
The linear model for regression and classification,
Gradient Descent, Properties of the Gradient

Alexander Binder

University of Oslo (UiO)

January 25, 2021

Learning goals

� the four components for structuring many types of
machine learning problems

� loss functions: `2-loss, zero−1-loss, Hinge-loss
� generalization as goal: low loss on unseen data points.
� ?! relationship between generalization and central limit

theorem
� be able to reproduce the explicit solution for linear

regression and ridge regression
� ?! directional derivatives and their relationship to the

gradient
� ?! multilinear algebra: derivatives of multi-linear

functions and the product rule

Learning goals

� ?! be able to explain how the set of constant points
{x : f (x) = c} looks like for f being the linear model

� gradient descent as a vanilla solution strategy to find
parameters in machine learning

� be able to explain the impact of large or small learning
rates on the performance of gradient descent

� be able to explain the impact of different initialization
points on the performance of gradient descent, and for
what problems different initializations do not matter

� if enough time, otherwise lecture 5 Batch vs
Stochastic gradient descent

General discriminative ML | 4

Predictor f : Input space −→ Output space.

� model has trainable parameters w : f = fw
� Use (labeled! ...) training data and a loss function to optimize

parameters w
� Prediction is correct with a certain probability of mistake.

Detection in Images: class label and position | 5

� Input: image.
� Output: a number of bounding boxes

Text Summarization, Key word assignment | 6

� Input: sequence of words (w1, . . . ,wK)
� Output: sequence of words (w1, . . . ,wL)

(Example: “The text is about Star Trek. It mentions Spock
and James T. Kirk.”)

� Input: sequence of words (w1, . . . ,wK)
� Output: set of words {w1, . . . ,wL} – setup can be multi-label

classification or sequential outputs from a RNN
(Example: “Star Trek, RNN-generated nonsense”)

Reinforcement Learning | 7

� Input: sequence of states (health, ammo, images of view)K

� Output: next action (move left, fire, ...)
� Dosovitsky et al, ICLR 2017,

https://arxiv.org/pdf/1611.01779.pdf

https://arxiv.org/pdf/1611.01779.pdf

Visual Question answering, Image captioning | 8

credit: visualqa.org
� Input: Image (+ sequence of words for VQA)
� Output: set of words – setup can be multi-label classification

or sequential outputs from a RNN

What does one need for defining a discriminative machine
learning problem?

visualqa.org

Components of an ML problem | 9

four basic components of a machine learning problem

� I/O: Model for Input space, Model for output space
� Model: define a class of prediction models (deep neural

network??)
� Loss: define a loss function to measure difference:

prediction of the model versus ground truth
� Optimizer: define an algorithm for updating model

parameters using (labelled) training data

What input and output space can be used for the examples above?

Outline | 10

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

I/O | 11

A. http://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+
data+set
� X1 = the transaction date
� X2 = the house age (unit: year)
� X3 = the distance to the nearest MRT station (unit: meter)
� X4 = the number of convenience stores in the living circle on

foot (integer)
� X5 = the geographic coordinate, latitude. (unit: degree)
� X6 = the geographic coordinate, longitude. (unit: degree)
� The output is as follows Y = house price per unit of area

http://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
http://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set

Input and output space in regression problems? | 12

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
https://en.wikipedia.org/wiki/Concrete slump test
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

� commonly: X = Rd

� single regression target: Y = R1

� multiple regression targets: Y = Rk

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
https://en.wikipedia.org/wiki/Concrete_slump_test
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

The prediction mapping | 13

Linear function without/with a bias

fw (x) = x · w =
D∑

d=1
xdwd , w ∈ RD×1

fw ,b(x) = x · w + b =
D∑

d=1
xdwd + b , w ∈ RD×1, b ∈ R1

weighted sum of features xd : X5 = (Cumulated wind speed) ↔ x5

Loss function for regression | 14

Loss function to measure quality of prediction for a data sample,
here a pair (x , y):

`(f (x), y) = (f (x)− y)2

Reasons:
� `(f (x), y) = 0⇔ f (x) = y
� capture deviations on both sides of the real ground truth value

y
� simple derivative

the goal in regression (and machine learning in general) | 15

Find parameters w , b which generalize well to new, unseen data points.
Here: an informal explanation.

We need a way to model new, unseen data points

Assumption 1: We can draw test data sets Tn from your data
source. A test data set consists of n pairs (xi , yi):

Tn = {(x1, y1), (x2, y2), . . . , (xn, yn)} = {(xi , yi), i = 1, . . . , n}

xi is the input feature, yi is the ground truth label to it (here: the
regression value which xi is expected to have.)

Assumption 2: We cannot predict which samples (xi , yi) we will
obtain from your data source as new, unseen data points. Therefore,
we model the uncertainty by drawing from a probability for the
(xi , yi).

(xi , yi) ∼ Ptest .

