
Backpropagation

Alexander Binder

University of Oslo (UiO)

February 9, 2021

Learning goals

� be able to explain the differences: batch gradient descent vs
stochastic gradient descent

� be able to use the chain rule on functions

� Backpropagation is an algorithm to compute derivatives in a
neural network (w.r.t. network parameters, and inputs)

� Backpropagation inside amounts to applying chain rule
top-down along the graph structure of the network

� the backprop comes with an efficient mechanism to reuse
computed partial derivatives for computing new derivatives
further down in the network.

� you should be able to derive the derivative of a loss of a
neural network as a sum-product of derivatives of single
neurons with respect to their inputs and parameters

Learning goals

� Autograd and when to use with torch.no grad():

� be able to understand how the product nature of chain rule
may lead to vanishing/exploding gradients in a neural net

� be able to reproduce the key initialization points for ReLU
and PReLU networks:
· biases to zero
· drawn weights as random numbers (why random?)
· drawn weights from a zero mean normal
· what are the variances for ReLU and PReLU activations

continue with Lecture 2 | 4

batch vs stochastic gradient descent ...

the setup | 5

Have a nested function composed of neural network layers f (l)(z ,w).
f (l)(z ,w) - i-th layer with parameters w and inputs to the layer z .

A single layer (fully connected layer):

z (l) = f (w (l) · z (l−1) + b) = f (w (l), z (l−1))
z ∈ Rd1 , w (l) ∈ Rd2×d1 , b ∈ Rd2

f (w (l) · z + b) is the layer definition, f (w (l), z) is a notation to denote
dependency on parameters w (i) and the input to the network layer z .

A three layer network can be described as:

y = f (3)(w (3), f (2)(w (2), f (1)(w (1), x)))

An iterative writing would be:

z (l) = f (l)(w (l), z (l−1))

the goal | 6

A three layer network can be described as:

z(l) = f (l)(w (l), z(l−1))
y = f (3)(w (3), f (2)(w (2), f (1)(w (1), x)))

goal: to compute ∂y
∂w (l)

d
fast.

How to compute gradients generically for some function (if we had
no autograd) ?

Finite difference method:

∂f
∂wd

(w) = lim
ε→0

f (x ,w \ {wd},wd + ε)− f (x ,w \ {wd},wd)
ε

≈ f (x ,w \ {wd},wd + ε)− f (x ,w \ {wd},wd)
ε

note: better is however:

∂f
∂wd

(w) ≈ f (x ,w \ {wd},wd + ε)− f (x ,w \ {wd},wd − ε)
ε2

the goal | 9

How can we compute the derivative ∂L
∂wd

of a loss L(y , ygt) with
respect to parameters wd once we have ∂y

∂wd
?

Outline | 10

1 Chain rule as matrix multiplications

2 Backpropagation

3 Autograd

4 The problem of gradient flow

5 Neural network initialization

6 Monitoring of the training

7 off-class: derivation from the viewpoint of directional deriva-
tives

chain rule | 11

� 1-dim case: x ∈ R, g(x) ∈ R

h(x) = f ◦ g(x)
∂h
∂x (x) = ∂f ◦ g

∂x (x) = f ′(g(x))g ′(x) = ∂f
∂z (g(z))∂g

∂x (x)

� n-dim case Typically shown as:

f : Rm → R, f (z1, . . . , zm) ∈ R
g : Rd → Rm, g(x1, . . . , xd) ∈ Rm

f ◦ g(x) = f (g(x))
∂f ◦ g
∂xk

(x) =
m∑

r=1

∂f
∂zr

(g(x))∂gr
∂xk

(x)

Contains a non-intuitive summing: derivatives over input
components of f and over output components of g .

chain rule | 12

� n-dim case Typically shown as:

f : Rm → R, f (z1, . . . , zm) ∈ R, g : Rd → Rm, g(x1, . . . , xd) ∈ Rm

∂f ◦ g
∂xk

(x) =
m∑

r=1

∂f
∂zr

(g(x))∂gr
∂xk

(x)

Why this summing of columns with rows?

� A derivative is a linear mapping of directions h onto directional
derivatives. Represented by vector/matrix-vector/matrix
multiplication ?:

f (x) ∼←→ Df (x)[·], Df (x)[h] = ∇f (x) ? h

� concatenation of two functions – derivative ∼←→ concatenation of
two linear mappings

f ◦ g(x) ∼←→ D(f ◦ g)(x)[h] = Df (g(x))[v], v = Dg(x)[h]

chain rule | 13

∂f ◦ g
∂xk

(x) =

m∑
r=1

∂f
∂zr

(g(x))
∂gr

∂xk
(x)

Why this summing?
� A derivative of one function is a linear mapping of directions h:

f (x) ∼←→ Df (x)[·], Df (x)[h] = ∇f (x) ? h

� concatenation of two functions – derivative ∼←→ concatenation of two
linear mappings:

f ◦ g(x) ∼←→ D(f ◦ g)(x)[h] = Df (g(x))[v], v = Dg(x)[h]

