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What is the purpose?
• The ultimate goal of developing neural networks models is usually to 

enable automatic prediction in a particular task.

• In image classification, the goal is typically to obtain models that could 
automatically identify the correct output class for new images.

• For the users of a model, it usually does not matter how the model was 
trained.

• But it affects the performance, so model developers should certainly care.

• What matters is how the model performs when applied in practice.

• Some users would also like an understanding of how the predictions are 
obtained.

• Todays topics relates to how to estimate the performance and
how the generalisation to new data might be improved.

• A model which performs similarly on all new data relevant for the intended 
application as on the training data has good generalisation.

• Good performance on new data is sometimes referred to as good 
generalisation.
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Simplest approach: Resubstitution
• Estimate the performance using the set of data that was used to train the model.

• Very efficient use of data.

• Allows all data to be used for both training and testing.

• Often provides severely overoptimistic estimates.

• That is, provides performance estimates which suggest that the model 
performs much better than it would do on new data.

• Training longer usually makes the resubstitution estimates more overoptimistic.

• Training for too many epochs will facilitate the learning of relations between 
input data and target output that does not generalise to new data.

• Because this will often reduce the loss used during training.

• This is called overfitting (to the training data).

• Overfitting might decrease the performance on new data.

• Should not be used to estimate how the model performs on new data!

• Could be used to compare with other performance estimates to give an 
impression of the degree of overfitting to the training data.

• Could also be used to indicate that the training progresses reasonably.

• Using the loss averaged across some mini-batches is an alternative which 
requires much less additional computation. 3 / 49



Train and test subsets
• Common to randomly partition the development data into two disjoint 

subsets:

• Use the train subset to train models.

• Use the test subset to evaluate the final model.

• “Ideally, the test set should be kept in a “vault”, and be brought out only 
at the end of the data analysis. Suppose instead that we use the test-set 
repeatedly, choosing the model with smallest test-set error. Then the test 
set error of the final chosen model will underestimate the true test error, 
sometimes substantially.”
• Page 222 in the classical text book by Hastie, T., Tibshirani, R. & Friedman, J. The Elements of 

Statistical Learning 2nd edn (Springer- Verlag, 2009).
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Train and test subsets

• If the test subset is used for only a single analysis, then the resulting 
estimate is expected to be unbiased for the development data.

• At least if the test subset is a random sample of the development data.

• “Single analysis” refers to calculating a particular performance metric for a 
particular model using a particular set of data.

• “if you don’t like the results, you have to obtain, and lock away, a 
completely new test set if you want to go back and find a better 
hypothesis.”
• Page 709 in the classical text book by Russell, S. & Norvig, P. Artificial Intelligence: A Modern 

Approach 3rd edn (Prentice Hall, 2010).

• Does not use the data as efficiently as resubstitution.

• Less data will be used for both training and testing.

• However, the reliability of the performance estimation is substantially 
increased.
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Validation subset
• Usually need a third subset to evaluate different modelling choices.

• “Modelling choices” refer to selection of hyperparameters in a broad sense, 
including not only selection of values not optimised during training,
but also e.g. choice of neural network and optimisation method.

• Should not use the training subset because of overfitting.

• Should not use the test subset because that will bias performance estimation 
based on the test subset.

• Could make a third random subset (disjoint from the other two subsets):

• Note: In medical statistics, “validation” usually refers to testing.

• The subset used to determine hyperparameters may be called “tune subset”, 
but this type of “tuning” should not be confused with fine-tuning (i.e. training 
from an initialisation that applies weights from a pre-trained model).
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Validation by resampling

• There are multiple alternatives to applying a fixed validation subset.

• n-fold cross-validation:

• Randomly partition the non-test subset into n folds of equal size.

• Repeat n time:
Use the nth fold for validation, and the other n-1 folds for training.

• Use the average of the performance estimates obtain for the validation folds.

• Could also calculate the standard deviation or other measures of uncertainty.
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Validation by resampling

• Instead of applying a fixed random partitioning into folds, repeatedly 
partition the non-test subset into a train subset and a validation subset.

• Another alternative is to apply bootstrapping,
e.g. repeat the following 10 times:

• Sample with replacement from the non-test data to obtain
a train subset with the same size as the non-test subset.

• Each train subset will on average contain 63.2% of the non-test data
but will be of the same size as the non-test subset due to duplicates.

• Train using the train subset (with duplicates), and
use the other non-test data for validation.

• All these approaches are called resampling techniques.

• In each approach, the average of the performance estimates obtained for the 
validation subsets are used as the final performance estimate.