An Example for such a generating probability | 16

for input samples x ∈ [0, 1]× [0, 1] ⊂ R2:

p(x) = Unif ([0, 1]× [0, 1])
p(y |x) = Normal(µ(x), σ2 = 0.1)
µ(x) = 2x1 − 3x2

Ptest(x , y) = p(x)p(y |x)

Drawing in practice:
� draw x ∼ p(x)
� draw y ∼ p(y |x)
� this implies: have (x , y) ∼ p(x)p(y |x) = Ptest(x , y)

By drawing n times in this way, one can obtain a training dataset
Dn = {(xi , yi), i = 1, . . . , n} or a test dataset Tn of independent
samples.

Outline | 17

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

Generalization (qualitative view) | 18

Generalization (qualitative view)

A mapping generalizes well, if it gives low prediction errors
on unseen data samples.

To generalize well in qualitative form:
� we find parameters (w∗, b∗) defining a mapping f

which for most draws of test datasets Tn produces
predictions with low average errors on test sets Tn:

L̂(f ,Tn) = 1
n

∑
(xi ,yi)∈Tn

`(f (xi), yi)→ low

Generalization (regression with `2-loss) | 19

Generalization for regression with `2-loss (short form)

Plug in the above:

L̂(f ,Tn) = 1
n

n∑
i=1

(f (xi)− yi)2 → low

on new unseen test data for most draws of test data sets.

We do not specify here what ”low” means. From a practitioners
perspective it would be predictions, with errors such that the effort
to correct them is low enough, so that using this predictor is
productive.

Central limit theorem | 20

Why do we have a chance to succeed in achieving low errors for
most test sets?

Recap on central limit theorem

If you have a population with mean µ and standard deviation
σ and you draw n random samples from the population -
statistically independently, then the distribution of the sample
means will be approximately normally distributed with mean
µ and standard deviation σ√

n

the general approximation done in machine learning | 21

We draw 100 times a testset with n = 900 samples. We compute 100
times an average loss.

� a number of the 100 testset losses will be close to µ, as they are
approximately on a distribution with variance σ√

n around the mean.

� have a probability that a loss estimate on training data is similar to
the estimate on test data

� number of “good” testsets (µ̂ close to µ) with sample size n
increases as n→∞

the general approximation done in machine learning | 22

What is the probability to be outside [µ− kσn, µ+ kσn] with your
training set or test set average loss ?

https:
//en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7 rule

if n large enough and i.i.d drawn data. Note σn = σ2
√

n

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

the general approximation done in machine learning | 23

Why do we have a chance to succeed in achieving average losses
being close to the expectation µ under Ptrain/test for most test sets?

consequence CLT

E(x ,y)∼Ptest [L(f (X),Y)] ≈ 1
n

∑
(xi ,yi)∈Dn

`(fw (xi), yi)

with a certain probability, provided that
� 1. the samples are drawn from Ptest

� 2. the samples are drawn independently

in the sense that 1
n
∑

(xi ,yi)∈Dn `(fw (xi), yi) will be one sample point
as the green points on the last slide, drawn from an approximately
normal with variance σ√

n

Notes on generalization | 24

Search for model parameters is done on a training dataset Dn, and
involves minimizing a training loss L̂(f ,Dn) computed on the
training dataset.

(w∗, b∗) = argmin(w ,b)L̂(f ,Dn) = argmin(w ,b)
1
n

∑
(xi ,yi)∈Dn

`(f (xi), yi)

= argmin(w ,b)
1
n

∑
(xi ,yi)∈Dn

(f (xi)− yi)2

� Question: Why the goal is not: to have low loss on one test
dataset T50 = {(xi , yi), i = 1, . . . , 50}?

That is important to understand, because often errors are measured
only on a single test dataset ...

A first method to solve linear regression | 25

Assumption here: no bias. Parameters are w .

Goal: to find parameters which minimize the loss on this dataset:

(w∗) = argminw

n∑
i=1

L(f (xi), yi) = argminw

n∑
i=1

(xi · w − yi)2

for a given dataset Dn = {(xi , yi)}. Then fw∗(x) = x · w∗ is the
selected mapping. Rare case: Can be solved explicitly for w .
� consider the loss L as function of w
� compute ∇L(w) - the gradient of the loss with respect to w
� solve ∇L(w) = 0 for w .
� Solution can be maximum, minimum or saddle point. Verify

that the Hessian in the solution point is positive definite. That
is: the function has positive curvature in every direction.
implies: must be a minimum.

A first method to solve linear regression | 26

Write in matrix form:

X =


x1
x2
...

xn

 =


x (1)

1 , . . . , x (D)
1

x (1)
2 , . . . , x (D)

2
...

x (1)
n , . . . , x (D)

n

 ∈ Rn×D

Y =


y1
y2
...

yn


then:

L(w) =
n∑

i=1
(xi · w − yi)2 = (X · w − Y)T · (X · w − Y)

A first method to solve linear regression | 27

Solve the minimization problem by computing the gradient for w
and setting it to zero.