� since linear mapping ∼←→ vector/matrix-vector/matrix multiplication
(between the gradient and direction vector h),
the concatenation of two linear mappings ∼←→ matrix-multiply as well
between the matrices defining both gradients and the direction vector h:

D(f ◦ g)(x)[h] = Df (g(x))[v] = ∇f (g(x)) ? v , v = Dg(x)[h] = ∇g(x) ? h
≈ ”∇f (g(x)) ?∇g(x) ? h”

D(f ◦ g)(x)[·] ≈ ”∇f (g(x)) ?∇g(x)

chain rule | 14

∂f ◦ g
∂xk

(x) =

m∑
r=1

∂f
∂zr

(g(x))
∂gr

∂xk
(x)

Why this column-row type summing?
� A derivative of one function is a linear mapping of directions h. concatenation of two functions – derivative

will be a concat of two linear mappings

f (x)
∼
←→ Df (x)[·], Df (x)[h] = ∇f (x) ? h

f ◦ g(x)
∼
←→ D(f ◦ g)(x)[h] = Df (g(x))[v], v = Dg(x)[h]

� since linear mapping ∼←→ vector/matrix-vector/matrix multiplication
(between the gradient and direction vector h),
the concatenation of two linear mappings ∼←→ matrix-multiply
(between the matrices defining both gradients) as well:

D(f ◦ g)(x)[h] = Df (g(x))[v] = ∇f (g(x)) ? v , v = Dg(x)[h] = ∇g(x) ? h
≈ ”∇f (g(x)) ?∇g(x) ? h”

D(f ◦ g)(x)[·] ≈ ”∇f (g(x)) ?∇g(x)

� explanation for why ...? matrix multiply causing multiplication of columns
(left side) with rows (right side)

chain rule as matrix multiplication | 15

f : Rm → R, f (z1, . . . , zm) ∈ R
g : Rd → Rm, g(x1, . . . , xd) ∈ Rm

f ◦ g(x) = f (g(x))
∂f ◦ g
∂xk

(x) =
m∑

r=1

∂f
∂zr

(g(x))∂gr
∂xk

(x)

vr = ∇f (g(x))r := ∂f
∂zr

(g(x))

Jkr := ∂gr
∂xk

(x)

⇒ ∂f ◦ g
∂xk

(x) =
m∑

r=1
Jkr vr = (J ? v)k

See: the k-th partial derivative is the k-th component of
matrix-vector product J ? v , ? explicit for matrix multiplication

chain rule as matrix multiplication | 16

f : Rm → R, f (z1, . . . , zm) ∈ R

g : Rd → Rm, g(x1, . . . , xd) ∈ Rm

f ◦ g(x) = f (g(x))

∂f ◦ g
∂xk

(x) =
m∑

r=1

∂f
∂zr

(g(x)) ∂gr

∂xk
(x)

vr = ∇f (g(x))r := ∂f
∂zr

(g(x))

Jkr := ∂gr

∂xk
(x)

(!)⇒ ∂f ◦ g
∂xk

(x) =
m∑

r=1
Jkr vr = (J ? v)k

vectorize:⇒

∂f ◦g
∂x1

(x)
...

∂f ◦g
∂xd

(x)

 = J ? v = by definition J ?∇f (g(x))

chain rule as matrix multiplication | 17

f : Rm → R, f (z1, . . . , zm) ∈ R

g : Rd → Rm, g(x1, . . . , xd) ∈ Rm

∂f ◦ g
∂xk

(x) =
m∑

r=1

∂f
∂zr

(g(x)) ∂gr

∂xk
(x) =

m∑
r=1

Jkr vr = (J ? v)k

⇒

∂f ◦g
∂x1

(x)
...

∂f ◦g
∂xd

(x)

 = J ?∇f (g(x))

� by definition:
∂f ◦g
∂x1

(x)
...

∂f ◦g
∂xd

(x)

 = ∇(f ◦ g)(x)

� what is J?

chain rule as matrix multiplication | 18

f : Rm → R, f (z1, . . . , zm) ∈ R

g : Rd → Rm, g(x1, . . . , xd) ∈ Rm

∂f ◦ g
∂xk

(x) =
m∑

r=1

∂f
∂zr

(g(x)) ∂gr

∂xk
(x) =

m∑
r=1

Jkr vr = (J ? v)k

⇒

∂f ◦g
∂x1

(x)
...

∂f ◦g
∂xd

(x)

 = ∇(f ◦ g)(x) = J ?∇f (g(x))

� what is J? Jkr
by def= ∂gr

∂xk
(x).

⇒ J = J (g) =

∂g1
∂x1

(x), . . . , ∂gm
∂x1

(x)
∂g1
∂x2

(x), . . . , ∂gm
∂x2

(x)
...

∂g1
∂xd

(x), . . . , ∂gm
∂xd

(x)

 = (∇g1(x), . . . ,∇gm(x))︸ ︷︷ ︸
Jacobi-matrix (or its transpose)

Gradient vs Jacobi-Matrix | 19

� function f maps onto real numbers (f (x) ∈ R)
∼↔ apply ∇, Derivative: gradient

f (x1, . . . , xd) ∈ R⇒ ∇f (x) =

∂f
∂x1

(x)
...

