%
5-way 5-shot Cars Places CUB Plantae

RN 40.01±0.37% 64.56±0.40% 62.50±0.39% 47.58±0.37%
FT-RN 40.52±0.40% 64.92±0.40% 61.87±0.39% 48.54±0.38%

LRP-RN 41.05±0.37% 66.08±0.40% 62.71±0.39% 48.78±0.37%
LFT-RN 41.51±0.39% 65.35±0.40% 64.11±0.39% 49.29±0.38%

LFT-LRP-RN 42.38±0.40% 66.23±0.40% 64.62±0.39% 50.50±0.39%

RelationNet. FT and LFT indicate the feature-wise transformation layer with
fixed or trainable parameters.
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� LRP-weighted training makes the filter activation spectrum
more uniform across channels (visible by lower quantile
differences)
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� Words are generated often by recurrent neural networks:
wordn+1 = f (Image,word1, word2,...,wordn)

� LRP can be applied to RNNs such as LSTM.

https://arxiv.org/abs/2001.01037

https://arxiv.org/abs/2001.01037
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https://arxiv.org/abs/2001.01037

https://arxiv.org/abs/2001.01037
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Questions?!
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