Dw ((X · w − Y)T · (X · w − Y)) = 2XT · (X · w − Y)
2XT · (X · w − Y) = 0
⇒ (XT · X) · w = XT · Y

w = (XT · X)−1XT · Y

if the matrix inverse (XT · X)−1 exists.

A first method to solve linear regression | 28

explicit solution to linear regression without bias

Let X be the training data matrix.

X =


x1
x2
...

xn

 =


x (1)

1 , . . . , x (D)
1

x (1)
2 , . . . , x (D)

2
...

x (1)
n , . . . , x (D)

n

 ∈ Rn×D, Y =


y1
y2
...

yn

 ∈ Rn×1

The model is f (x) = w · x . Then a solution is given as

w∗ = (XT · X)−1XT · Y

if the matrix inverse (XT · X)−1 exists.

Prediction is done using: fw∗(x) = w∗ · x

A first method to solve linear regression | 29

What kind of extremum is the solution? Compute the Hessian

Dw ((X · w − Y)T · (X · w − Y)) = 2XT · (X · w − Y)
Dw Dw ((X · w − Y)T · (X · w − Y)) = 2XT · X

a matrix AT A is always non-negative definite. Thus the solution is
either a minimum or a saddle point, but not maximum.

A first method to solve linear regression | 30

� How to extend this solution to the case with a bias?

x =
(
x (1), . . . , x (D)

)
→ x̂ =

(
x (1), . . . , x (D), 1

)
Then the parameter w also gets an additional dimension

ŵ =
(
w (1), . . . ,w (D),w (D+1)

)
then:

x̂ · ŵ = w · x + w (D+1) = w · x + b

w (D+1) acts as bias.

From Linear to Ridge regression

From Linear to Ridge regression | 32

Overfitting: low training error, high test error. Reason: during
learning one picks up too much of the noise in the training data,
and learns weights that listen to noise signals.

One way to deal with it: avoiding weights w getting too large: add
a penalty on the euclidean length of w

argminw

n∑
i=1

(xi · w − yi)2 + λ‖w‖2

From Linear to Ridge regression | 33

n∑
i=1

(xi · w − yi)2 + λ‖w‖2

= (X · w − Y)T · (X · w − Y) + λwT · w
Dw ((X · w − Y)T · (X · w − Y) + λwT · w)
= 2XT · (X · w − Y) + 2λw

2XT · (X · w − Y) + 2λw = 0
XT · X · w + λI · w = XT · Y

(XT · X + λI) · w = XT · Y
⇒ w = (XT · X + λI)−1XT · Y

From Linear to Ridge regression | 34

Ridge regression

Ridge regression is Linear regression with an added squared-`2
penalty term on weights

λ‖w‖2

λ is a hyperparameter in this approach. The solution changes
to

w = (XT · X + λI)−1XT · Y

In practice, one needs to find a good value for the hyperparameter
λ on a validation set, before measuring the performance on the test
set. The effect of this regularization will be discussed later.

From Linear to Ridge regression | 35

Advantages of ridge regression over least squares:
� for any λ > 0 a solution always exists: (XT · X + λI) is always

invertible because it is positive definite
� the Hessian of L is positive definite, thus one finds always a

minimum and not a saddle point (or maximum)
� when in least squares a solution does not exist?

Outline | 36

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

Gradients | 37

� g : R1 → R1 is differentiable in
input x if the limit exists:

lim
ε→0

g(x + ε)− g(x)
ε

(=: g ′(x))

� example: f (x) = ax + b (affine
with slope a),then

f (x + ε)− f (x)
ε

=a(x + ε) + b − (ax + b)
ε

=aε
ε

= a

⇒ lim
ε→0

f (x + ε)− f (x)
ε

= a

� intuition: slope of the
function g at point x

g(x)

x=3

y

g'(3)

x

f(x)=ax+b

b

y

x

2-dimensions: directional derivatives | 38

Function of 2 input variables: f (x1, x2) ∈ R1

in every point (x1, x2): a two dimensional vector space of directions
to move from it
in every direction there is a slope – the directional derivative

Gradients | 39

Function of n input variables: f (x1, x2, . . . , xn) ∈ R1

Example:

The surface of a donut is two
dimensional at every point.
At every point there is a
two-dimensional space of
directions to move, each with
a slope.

Now take the product space of two donut
surfaces. It consists of all pairs (p1, p2) such
that p1 ∈ white donut surface, p2 ∈ red
donut surface. At every pair (p1, p2) - the
set of all directions is n = 4-dimensional!

in every point (x1, x2, . . . , xn): a
n-dimensional vector space of directions to
move from it. In every direction there is a
slope – the directional derivative – provides
information about function value change in
this direction

n-dimensions: directional derivatives and gradient | 40

The directional derivative of function f in point x in direction v is
defined as:

δvf (x) = lim
ε→0

f (x + εv)− f (x)
ε

Fact: If the function is differentiable in x , then the directional
derivative in x in direction v is the inner product of the gradient of
x in v :

δvf (x) = ∇f (x) · v

� directional derivatives tell you how the function grows
from x in direction v when you take an infinitely small
step

� the gradient contains information about all directional
derivatives, if differentiable in x

Gradients | 41

� next step: define gradient via partial derivatives

∇f (x) · ei = lim
ε→0

f (x + εei)− f (x)
ε

= lim
ε→0

f (x1, . . . , xi + ε, . . . , xD)− f (x1, . . . , xi , . . . , xD)
ε

= ∂f
∂xi

(x)

therefore:

∇f (x) =


∂f
∂x1

(x)
...