• They also allow estimation of the uncertainty of the performance estimate.
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Validation

• Using resampling techniques for validation will use the data more 
efficiently than applying a fixed validation subset.

• Because all non-test data will be used for both training and validation.

• Evaluating many modelling choices might result in overfitting.

• With a fixed validation subset, the choice that appears to provide best 
performance might do so only for the particular validation subset.

• When using a resampling technique, the choice that appears to provide best 
performance might do so only for the non-test data, or only for all 
development data.

• If data is limited, applying a resampling technique (e.g. cross-validation) is 
usually preferable if the added computational expense is acceptable.
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Validation
• Example from classical machine learning and medicine:

• ≈20 years ago, microarray gene-expression profiling was the new hot.

• Michiels et al. used a resampling technique to re-evaluate publicly 
available data from seven studies that had applied specific validation 
subsets to evaluate the performance of trained molecular signatures.
• The studies were published in

Nature, Nature Medicine,
Nature Genetics, Lancet, NEJM,
PNAS, and Cancer Cell.

• They found that
“Five of the seven studies
did not classify patients
better than chance.”
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Michiels, S., Koscielny, S. & Hill, 
C. Prediction of cancer outcome 

with microarrays: a multiple 
random validation strategy. 

Lancet 365, 488–492 (2005).



Subset sizes

• Want as much data as possible for training, validation, and testing.

• Common to randomly partition the development data according to some 
percentages, e.g. 70% for training, 15% for validation, and 15% for testing.

• Resampling techniques might
allow use of less validation data.

• Size of test subset should be
considered in relation to the
uncertainty of the resulting
estimates.
• If performance differences of

<1 percentage point should be
considered, then thousands of
test samples are usually needed.
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The lines depict the range of 95% Bayesian confidence intervals.

Figure 4a by Isaksson, A., Wallman, M., Göransson, H. & Gustafsson, 
M. G. Cross-validation and bootstrapping are unreliable in small 

sample classification. Pattern Recognit. Lett. 29, 1960–1965 (2008).



Subset sizes
• The relation between performance

and size of training data appears
to be linear on log-log scale.

• Thus, the performance gained
from increasing the size of the
train subset is initially large and
then quickly becomes smaller.

• With too small train subset,
the model struggle to learn.

• With an excessive train subset,
adding more training data might
not increase the performance.

• One might attempt to estimate the
power-law exponent and coefficient
from estimates of the performance
for different sizes of the train subset.

• Could also be useful if considering
to obtain a larger development set
(if possible, this usually requires
some time and resources).
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Hestness, J. et al. Deep learning scaling is predictable, empirically. 
https://arxiv.org/pdf/1712.00409.pdf (2017).

https://arxiv.org/pdf/1712.00409.pdf


Representability
• Recap: If a random test subset is used for only a single analysis, then the 

resulting estimate is expected to be unbiased for the development data.

• It is often assumed that the development dataset is a set of realisations of 
independent and identically distributed random variables.

• If that is true and the distribution of the random variables is that of the 
intended application, then the single analysis of the random test subset 
would be unbiased for the intended application.

• But should be expect the development data to be representative of 
intended application?
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Representability
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Winkler, J. K. et al. Association between surgical skin markings in dermoscopic
images and diagnostic performance of a deep learning convolutional neural 
network for melanoma recognition. JAMA Dermatol. 155, 1135–1141 (2019).



Representability
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Zech, J. R. et al. Variable generalization performance of a deep learning model to detect 
pneumonia in chest radiographs: a cross- sectional study. PLoS Med. 15, e1002683 (2018).



Representability

• Random test subset are similar to the training data.

• This could cause the performance to be overestimated e.g.:
• because there exists input data features that correlate with

the target outcome only in the development data, or

• because important predictive features are not adequately 
represented in the development data.

• Thus, data external to the development data are needed
to obtain more realistic performance estimates.
• What is considered “external” varies a bit, but it at least includes data 

from different geographical locations than the development data.

• Note: External data is a luxury that is too seldom available.
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External datasets

• External dataset representative of the intended application 
may be used for unbiased performance estimation.

• In practice, often not representative of the entire intended 
application, but it could be representative of a part of it.

• Good performance on an external dataset often indicates:
• good generalisability to one of multiple intended settings, and

• suggests that the model would also generalise to other settings.
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Use of external datasets

• Performance estimated using an external dataset becomes 
overoptimistic if multiple models are evaluated and the best 
one selected.
• Analogous to multiple testing on a test subset.

