
Introduction to neural networks

Andreas Kleppe
Modification of slides made by Alexander Binder and Ole-Johan Skrede

27.01.2021

Practical stuff | 2

� For the time being, it seems that teachers can only participate
on Padlet and Mattermost.

� We encourage collaboration between students.
· Explaining or discussing with fellow students are often more

educational for all than to provide working code.
· Students are allowed to answer each others requests on Padlet

(or Mattermost).
· The mandatory exercises and the exam must be individual work.

� We aim to check Padlet more frequently.
� Highly recommend doing the weekly exercises.

Outline | 3

1 Classification by logistic regression

2 Artificial neurons

3 Neural networks

4 Example: The XOR problem

5 More on representability

Classification | 4

Goal of classification: For every input sample x ∈ X , correctly
predict which class y it belongs.
� For 2-class classification, y ∈ {−1,+1} or y ∈ {0, 1}.

Initial idea (from last lecture): Apply a linear mapping and classify
according to the sign of the output:

f (x) = w · x + b, s(x) = sign(f (x))

While f (x) has unbounded values, s(x) is either −1 or 1, but:
� if f (x) ≈ 0, we should be uncertain about the prediction.
� if f (x) >> 0, we should be confident about the prediction 1.
� if f (x) << 0, we should be confident about the prediction −1.

Classification | 5

How can we encode the uncertainty into a mapping from
(−∞,+∞) onto [0, 1]? We would like to map:
� f (x) ≈ 0 to s(x) ≈ 0.5.
� f (x) >> 0 to s(x) ≈ 1, in particular let limx→∞ f (x) = 1
� f (x) << 0 to s(x) ≈ 0, in particular let limx→−∞ f (x) = 0

This would allow us to interpret s(x) as a probability.

There are many possible choices for the function s(x).

Probit regression | 6

We could e.g. use the cumulative distribution function (CDF) of
any probability distribution function (PDF) with a median of 0.
� The normal (Gaussian) distribution is used in probit (from

probability and unit) regression.

Logistic regression | 7

We will use a simpler function called the logistic sigmoid function:

Definition: Logistic sigmoid function

s(x) = exp(x)
1 + exp(x) = 1

exp(−x) + 1
exp(x)
exp(x) = 1

exp(−x) + 1

Note that:

s(0) = 1
exp(−0) + 1 = 1

1 + 1 = 0.5

lim
x→∞

s(x) = lim
x→∞

1
exp(−x) + 1 = 1

0 + 1 = 1

lim
x→−∞

s(x) = lim
x→−∞

exp(x)
1 + exp(x) = 0

1 + 0 = 0

Logistic regression | 8

How does the logistic sigmoid function look?
Let’s plot it for different scalings c:

s(cx) = exp(cx)
1 + exp(cx) = 1

exp(−cx) + 1

Logistic regression | 9

Definition: Logistic regression model

Assume we have a linear (or affine) mapping fw ,b(x) = w · x + b.
Plugging it into the logistic sigmoid function s(x) provides a logistic
regression model:

s(fw ,b(x)) = exp(w · x + b)
1 + exp(w · x + b) = 1

exp(−w · x − b) + 1

For 2-class classification problems, the output s(fw ,b(x)) ∈ [0, 1] is
the predicted probability that sample x has class label y = 1, that
is, P(Y = 1|X = x).

Logistic regression | 10

A logistic model may also be called a logit (from logistic and unit)
model.

Denoting the probability as p, the logit function is the logarithm of
the odds:

logit(p) = log p
1− p

The logit function is the inverse of the logistic sigmoid function:

s(logit(p)) = exp(logit(p))
1 + exp(logit(p)) =

p
1−p

1 + p
1−p

= p
1− p + p = p

1 = p

In statistics, logistic regression is often used to estimate the odds
ratio between two events.

Derivation of cross-entropy loss function | 11

� We interpreted s(fw ,b(x)) as the probability of Y = 1|X = x
predicted by our model with parameters w and b.