∂f
∂xD

(x)


therefore:

δvf (x) = ∇f (x) · v =
∑

d

∂f
∂xd

(x)vd

Gradients | 42

Further consequence from:

δvf (x) = ∇f (x) · v

Which v maximizes ∇f (x) · v ?

the optimization problem

argmaxv :‖v‖=1w · v

is solved by v := w
‖w‖ .

Therefore: The gradient is the direction where the function increases
maximally when taking an infinitesimally small step.

Analogously: the negative gradient is the direction where the function
decreases maximally when taking an infinitesimally small step.

Outline | 43

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

Why do you need that | 44

examples:

X ∈ Rd×k , Dw (X · w) = X ok, easy
Dw ((Xw)T · (Xw)) = XT Xw + wT XT X ?? shape mismatch !

= (k, 1) + (1, k) =???
A ∈ Rk×d ,W ∈ Rd×d ,C ∈ Rd×m,

Dw (AWC) = A [a hole here?] C = nonsense ???

Why do you need that | 45

Consider viewpoint directional derivatives:

Df (x)[h] = ∇f (x) · h

The derivative of f in x is a linear mapping of directions onto
directional derivatives.
Rule 1: the derivative of a linear function is the linear function
itself.

f (x) linear⇒ Df (x)[h] = f (h)
f (x) = Ax ⇒ Df (x)[h] = Ah

This holds also if f maps into vectors or matrices.

Why do you need that | 46

Rule 1: the derivative of a linear function is the linear function
itself.

f (x) linear⇒ Df (x)[h] = f (h)

This holds also if f maps into vectors or matrices. Why?

f (x) = Ah
⇒ fj(x) = (Ax)j =

∑
k

Ajkxk

∂fj
∂xm

= Ajm

∇fj(x) = (Aj1,Aj2, . . . ,Ajm, . . .Ajd)
Dfj(x)[h] = ∇fj(x) · h =

∑
k

Ajkhk = (Ah)j

⇒ Df (x)[h] = Ah

Why do you need that | 47

Dw (AWC)[H] =???

Why do you need that | 48

f (W) = AWC is linear in W so:
Dw (AWC)[H] = f (H) = AHC

its a no brainer!

You need a partial derivative?

W ∈ Rd×d ,⇒ ∂f
∂Wij

(W) = A1ijC

1ij is the matrix which is 1 in entry (i,j) and zero everywhere else

Why do you need that | 49

Rule 2: product rule, applicable for any
vector/matrix-vector/matrix multiplication

Dx (f (x) · g(x))[h] = (Df (x)[h]) · g(x) + f (x) · (Dg(x)[h])

=Df (x)[h] · g(x)
+f (x) · Dg(x)[h]

This extends to multiplications of more than two terms:

Dx (f (x) · g(x) · r(x))[h] =
= Df (x)[h] ·g(x) ·r(x)
+ f (x) ·Dg(x)[h] ·r(x)
+ f (x) ·g(x) ·Dr(x)[h]

Why do you need that | 50

Dw (wT Aw)[h] = ?

Why do you need that | 51

Dw (wT Aw)[h] = Dw (wT · Aw)[h]
= Dw (wT)[h] · Aw + wT · D(Aw)[h]

both are linear mappings!
Dw (wT)[h] = hT

D(Aw)[h] = Ah
⇒ Dw (wT Aw)[h] = hT Aw + wT Ah

Dw (wT Aw)[h] = Dw (wT A · w)[h] same solution

Why do you need that | 52

Dw ((Xw − Y)T (Xw − Y)) =?
Dw ((Xw − Y)T · (Xw − Y))[h] = Dw ((Xw − Y)T)[h] · (Xw − Y)

+ (Xw − Y)T · Dw (Xw − Y)[h]

Dw ((Xw − Y)T)[h] = Dw ((Xw)T)[h] + Dw ((−b)T)[h]
= (Xh)T + 0

⇒ Dw ((Xw − b)T · (Xw − Y))[h] = (Xh)T · (Xw − Y)
+ (Xw − Y)T · (Xh)

Note both terms are real numbers:
X ∼ (n, d),w ∼ (d , 1),Y ∼ (n × 1)
⇒ Xw−Y ∼ (n×1), (Xw−Y)T ·(Xw−Y) ∼ (1, n) ·(n, 1) = (1, 1)

Why do you need that | 53

Dw ((Xw − Y)T (Xw − Y)) =?
Dw ((Xw − b)T · (Xw − Y))[h] = (Xh)T · (Xw − Y)

+ (Xw − Y)T · (Xh)

Note both terms are real numbers: X ∼ (n, d),w ∼ (d , 1),Y ∼ (n × 1)
therefore they are their own transpose!