• The external dataset should therefore ideally be used
only once to evaluate the final model.
• Details related to the evaluation should ideally also be pre-specified, 

e.g. which subjects, what data, and which performance metric.

• Any post-hoc adjustments might bias the performance estimation.
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Use of external datasets
• In the most influential deep learning studies,

evaluation on external dataset is becoming common.

• In particular in studies published in journals with impact factor ≥10.

• This is at least evident in the field of cancer diagnostics:

• Evaluations of external datasets are rarely reported to be predefined.

• Except in clinical trial studies, where pre-specification is usually required.
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Figure 1 in 
Kleppe, A. et al. 
Designing deep 
learning studies 
in cancer 
diagnostics. 
Nat. Rev. Cancer
21, 199–211 
(2021).

“Influential” 
is here 

defined as 
≥20 citations 

per year or 
published in 

journals with 
impact factor 

≥10.



Facilitating generalisation

• Control the network’s capacity.
• Reduce the number of adjustable parameters.

• Stacking convolutional layers with small kernel sizes.

• Depthwise separable convolutions.

• Reduce width (e.g. number of channels in convolutional layers) and 
depth (number of layers).

• Should be scaled appropriately with input size (e.g. image resolution),
e.g. as in EfficientNet.

• Dropout.

• Weight decay.
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Facilitating generalisation

• Control the network’s capacity.

• Facilitate learning.
• Residual connections.

• Batch normalisation.

• Transfer learning.

• Learning rate schedule.

• Optimisation method.

21 / 49



Facilitating generalisation

• Control the network’s capacity.

• Facilitate learning.

• Data normalisation.
• Applies an algorithm to transform individual images before they are 

inputted to the model (often when training and when predicting).

• Aims at making different images more similar.

• Separate from standardising the images.
• E.g. subtracting the channel-wise mean and dividing by the channel-wise standard 

deviation estimated over the training data.

• Data augmentation.
• E.g. distort brightness, colour, contrast, rotation, sharpness, or size.
• Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).

• More diverse training data.
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Generalisation: Example for tumour detection
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Stacke, K., Eilertsen, G., Unger, J. & Lundström, C. Measuring 
domain shift for deep learning in histopathology. IEEE J. 
Biomed. Health Inform. 25, 325–336 (2021).



Generalisation: Example for tumour detection
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Stacke, K., Eilertsen, G., Unger, J. & Lundström, C. Measuring domain shift for deep 
learning in histopathology. IEEE J. Biomed. Health Inform. 25, 325–336 (2021).



Generalisation: Example for tumour detection

• For the generalisation to external data, it could be that colour augmentation
helps primarily because it increases the variability of the input,
not because it artificially increases the amount of training data. 25 / 49

Stacke, K., Eilertsen, G., Unger, J. & Lundström, C. Measuring domain shift for deep 
learning in histopathology. IEEE J. Biomed. Health Inform. 25, 325–336 (2021).



Generalisation: Example for tumour detection
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Stacke, K., Eilertsen, G., Unger, J. & Lundström, C. Measuring domain shift for deep 
learning in histopathology. IEEE J. Biomed. Health Inform. 25, 325–336 (2021).



Generalisation: Augmentation+normalisation?
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Tellez, D. et al. Quantifying the effects of data augmentation and stain color normalization in 
convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019).



Generalisation: Augmentation+normalisation?
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Tellez, D. et al. Quantifying the effects of data augmentation and stain color normalization in 
convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019).



Generalisation: Diverse training data

• The natural variability in the training data matters.

• Data distortion might not be able to fully compensate for 
reduction in natural data variation.

• Artificial and natural data variation complements each other.
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Figure 2e in Kleppe, A. et al. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 21, 199–211 (2021).

Trained and validated 
using 1 dataset 

containing 979 patients

Trained and validated 
using a random set of 979 
patients from 4 datasets

Trained and validated 
using 4 datasets 

containing 2473 patients



Generalisation: Too much distortion
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Figure 2c in Kleppe, A. et al. Designing deep learning studies in 
cancer diagnostics. Nat. Rev. Cancer 21, 199–211 (2021).

• There is a trade-off between facilitating the learning of relations that generalise well beyond 
the development dataset and not occluding relevant information for the prediction task.



Facilitating generalisation

• Varied training data or data normalisation might be particularly important 
to facilitate generalisation to external datasets.

• Controlling the network’s capacity and facilitating learning might also help.

• Amount of data distortion (i.e. which distortion algorithms and the 
selected values of its hyperparameters) or the particular normalisation 
method should be adapted to the input type and the prediction task.

• Not easy to identify the best option because subsets of the development 
dataset and external datasets might indicate different options to be best.