� Given training samples x1, . . . , xn and associated class labels
y1, . . . , yn ∈ {0, 1}, we would like to find suitable values for
the model parameters w and b.

� If our logistic regression model was true, then the joint
probability of observing the class labels would be:

P(Y1 = y1, . . . ,Yn = yn|X1 = x1, . . . ,Xn = xn,w , b)

� Assuming that (x1, y1), . . . , (xn, yn) are realisations of
independent and identically distributed random variables
(X1,Y1), . . . , (Xn,Yn), this reduce to:∏n

i=1 P(yi |xi ,w , b)

� In maximum likelihood estimation, we consider this as a
function of parameters w and b and maximise it.

Derivation of cross-entropy loss function | 12

The maximum likelihood estimates of the parameters w and b
given the data points (x1, y1), . . . , (xn, yn) are therefore:

(w∗, b∗) = argmax(w ,b)

n∏
i=1

P(yi |xi ,w , b)

� If yi = 1, then P(yi |xi ,w , b) is our model output s(fw ,b(xi)).
� If yi = 0, then P(yi |xi ,w , b) is 1− s(fw ,b(xi)).
� This can be written as:

P(yi |xi ,w , b) = s(fw ,b(xi))yi (1− s(fw ,b(xi)))1−yi

Derivation of cross-entropy loss function | 13

Inserting this into the formula for the maximum likelihood
estimates gives:

(w∗, b∗) = argmax(w ,b)

n∏
i=1

s(fw ,b(xi))yi (1− s(fw ,b(xi)))1−yi

Taking the logarithm does not change the location of the maximum
(and it will make optimisation easier):

(w∗, b∗) = argmax(w ,b)

n∑
i=1

log(s(fw ,b(xi))yi (1− s(fw ,b(xi)))1−yi)

= argmax(w ,b)

n∑
i=1

yi log(s(fw ,b(xi))) + (1− yi) log(1− s(fw ,b(xi)))

Derivation of cross-entropy loss function | 14

For convention, we will divide by n and minimise the negative:

(w∗, b∗) = argmin(w ,b)
1
n

n∑
i=1
−yi log(s(fw ,b(xi)))− (1− yi) log(1− s(fw ,b(xi)))

Thus, minimising this expression provides the maximum likelihood
estimates of the weight parameter w and the bias parameter b in
the logistic regression model s(fw ,b(x)) based on our data points
(x1, y1), . . . , (xn, yn).

This expression is called the cross-entropy loss of our data points
and is the average cross-entropy loss of the individual data points.

Cross-entropy loss | 15

Definition: Cross-entropy loss for 2-class classification

The cross-entropy loss of a data point (xi , yi) is defined as:

L(xi , yi |w , b) = −yi log(s(fw ,b(xi)))− (1− yi) log(1− s(fw ,b(xi)))

For one-hot labels y1, . . . , yn ∈ {0, 1}, the cross-entropy loss
of a data point (xi , yi) is the negative logarithm of the pre-
dicted probability of the ground-truth class:

L(xi , yi |w , b) =
{
− log(s(fw ,b(xi))) if yi = 1
− log(1− s(fw ,b(xi))) if yi = 0

Does such a log-probability make sense as a loss?

Minimising the cross-entropy loss | 16

We derived that we want to minimise the loss function:

(w∗, b∗) = argmin(w ,b)
1
n

n∑
i=1
−yi log(s(fw ,b(xi)))− (1− yi) log(1− s(fw ,b(xi)))

= argmin(w ,b)
1
n

n∑
i=1

L(xi , yi |w , b)

Let’s use gradient descent.