Dw ((Xw − b)T · (Xw − Y))[h] = (Xh)T · (Xw − Y)
+ ((Xw − Y)T · (Xh))T

= (Xh)T · (Xw − Y)
+ (Xh)T · (Xw − Y)

= 2(Xh)T · (Xw − Y) = hT · 2XT (Xw − Y)

Why do you need that | 54

Dw ((Xw − b)T · (Xw − Y))[h] = (Xh)T · (Xw − Y)
+ ((Xw − Y)T · (Xh))T

= 2(Xh)T · (Xw − Y) = hT · 2XT (Xw − Y)

This is a linear operation in h: h 7→ hT · 2XT (Xw − Y),

Therefore the gradient is the transpose of 2XT (Xw − Y)

The Linear model for classification

Input and output space in classification problems? | 56

2 classes: X = Rd , Y = {0, 1} or Y = {−1, 1}

C classes: X = Rd ,Y = {0, . . . ,C − 1}

the prediction mapping | 57

Consider the case of two classes. Linear function without/with a
bias. Thresholded by a sign

fw (x) = x · w =
D∑

d=1
xdwd , w ∈ RD×1

fw ,b(x) = x · w + b =
D∑

d=1
xdwd + b, w ∈ RD×1, b ∈ R1

h(x) = sgn(fw ,b(x)) ∈ {−1,+1}

Outline | 58

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

What does a linear mapping represent? | 59

Goal: understand what the mapping f (·) does.
Approach: characterizing the set of points x with a constant
output f (x) = c.

Thinking task

What is the set of points x = (x1, x2) ∈ R2 such that

3x1 − 2x2 + 3 = 0 ?

What is the set of points x = (x1, x2, x3) ∈ R3 such that

x1 − x2 − 2x3 + 2 = 0 ?

A. What is the set of points x : fw ,b(x) = 0 ?
B. What is the set of points x the prediction is a constant c, that

is fw ,b(x) = c ?

What is the set of points x : fw ,b(x) = 0? | 60

fw ,b(x) = 0⇔ x · w = −b

To understand how the bias b influences the zero set, lets consider
three cases:
� b = 0
� b > 0
� b < 0

The set of points x : fw ,b(x) = 0 – The case b = 0 | 61

� We know that for b = 0: fw ,0(x) = w · x = 0 holds for the zero
vector x = 0.

� The set of points x such that the inner product

x · w = 0

is in 2 dims a one-dimensional line, which goes through the origin
(x1, x2) = (0, 0), and which is orthogonal to w .

w

hyperplane orthogonal to w

x1

x2

x3

x1,x2,x3 are all orthogonal
to the vector w

The set of points x : fw ,b(x) = 0 – The case b = 0 | 62

The analogy also holds for 3 or more dimensions. So for 3 dims it is
a two-dimensional plane, which goes through the origin
(x1, x2, x3) = (0, 0, 0).

w

hyperplane

through origin

orthogonal to w

vectors x1 and x2 lie inside

this hyperplane

x1

x2

For n dimensions the plane of orthogonal vectors has n − 1
dimensions (+ goes through the origin), but is still a hyperplane

The set of points x : fw ,b(x) = 0 – The case b = 0 | 63

Recap hyperplane of dimension n − 1

� P is a hyperplane (linear space) if it holds:
x1 ∈ P, x2 ∈ P ⇒ a1x1 + a2x2 ∈ P (space closed under
linear operations)

� can find n − 1 basis vectors such that each point of P
can be represented as a linear combination of the basis
vectors)

∃ v1, . . . , vn−1 such that

∀x ∈ P ∃ a1, . . . , an−1 such that x =
n−1∑
i=1

aivi = a · V

The set of points x : fw ,b(x) = 0 – The case b < 0 | 64

b < 0, w · x + b = 0⇒ w · x = −b > 0

We know: w · x > 0 for all points x that are on that side of the
hyperplane through the origin, in which w points to.

w

hyperplane through origin

orthogonal to w, wx=0 there

x1
x2

x3

In the above figure x1,x2,x3 all have w · xi > 0 because relative to
the hyperplane orthogonal to w which goes through the origin, they

all point into the direction of w

The set of points x : fw ,b(x) = 0 – The case b < 0 | 65

b < 0, w · x + b = 0⇒ w · x = −b > 0

We know: w · x > 0 for all points x that are on that side of the
hyperplane through the origin, in which w points to.