• If external data is not available to perform the adaption:

• For data augmentation, a heuristic is to use as much distortion as 
possible without decreasing the validation performance substantially.

• For data normalisation, the train (and any validation) subset could be 
inspected visually and by looking at relevant quantitative statistics.
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Performance metric

• Select a performance metric that reflects the intended usage 
of your model.
• If the end user of your model will simply use the classifications, then 

the performance metric should also only use the classifications (not 
the prediction scores).

• Note that metrics calculated from classifications are often more 
conservative than metrics calculated from prediction scores.

• If chosen inappropriately, it could become difficult to interpret how 
well the model will perform in the intended application, both in itself 
and relative to other models.

• Some performance metrics ignore relevant aspects of an 
evaluation and should be complemented by other statistics.
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Recap: Precision and recall
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Recap: Precision and recall
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Recap: Precision-recall curves

1. Sort the prediction scores for all detected objects.

2. If requiring a prediction score larger
than all observed values, we get no
predictions (so recall is 0) and define
precision to be 1 (the expression is 0/0).

3. Repeat until the threshold is below all
prediction scores:

1. Lower the threshold to include one more
of the observed prediction scores.

2. Calculate the recall and precision when
using the new threshold.

3. Plot the (recall, precision) pair and draw
a straight line from the previous point.

4. Draw a straight line from the previous point to (1, 0).
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Recap: Average precision (AP)

• The area under the precision-recall curve
is the average precision (for that class).

• It is common to compute the area below
an interpolated precision, which is
calculated at each observed recall by
taking the maximum precision measured
for that recall. This removes the “wiggles”
in the precision-recall curve.
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Sensitivity and specificity

• For classification tasks, recall is often called sensitivity.
• Is the proportion of images with a specific class that are correctly 

classified by the model as belonging to that class.

• For binary classification tasks:
• There are only two sensitivities.

• The sensitivity of the “negative” class (e.g. those without a condition) 
is often called the specificity or true negative rate.

• The sensitivity of the “positive” class (e.g. those with a condition)
is often referred to as the sensitivity or true positive rate.
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Receiver Operator Characteristic 
(ROC) curves

• ROC curves can be
created using the
approach described
for precision-recall
curves, except that:

• The false positive
rate (1-specificity)
and true positive
rate (sensitivity)
is calculated and
plotted instead of
recall and precision.

• ROC curves start at (0,0) and end at (1,1), while
precision-recall curves start at (0,1) and end at (1,0).
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Area under the curve (AUC)

• AUC is the area under the ROC curve.

• It can be shown that AUC can be calculated as the proportion 
of pairs where the prediction scores and target output class 
are concordant.
• “Concordant” means that the prediction score for the positive class is 

higher for the data point with positive label than for the data point 
with negative label.

• Requires one positive and one negative in each pair, thus these are the 
pairs that are considered when calculating the AUC in this way.

• This means that the AUC can be viewed as the probability that the 
predicted score for the positive class is larger than the predicted 
score for the negative class.
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Not exam relevant: c-index 
(Harrell’s concordance index)

• A generalisation of AUC to time-to-event data.

• In time-to-event data, each subject is associated with a time in addition to 
the binary output.

• For subjects in the positive class, the time specifies when an event occurred.

• For subjects in the negative class, the time specifies how long the subject was 
observed to not experience the event (it is unknown whether or not the 
subject subsequently experience the event).

• The pairs considered when calculating the c-index are those where one 
subject experienced the event and the other subject was followed at least 
as long without experiencing the event.

• So the other subject had not experienced the event at the time when the first 
subject in the pair experienced the event.

• This implies that the other subject’s time must be equal or larger to the time 
of the first subject, but note that both subjects could have experience the 
event (though at different points in time).

• If all times are equal, then the pairs are as for the AUC,
which makes the c-index and the AUC equal in this case. 40 / 49



AP, AUC, and c-index

• Summarises the discriminatory value of the prediction scores.

• Only uses the ranking of the prediction scores, not their absolute values.

• => Invariant to any strictly monotonic transform of the prediction scores.

• That is, the metric value of the transformed scores will be the same as 
the metric value of the original scores.

• Thus, these metrics ignore possibly relevant aspects of an evaluation.

• Assume we want to evaluate a model using two external datasets where each 
of the two target output class are equally common.

• If the model classifies all samples in one of the datasets as the positive class 
(the prediction score for the positive class is always very high) and all samples 
in the other dataset as the negative class (the prediction score for the 
positive class is always very low), the model clearly has generalised poorly.