Minimising the cross-entropy loss | 17

The gradient of the logistic sigmoid function is:

∂s(x)
∂x = ∂

∂x
1

exp(−x) + 1 = exp(−x)
(exp(−x) + 1)2

= 1
exp(−x) + 1

(exp(−x) + 1− 1
exp(−x) + 1

)
= s(x)(1− s(x))

Thus:

∂ log(s(x))
∂x = 1

s(x)
∂s(x)
∂x = 1− s(x)

∂ log(1− s(x))
∂x = − 1

1− s(x)
∂s(x)
∂x = −s(x)

Minimising the cross-entropy loss | 18

With fw ,b(x) = w · x + b, we get:

∂L
∂w = ∂

∂w
1
n

n∑
i=1
−yi log(s(fw ,b(xi)))− (1− yi) log(1− s(fw ,b(xi)))

= ∂

∂w
1
n

n∑
i=1
−yi log(s(w · xi + b))− (1− yi) log(1− s(w · xi + b))

= 1
n

n∑
i=1
−xiyi (1− s(w · xi + b)) + xi (1− yi)s(w · xi + b)

= 1
n

n∑
i=1
−xiyi + xis(w · xi + b) = 1

n

n∑
i=1

xi (s(w · xi + b)− yi)

∂L
∂b = 1

n

n∑
i=1

s(w · xi + b)− yi

Minimising the cross-entropy loss | 19

The gradient of a data point (xi , yi) is thus given by:

∂L(xi , yi |w , b)
∂w = xi (s(w · xi + b)− yi)

∂L(xi , yi |w , b)
∂b = s(w · xi + b)− yi

Observation 1:
Nice interpretation: The partial derivatives are the difference
between the predicted value s(w · xi + b) and the true value
yi ∈ {0, 1}, with or without weighting by the sample xi .

Minimising the cross-entropy loss | 20

Observation 2:
If both classes in the data can be perfectly separated by a linear mapping,
then optimisation will try to make the weights w to go to infinity. This is
a source of instability during optimisation time.

� If yi = 1, then the loss for the data point (xi , yi) is − log s(fw ,b(xi)).

� For − log s(fw ,b(xi))) to be 0, then s(fw ,b(xi)) need to be 1.

� For s(fw ,b(xi)) = 1
exp(−fw,b(xi))+1 to be 1, then exp(−fw ,b(xi)) need to

be 0.

� For exp(−fw ,b(xi)) to be 0, then fw ,b(xi) = w · xi + b →∞.

� For data points where yi = 0, a loss − log(1− s(fw ,b(xi))) = 0
implies that w · xi + b needs to go to −∞.

� For linearly separable problems, the total loss will thus approach 0 as
|w | approach infinity (and is appropriately oriented). The
optimisation may therefore result in numerical instability.

� So making P(Y = yi |X = xi) = 1 for all data points requires
increasing |w | to a very large value.

Gradient of the loss | 21

Why this does not happen when the training dataset is not linearly
separable?
� No matter the orientation of w , there will be always a data point

(xi , yi) that is misclassified.
� Suppose yi = 1 so that the loss of this sample is − log s(fw ,b(xi)).
� We can simulate |w | → ∞ by using as weight cw and let go c →∞.
� Because (xi , yi) is misclassified, fw ,b(xi) = cwxi + b < 0, and thus

limc→∞ cwxi + b = −∞.
� Therefore, the predicted probability of the correct class s(fw ,b(xi))

will to go 0, making the loss go to infinity.
� Because the loss is always non-negative, this single misclassification

would make the total loss go to infinity if |w | goes to infinity.
� Thus, the absolute value of the weight will not go to infinity if the

training dataset is not linearly separable.
� There will instead be a trade-off between pushing P(Y = yi |X = xi)

close to 1 for corrected classified samples and not pushing it close to
0 for misclassified samples.

Classification via logistic regression | 22

Key takeaways:

� Applying the logistic sigmoid function to a linear mapping
provides a logistic regression model.

� Outputs a score in [0, 1] which can be interpreted as the
predicted probability of the class labelled 1.

� One minus score is our predicted probability of class label 0.

� Logistic regression is therefore a classification algorithm.