The same also holds for 3 or more dimensions. All the vectors
below solve wx + b = 0 for some bias b < 0!

w

hyperplane

through origin

orthogonal to w

x1

x2

x3

In above figure x1,x2,x3 all have w · xi > 0

The set of points x : fw ,b(x) = 0 – any bias | 66

The bias b shifts the zero set corresponding to w · x + b = 0
parallel/anti-parallel to the direction of w .

w

zone:

wx>0
zone:

wx<0

wx=0

wx+b=0

b<<0

wx+b=0

b>>0

the hyperplane is parallel to the hyperplane orthogonal to w which
goes through the origin

The set of points x : fw ,b(x) = 0 – The case b < 0 | 67

The set of points x such that

{x : wx + b = 0}

is a hyperplane which is parallel to the hyperplane {x : x · w = 0}
orthogonal to w going through the origin, and which is shifted
towards the direction of w

The set of points x : fw ,b(x) = 0 – The case b > 0 | 68

The set of points x such that

{x : wx + b = 0}

is a hyperplane which is parallel to the hyperplane {x : x · w = 0}
orthogonal to w going through the origin, and which is shifted
opposite to the direction of w

The set of points x : fw ,b(x) = 0 – any bias | 69

hyperplane dependency on bias b

� w · x = 0 is a hyperplane orthogonal to w .
� Negative b < 0 shift the hyperplane {x : wx + b = 0}

into the direction of w ,
� positive b > 0 shift the hyperplane {x : wx + b = 0}

against the direction of w .
� Large values of |b| shift it far away.

The set of points x : fw ,b(x) = 0 – any bias | 70

hyperplane explicit

The linear mapping f (x) = w · x + b has a zero set which is
the plane of points

{x : x = u +−b w
‖w‖2 , u such that w · u = 0}

In this representation:
� u such that w · u = 0 is the hyperplane of vectors u orthogonal

to w .
� the vector −b w

‖w‖2 shifts the hyperplane antiparallel to
direction of w .

That holds because

w · x + b = w ·
(

u +−b w
‖w‖2

)
+ b = 0

How to find a vector u such that w · u = 0 ? | 71

By subtracting its component parallel to w !

Be x any vector. Subtract its component parallel to w .

Important: use length-normalized w : w
‖w‖(

x · w
‖w‖

)
is the component of x in direction of w

‖w‖

u = x −
(

x · w
‖w‖

) w
‖w‖ = x − (x · w) 1

‖w‖2 w

⇒ u · w = 0

cf. Gram-Schmid Orthonormalization to find an orthonormal basis
of such vectors.

What is the set of points x where the prediction is a
constant, that is gw ,b(x) = c ? | 72

Answered by reducing it to a zero set:

gw ,b(x) = wx + b = c
wx + (b − c) = 0

The set of points x such that gw ,b(x) = c is just the set
x : gw ,b−c(x) = 0.

thinking task

What is the set of points x = (x1, x2) ∈ R2 such that

3x1 − 2x2 + 3 = 0 ?

What is the set of points x = (x1, x2, x3) ∈ R3 such that

x1 − x2 − 2x3 + 2 = 0 ?

Outline | 73

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

Loss function for classification | 74

First loss function for a pair (x , y):
zero-one-loss

y ∈ {−1,+1} ⇒ `(f (x), y) = 1[sgn(fw ,b(x)) 6= y]

Problem: sign is unsuitable for gradient optimization.

Note here the possibility to rewrite the condition for y ∈ {−1,+1}:

1[sign(f (x)) 6= y] as 1[f (x)y < 0] without any sign – that is: we
have an error if the prediction function f (x) has opposite sign of
the ground truth label y .

f (x)y =


f (x) > 0, y > 0 no error
f (x) < 0, y < 0 no error
f (x) > 0, y < 0 error
f (x) < 0, y > 0 error

Loss function for classification | 75

hinge-loss

y ∈ {1,+1}, `(f (x), y) = max(0, 1− fw ,b(x)y)

The hinge-loss is an upper bound on the zero-one-loss (insight: fix
y = +1 or y = −1. plot 1[sgn(z)y < 0] and max(0, 1− zy)).

Idea: If the hinge loss is low, the zero-one loss must also become
low. Therefore minimize an average over the hinge loss over
training samples

L(w , b) = 1
n

∑
(xi ,yi)∈D

max(0, 1− yi fw ,b(xi))

solve (w∗, b∗) = argminw ,bL(w , b)

Then you predict using fw∗,b∗ .

from classification with hingeloss to support vector
machines (SVM) | 76

now add again a quadratic penalty on the weights when learning
parameters over a training set

argmin(w ,b)
1
n

∑
(xi ,yi)∈Dn

max(0, 1− gw ,b(xi)yi) + λ‖w‖2

SVM:
� averaged hinge loss max(0, 1− f (xi)yi)
� with a linear/affine model f (xi) = w · xi + b
� with quadratic penalty λ‖w‖2 on the weights.