• However, if the prediction scores rank the subjects in a fairly correct order in 
each of the datasets, then the AP, AUC, and c-index would all be rather high.
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AP, AUC, and c-index

• Looking at the distribution of the
prediction scores for samples with
a particular output class in a given
dataset could suggest that the
prediction scores inadvertently
differ between datasets.

• Not trivial because differences
between datasets might also
affect these distributions.

• If the prediction scores are expected
to relate to the probability of some
observable event, then this relation
could be plotted in a calibration plot.
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Figure 2c by Su, D. et al. Prognostic Nomogram for 
Thoracic Esophageal Squamous Cell Carcinoma after 

Radical Esophagectomy. PLOS ONE 10, e0124437 (2015).



Performance metric

• For many classification tasks, the ultimate goal would simply 
be to predict the correct class.

• If so, use a classification metric such as balanced accuracy.
• “Balanced accuracy” is the average of the sensitivity of each class.

• How to obtain classifications from the prediction scores 
should be predefined.
• Could be e.g. selecting the class with largest prediction score or 

defined by thresholds found to be suitable using cross-validation.

• If instead using the test set to determine how to convert prediction 
scores to classifications, e.g. by finding thresholds using the test set, 
then inadvertent transformations of the prediction scores could be 
occluded even if using a classification metric.
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Uncertainty of performance estimate

• When estimating the performance using a finite set of data, 
the estimate is always associated with an uncertainty.
• Technically, the estimator (i.e. the rule for calculating the estimate) 

has a distribution around the true performance.

• This uncertainty should be quantified and reported with the 
estimate of the performance metric.

• Common to estimate a 95% confidence interval.
• A procedure for creating 95% confidence intervals for a parameter 

(e.g. a performance metric) should be such that on average 95% of 
created confidence intervals contain the true value of the parameter.

• Often misinterpreted as “95% probability of containing the true 
value”, but given a concrete confidence interval, the interval either 
contains the true value or not (it is no longer a matter of probability).
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Uncertainty of performance estimate

• For many performance metrics, there exists specific 
procedures for estimating confidence intervals.
• E.g. for sensitivities, one of the formulas for binomial proportion 

confidence interval could be applied, e.g. Clopper-Pearson interval or 
normal approximation interval.

• Bootstrap confidence intervals are common and can be 
calculated for (almost?) all metrics.
• Although bootstrap confidence intervals might be a bit narrow 

because of the similarity between the bootstrapped samples.
• Isaksson, A., Wallman, M., Göransson, H. & Gustafsson, M. G. Cross-validation and bootstrapping 

are unreliable in small sample classification. Pattern Recognit. Lett. 29, 1960–1965 (2008).
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Bootstrap confidence interval

• Create a distribution of the parameter by repeating e.g. 1000 times:

1. Sample with replacement from the original set to obtain a resampled set with 
the same size as the original set.

2. Compute the parameter of interest using the resampled set.

46 / 49https://i2.wp.com/www.epeter-stats.de/wp-content/uploads/2015/05/example-1.png



Bootstrap confidence interval

• The standard bootstrap confidence interval is computed by estimating the 
standard error of the bootstrapped distribution of the parameter, s, and 
constructing a confidence interval when assuming normal distribution:

• (<point estimate of parameter> - zα/2s, <point estimate of parameter> + zα/2s)

• zα/2 is the 100(1-α/2)th percentile of the standard normal distribution,
e.g. about 1.96 if constructing a 95% confidence interval (α=0.05).

• There exists other bootstrap confidence interval that are based on the 
percentiles of the bootstrapped distribution of the parameter.

• These are better in particular if the performance estimate (i.e. point estimate 
of the parameter) is close to the theoretical maximum, e.g. 100%.

• Efron, B. Better Bootstrap Confidence Intervals. J. Am. Stat. Assoc. 82, 171-185 (1987).
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Uncertainty of performance estimate

• The confidence interval should be calculated using a test set 
and will relate to the point estimate of the parameter (the 
performance estimate) calculated on the same set.
• This test set is ideally an external dataset.

• If the model performs overoptimistically on the test set, the 
confidence interval will inherent this overoptimism.
• This may also happen for external datasets that are used for model 

selection through testing multiple options and selecting the best one.
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Key learning goals

• Be able to critically reason about the reliability of evaluations 
of the performance of a trained neural network model.

• Be able to suggest approaches for facilitating generalisation, 
in particular generalisation to external data.

• Understand AUC and limitations of performance metrics that 
only applies the ranking of prediction scores.

• Interpret a performance estimate as a value with associated 
uncertainty.
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