� The cross-entropy loss can be derived as the function to
optimise by maximum likelihood estimation.

� The cross-entropy loss is the sum of the negative logarithm
of the predicted probabilities weighted by the ground-truth
distribution.

� For one-hot labels, this becomes the negative logarithm of
the predicted probability of the ground-truth class.

Outline | 23

1 Classification by logistic regression

2 Artificial neurons

3 Neural networks

4 Example: The XOR problem

5 More on representability

What is an artificial neuron? | 24

A mathematical function that for instance can:
� Take some inputs {zi}di=1.
� Depend on some weights wij and bias bj .
� Apply some non-linear activation function g(·).
� Output zj .

Forward equation:

aj =
d∑

i=1
ziwij + bj linear mapping

zj = g(aj) nonlinear activation

Activation functions | 25

� A function g : R1 −→ R1

� Introduces non-linearity.
� Should be differentiable if you are planning to use

gradient-based optimisation.
� Typically prevents or reduces weak signals from passing

through.
� Intuition: Determines what the neuron fires for different

outputs of the linear mapping.

Sigmoid activation | 26

We could for instance use the
logistic sigmoid function:

g(x) = 1
exp(−x) + 1

� Called sigmoid activation.
� Historically popular.
� Currently rarely used.

Suffer from gradient saturation: its derivative gets exponentially
small for large |x |:

∂s(x)
∂x = e−x

(e−x + 1)2 ≤
{

e−x x ≥ 0
1

e−x +1 x < 0

Rectified linear unit (ReLU) activation | 27

An alternative is to simply set
negative values to 0, i.e. let:

g(x) = max(0, x)

� Called ReLU activation.
� Gradient do not saturate.
� Not differentiable in 0.

· Not of practical concern.
· Could define it to be 1.

The gradient is 0 for negative inputs.
� Might cause inactive nodes to remain inactive.
� Might still work fine in practice.
� Careful selection of learning rate may be important.
� There exists alternatives with non-zero gradient for negative

inputs, e.g. leaky ReLU: g(x) = max(0.01x , x)
A popular choice, particularly with convolutional neural networks.

What does a neuron do? | 28

z1

z2

(0,0,0)

z3

Re
LU

w

Si
gm

oi
d

va
lu

e
of

 c
on

st

co
ns

t
-b

a j a j

� The weights w defines the orientation of the plan.
� The bias b defines the position of the plan.
� Output of activation function is constant in the red plane.
� Output of activation function varies along the direction of w .

Outline | 29

1 Classification by logistic regression

2 Artificial neurons

3 Neural networks

4 Example: The XOR problem

5 More on representability

Neural network | 30

A neural network is a directed graph structure made from
connected neurons.
� A neuron can be input to many other neurons.
� A neuron can receive input to many other neurons.
� Each neuron has same structure (g(·),

∑
) but different

parameters (wij , bj).
� Can stack neurons in layers.

Neural network | 31

Definition: Neural Network

Any directed graph built from neurons is a neural network.

Two important types: recurrent and feedforward neural networks

recurrent (not covered in this lecture) feedforward
e.g. for speech processing e.g. for image classification

Base architecture | 32

Nodes and layers | 33

Dense (fully-connected) feedforward neural network | 34

Notation — for reference | 35

� Superscript with square
brackets [l]: layer l

� L: Number of layers in the
network.

� n[l]: Number of nodes in layer l

� nx = n[0]: Input dimension

� ny = n[L]: Output dimension
(number of classes)

� x : Array of inputs

� y : Array of true outputs

� ŷ : Array of predicted output

� w : Edge weights

� b: Node bias

� z : Linear combination of
activations from previous layer

� a[l]: Node activation in layer l .