A different way to arrive at an SVM (remember 1
‖w‖ is the margin

to be maximized)

the goal in classification: Generalization | 77

Generalize well means again the same as for regression:
generalization

Generalize well means in short form:

� we find parameters (w∗, b∗) defining a mapping f which for
most draws of test datasets Tn produces predictions with low
errors on them:

L̂(f ,Tn) = 1
n
∑

(xi ,yi)∈Tn
`(f (xi), yi)→ low

Take away: generalization

Generalization is the same idea for many different setups:
learn parameters on training data, so that the loss on newly
drawn test datasets will be low on average – for most draws
of such datasets from a data source.

... | 78

See also that the linear model is suitable for both classification and
regression. What makes the difference whether we have a
classification or a regression model?

Outline | 79

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

... | 80

How to find these parameters (w , b) in classification or regression?
Problem setting for application of gradient-based minimiza-
tion

The Problem Setting, in which gradient methods can be used:
� given some function g(w)
� goal: find w∗ = argminw g(w)
� assumption: can compute ∇g(w) - the gradient in

point w .

why the gradient can inform optimization | 81

Idea: negative gradient at a point w is the direction of locally
steepest function decrease from w .

Note: the direction of locally steepest decrease does not point to a
global or local minimum.

Gradient Descent Algorithm | 82

Gradient Descent

Basic Algorithm: name: Gradient Descent:
� given: step size parameter η, initialize start vector w0

as something
� run while loop, until function value changes very little

(δg), do at iteration t:
· wt+1 = wt − η∇w g(wt)
· compute change to last value: δg = ‖g(wt+1)− g(wt)‖

Consequences I:

� minimizing the gradient on training data ensures low loss on training
data

� does not guarantee low losses on new unseen test data

� a gap between training and test loss is known as overfitting (training
loss below test loss).

a method – for linear classification – to select a prediction
mapping fw ,b / or its parameters from a dataset | 83

Minimize

L(w , b) = 1
n

∑
(xi ,yi)∈D

max(0, 1− yi fw ,b(xi))

Use L(w , b) with the algorithm box above ... gradient descent with
respect to (w , b) for obtaining (w∗, b∗) = argminw ,bL(w , b)

Gradient Descent Algorithm | 84

Gradient Descent

Basic Algorithm: name: Gradient Descent:
� given: step size parameter η, initialize start vector w0

as something
� run while loop, until function value changes very little

(δg), do at iteration t:
· wt+1 = wt − η∇w g(wt)
· compute change to last value: δg = ‖g(wt+1)− g(wt)‖

� the initialization of w0 matters a lot in deep neural networks!
see later exercise. E.g. https://arxiv.org/abs/1502.01852
“Kaiming-He”-initialization ... related to vanishing gradients
problem, symmetry breaking

https://arxiv.org/abs/1502.01852

Gradient Descent | 85

Gradient Descent

Basic Algorithm: name: Gradient Descent:
� given: step size parameter η, initialize start vector w0

as something
� run while loop, until function value changes very little

(δg), do at iteration t:
· wt+1 = wt − η∇w g(wt)
· compute change to last value: δg = ‖g(wt+1)− g(wt)‖

When does it converge ? When the change δg is small, that is
when η‖∇w g(wt)‖ becomes small. That means ∇w g(wt) ≈ 0, so
a local optimum. Since we always went down, it must be local
minimum, or a saddle point.

Gradients | 86

possible problems of gradient descent:
� we find a local minimum, not the global minimum of a

function, can be good or bad.
� effects of bad stepsize: divergence – no solution, or slow

convergence
� effects of starting point – which ones?

Lets explore these effects:
� in learnThu8.py run tGD([stepsize]) to see the effect of different

stepsizes. Why a too large stepsize can lead to numeric overflows? This is
a common effect in deep learning training: too large stepsize, then
training error will not go down.

� run tGD2([initvalue]) with initvalue ∈ [−4, +4] to see the effect of a
constant stepsize, but different starting points – see in what minimum you
end up.

Gradients | 87

Two Properties and how to deal with them:
1 convergence to global optimum only if the function is convex

and the stepsize is sufficiently small. In general one reaches
only local minima, sometimes saddle points.

2 the size of the update step wt+1 = wt − η∇w g(wt) depends
on the norm of the gradient, too. So when starting in a steep
region, even a small stepsize can bring trouble.

large, f'(x) large small, f'(x) small

the gradient stepsize depends not only on the stepsize parameter
but also on the norm of the gradient

learning rate adjustment | 88

learning rate adjustment schemes / learning rate annealing
schemes

In practice: one starts with a learning rate, and decreases it
over time, either with a polynomial decrease, or by a factor
every N iterations.

polynomial: λ(t) = c0∗ (t + 1)−α, α > 0
regular step at each T : λ(t) = c0∗ cbt/Tc, c ∈ (0, 1)

This enforces convergence (not necessarily to a good point).a

in code:
pytorch: torch.optim.lr scheduler

aWhat happens if one decreases the learning rate very fast?