� a[0] = x : Input vector

� a[L] = ŷ : Output vector

� Subscript j or jk: Element in
vector or matrix

� m: Number of samples in the
training dataset

Activation in node 3 of layer 1 | 36

a[1]
3 = g

 nx∑
j=1

w [1]
j3 xj + b[1]

3



Activation in node 4 of layer 2 | 37

a[2]
4 = g

n[1]∑
j=1

w [2]
j4 a[1]

j + b[2]
4



What is happening in the hidden layer nodes | 38

� a[l]
k is the activation of node k in layer l :

a[l]
k = g

n[l−1]∑
j=1

w [l]
jk a[l−1]

j + b[l]
k


� w [l]

jk is the weight from node j in layer l − 1 to node k in layer l .

� b[l]
k is the bias of node k in layer l .

� All above are scalars.
� g is the activation function.
� All w and b are “trainable”, and will be adjusted according to

some optimization routine.
� By convention:

· a[0]
k = xk and a[L]

k = ŷk
· The network have L layers (we do not include the input layer in

the count) and L− 1 hidden layers.

General formulation | 39

a[l]
k = g

n[l−1]∑
j=1

w [l]
jk a[l−1]

j + b[l]
k

 , k ∈ {1, 2, . . . , n[l]}, l ∈ {1, 2, . . . , L}

Output layer | 40

� Applying an activation function at the last layer will in general
not provide outputs that can be interpreted as probabilities.

� For 2-class classification, we could have applied the logistic
sigmoid function instead of an activation function to produce
probabilities from the single output neuron.

� We will instead apply a generalisation of the logistic sigmoid
function called the softmax function:

s(x)k = exk∑n
i=1 exi

� This function converts the linearly mapped values in the
output layer, z1, . . . , zny , to predicted probabilities.

Output layer | 41

In the output layer we have:

z [L]
k =

n[L−1]∑
j=1

w [L]
jk a[L−1]

j + b[L]
k

a[L]
k = s(z [L])k

= ŷk

for:

k = 1, . . . , ny ,

= 1, . . . , n[L].

z [L] are called logits, and ŷ will be
interpreted as the predicted probabilities.

Implementing the softmax function | 42

Numerical instability can be a problem when using the softmax
function, because of the exponential function and division.

Two common “tricks” that can help:
1. Shift exponential arguments to max zero:

s(x)k = exk∑n
i=1 exi

= exk−max(x)∑n
i=1 exi−max(x)

2. Take logarithm and exponentiate it to get rid of division:

t(x)k = log s(x)k = xk − log
n∑

i=1
exi

s(x)k = et(x)k

It is possible to combine these two “tricks”.

Cross-entropy loss | 43

The derivation and definition of cross-entropy loss can be extended
to any model’s predicted probabilities ŷi ∈ [0, 1]ny associated with
input sample xi ∈ Rnx with true class label yi ∈ [0, 1]ny :

Definition: Cross-entropy loss

The cross-entropy loss of a data point (xi , yi) is defined as:

L(ŷi , yi) = −
ny∑

k=1
(yi)k log(ŷi)k

For one-hot labels, i.e. each yi is 0 in all elements except one
where it is 1, the cross-entropy loss of a data point (xi , yi)
is the negative logarithm of the predicted probability of the
ground-truth class:

L(ŷi , yi) = − log(ŷi)k where yi = ek

Minimising the cross-entropy loss | 44

� As for the logistic regression model, we can use gradient
descent to optimise the cross-entropy loss function:

Θ∗ = argminΘ

{
− 1

m

m∑
i=1

ny∑
k=1

(yi)k log(ŷi)k

}
.

� However, we have a lot more parameters this time:

Θ = {w [l]
jk , b

[l]
k : j ∈ {1, . . . , n[l−1]}, k ∈ {1, . . . , n[l]}, l ∈ {1, . . . , L}}

� How to do this in practice will be the subject of a later lecture.

Neural network | 45

Key takeaways:

� Logistic regression is an exemplary model for a single
neuron network, that is, a 1-layer neural network (0
hidden layers) with one node in the output layer.

� Stacking multiple layers gives a deep neural network.
� Each neuron (in hidden layers) in dense feedforward

neural networks receives input from all neurons in the
previous layer and sends its activation (output) to all
neurons in the next layer.

� Note: The particular choice of network architecture is
often subordinate to the selecting appropriate loss
function, algorithm to updating weights, data
augmentation and more.

Outline | 46

1 Classification by logistic regression

2 Artificial neurons

3 Neural networks

4 Example: The XOR problem

5 More on representability

The XOR problem | 47

To illustrate how concatenation of neurons allows learning
non-linear mappings, consider separating red from blue samples in
the following example:

Samples lie in quadrants around coordinated (±1,±1).

The XOR problem | 48

z1 = tanh(10x1)
z2 = tanh(10x2)

� tanh pushes points
towards (±1,±1)

The XOR problem | 49

Idea:

� For proper choice of w1 and b1, g1 = σ(w1z + b1) has high values
≈ 1 in the upper right z ≈ (1, 1) and low values ≈ 0 elsewhere.

� For proper choice of w2 and b2, g2 = σ(w2z + b2) has high values
≈ 1 in the lower left z ≈ (−1,−1) and low values ≈ 0 elsewhere.

� Then, g1 + g2 will be ≈ 1 in the upper right and lower left corners.

� In the middle zone, g1 + g2 will be ≈ 0.

The XOR problem | 50

� w1 = ?, w2 = ?

The XOR problem | 51

� If w1 = (1, 1), w2 = (−1,−1), then w1 · z ≈ 0 , w2 · z ≈ 0 for
middle zone, while w1 · z ≈ 2 in the upper right corner and
w2 · z ≈ 2 in the lower left corner.

� Could then choose −2 < b1 < 0 and −2 < b2 < 0.
� Final output: f (x) = σ(c(g1 + g2) + b3)

Outline | 52

1 Classification by logistic regression

2 Artificial neurons

3 Neural networks

4 Example: The XOR problem

5 More on representability

Polygonal shapes | 53

� Use threshold activation (for
simplicity):

� A 2-layer network with n neurons in
the hidden layer, and a thresholded
sum in the second layer can
represent any convex polygonal
shape with n edges.

� With n→∞ neurons in the first
layer, any convex shape can be
approximately encoded.

Polygonal shapes | 54

� Adding a third layer allows the
neural network to approximately
encode any union of convex shapes.

� However, being able to
(approximately) represent does not
imply that this would be the result
when learning from finite data.

Universal approximation theorem | 55

Universal approximation theorem (a version)

Let g(·) be a continuous function on a m-dimensional hyper-
cube [0, 1]m. Let a(·) be a non-constant, bounded, continuous
(activation) function. Then g(·) can be approximated arbi-
trarily well, that is, for every maximal deviation ε > 0, there
exists a set of weights ui ,wi and biases bi such that:

∀x ∈ [0, 1]m : |g(x)− (
∑
i=1

uia(wix + bi) + b)| < ε

Neural networks with one hidden layer and two layers of weights
can approximate any smooth function on a compact hypercube. If
there is a good algorithm for learning the parameters from finite
data, we are done!

Universal approximation theorem | 56

� Universal approximation theorem was the arch-seducer of
neural network research.

� Kolmogorov (1957), Hornik (1989), Cybenko (1989) and
others: Neural network can approximate any continuous
function on a compact region.

� However, ability to approximate any function 6= able to learn
well from finite training data

Key learning goals | 57

Key learning goals

� Understand logistic regression and why it is a
classification algorithm and a 1-layer neural network.

� Know the structure and components of dense
feedforward neural networks.

� Be able to do forward pass by hand for dense
feedforward neural networks.

� Understand the cross-entropy loss.
� Have an intuition about representability of simple

neural networks.

Questions? | 58

Questions?

	Classification by logistic regression
	Artificial neurons
	Neural networks
	Example: The XOR problem
	More on representability