Outline | 89

1 Ordinary Least Squares (Linear regression)

2 Generalization and CLT

3 A recap on gradients, part I

4 Gradients for multilinear Algebra

5 What does a linear mapping represent?

6 Linear model for classification continues

7 Gradient Descent and its properties

8 Stochastic gradient descent

Gradients | 90

Consider setting with an average of losses over training samples:

1
n

n∑
i=1

`(f (xi), yi)

The application of vanilla gradient descent to this function results
in the following algorithm:

wt+1 = wt − η∇w

(
1
n

n∑
i=1

`(fwt (xi), yi)
)

This is called batch gradient descent because it uses the set of
all training data samples to compute the gradient in each step.

stochastic gradient descent | 91

The alternative is stochastic gradient descent (SGD).

stochastic gradient descent computes in every iteration a
gradient using only one sample every iteration, or, it uses a
mini-batch like k = 64 samples – such that this set is chosen
randomly from the set of all training samples. This is the default in
deep learning.

stochastic gradient descent for an average of losses

The core idea of Stochastic gradient descent is to compute
the gradient only over a randomly selected subset of samples.
Stochastic gradient descent when starting at index m and
using the next k samples is:

∇w
1
k

m+k−1∑
i=m+0

`(fw (xi), yi)

Gradients | 92

stochastic gradient descent for an average of losses

use a randomly selected subset of samples:

∇w
1
k

m+k−1∑
i=m+0

`(fw (xi), yi)

� initialize start vector w0 as something, choose step size
parameter η

� run while loop, until function value changes very little (δ), do
at iteration t:
· select a random subset of k samples (usually by a

random ordering of all training samples)
· wt+1 = wt − η∇w (1

k
∑m+k−1

i=m+0 `(fw (xi), yi))
· compute change to last value:
δ = 1

k ‖
∑m+k−1

i=m+0 `(fwt+1 (xi), yi))− `(fwt (xi), yi))‖

Advantages of stochastic gradient descent | 93

� Full-batch is often too costly to compute a gradient using all
samples when its more than tens of thousands

� SGD is a noisy, approximated version of the batch gradient.
� injecting small noise is one way to prevent overfitting!

Sometimes SGD can be better than full batch gradient descent
in finding good local optima.

Advantages of stochastic gradient descent | 94

� An illustration why noise to the loss function (e.g. by
randomized sampling of training batches) may help to jump
out of bad local optima

Left: a loss surfaces at some point (orange). Middle and Right: changes in the
loss surfaces as different training data subsets are used. In the middle the

gradient norm is much larger compared to the left case – allows to jump out of
the local minimum.

SGD as noisy approximation | 95

� Insight: stochastic gradient descent is a noisy approximation (subset
of all samples) to the batch gradient.

The batch gradient can be seen as an expected value: non-zero
probability only for our training data points (xi , yi) ∈ Dn

PDn (x , y) =
{

1
n if (x , y) = (xi , yi) for (xi , yi) ∈ Dn

0 otherwise

∇w
1
n

∑
(xi ,yi)∈Dn

`(fw (xi), yi) =
∑

(xi ,yi)∈Dn

∇w`(fw (xi), yi)
1
n

=
∑

(xi ,yi)∈Dn

∇w`(fw (xi), yi)PDn ((xi , yi))

= E(xi ,yi)∼PDn
[∇w`(fw (xi), yi)]

This is an expectation of a gradient function ∇w`(fw (xi), yi).

SGD as noisy approximation | 96

Remember here for a discrete set of values (xi , yi)∑
i

r(xi , yi)P((xi , yi)) = E [r(x , y)]

When performing stochastic gradient descent, we use a subset of
samples from Dn in every step for computing the gradient. Using
only a subset of samples from Dn is an approximation to the
expectation shown in the last slide!

E(xi ,yi)∼PDn
[∇w`(fw (xi), yi)] ≈

m+k−1∑
i=m+0

∇w`(fw (xi), yi)
1
k

Approximation holds due to the central limit theorem! No
convergence here1

1Why there is none?

Central limit theorem | 97

E(xi ,yi)∼PDn
[∇w`(fw (xi), yi)] ≈

m+k−1∑
i=m+0

∇w`(fw (xi), yi)
1
k

Approximation holds due to central limit theorem! No convergence
here2

Recap on central limit theorem

If you have a population with mean µ and standard deviation
σ and you draw n random samples from the population -
statistically independently, then the distribution of the sample
means will be approximately normally distributed with mean
µ and standard deviation σ√

n

2Why there is none?

SGD as noisy approximation | 98

The only thing that is necessary for the expectation to hold is that
� drawing pairs (xi , yi), (xk , yk) is statistically independent

This noise from approximation can sometimes act as regularization
– prevents to look at the data too closely.

Questions?!

	Ordinary Least Squares (Linear regression)
	Generalization and CLT
	A recap on gradients, part I
	Gradients for multilinear Algebra
	What does a linear mapping represent?
	Linear model for classification continues
	Gradient Descent and its properties
	Stochastic gradient descent