∂f
∂xd

(x)

 is the gradient

� function g = (g1, . . . , gm) maps onto vectors (g(x) ∈ Rm)
∼↔ apply ∇ to each component gk , Derivative: Jacobi-matrix.

Jacobi-Matrix J (g)

is just a name for the matrix (∇g1(x), . . . ,∇gm(x)) of
concatenated gradients for each output component gi of
g = (g1, . . . , gm) (applied ∇ to each output component)
The definition is transposed sometimes!

Gradient vs Jacobi-Matrix | 20

Next step: How can the chain rule be efficiently implemented using
linear algebra?

chain rule as matrix multiplication | 21

f : Rm → R, f (z1, . . . , zm) ∈ R
g : Rd → Rm, g(x1, . . . , xd) ∈ Rm

∂f ◦ g
∂xk

(x) =
m∑

r=1

∂f
∂zr

(g(x))∂gr
∂xk

(x)

⇒

∂f ◦g
∂x1

(x)
...

∂f ◦g
∂xd

(x)

 =
(
∇g1(x), . . . ,∇gm(x)

)
?

∂f
∂x1

(g(x))
...

∂f
∂xd

(g(x))

⇒ ∇(f ◦ g)(x) =

(
∇g1(x), . . . ,∇gm(x)

)
?∇f (g(x))

the result (I): chain rule in matrix form | 22

chain rule n-dim case as matrix multiplications

assume:

f : Rm 7→ R, f (x) ∈ R
and if ∇f is a column vector and if g is a row vector

g : Rd 7→ Rm, g(x) = (g1, . . . , gm) ∈ Rm

then: ∇(f ◦ g)(x) = (∇g1(x),∇g2(x), . . . ,∇gm(x)) ?∇f (g(x))
= (inner function g gradients) ? (outer function f gradients)

Mind here that the shapes must be correctly in this form – gradients are
assumed to be column vectors: g .shape = (1,m). (∇gi).shape = (d , 1) is
a column vector.

If instead we would have g .shape = (m, 1), (∇f).shape = (1,m), and
gradients are row vectors instead: (∇gi).shape = (1, d), then J and ∇f
are transposed to the above (!), then one has to use ... see next slides

towards: chain rule in matrix form (transposed version) | 23

if gradients are row vectors instead:

If instead we would have g .shape = (m, 1), (∇f).shape = (1,m), and
gradients are row vectors instead: (∇gi).shape = (1, d), then J and ∇f
are transposed to the above (!), then one has to use

∇(f ◦ g)(x) = ∇f (g(x)) ?

∇g1(x)
∇g2(x)

...
∇gm(x)

 = ∇f (g(x)) ? J (g)

gradients as column or row vectors? | 24

How to remember that? consider the shapes:

f : Rm 7→ R, f (x) ∈ R, ∇f (x) ∈ Rm

g : Rd 7→ Rm, g(x) ∈ Rm, ∇g(x) = J (g) ∈ Rm∗d

if gradients are columns: ∇f ◦ g ∼ (d , 1), ∇f ∼ (m, 1)

(d , 1) ∼=(d ,m) ? (m, 1) only one way for J
∇(f ◦ g)(x) =(∇g1(x),∇g2(x), . . . ,∇gm(x)) ?∇f (g(x))

if gradients are rows: ∇f ◦ g ∼ (1, d), ∇f ∼ (1,m)

(1, d) ∼=(1,m) ? (m, d) transpose of the above

∇(f ◦ g)(x) =∇f (g(x)) ?

∇g1(x)
∇g2(x)

...
∇gm(x)

the result (II): chain rule in matrix form (transposed
version) | 25

if gradients are row vectors instead:
chain rule n-dim case as matrix multiplications (transposed version)

f : Rm 7→ R, f (x) ∈ R

if g : Rd 7→ Rm, g(x) =

g1
...

gm

 ∈ Rm is a column vector and if

∇f = is a row vector
(
∂f
∂x1

, . . . ,
∂f
∂xm

)

then: ⇒ ∇(f ◦ g)(x) = ∇f (g(x)) ? J = ∇f (g(x)) ?

∇g1(x)
∇g2(x)

...
∇gm(x)

= (outer function f gradients) ? (inner function g gradients)

chain rule for more than two functions in linear algebra | 26

Now: Chain rule for more than two functions using linear algebra
(without any neural networks)?

assume: gradients are column vectors here. Then:

∇(f ◦ g)(x) = (∇g1(x),∇g2(x), . . . ,∇gm(x)) ?∇f (g(x))
= (inner function g gradients) ? (outer function f gradients)

This chains to more than two functions:

∇(f ◦ g ◦ t)(x) = ∇t(x) ?∇(f ◦ g)(t(x)) =
= (∇t1(x), , . . . ,∇tn(x)) ? (∇g1(t(x)), . . . ,∇gm(t(x))) ?∇f (g(t(x)))
= (inner gradients) ? (mid gradients) ? (outer gradients)
= (inner gradients)|x ? (mid gradients)|t(x) ? (outer gradients)|g(t(x))

Outline | 27

1 Chain rule as matrix multiplications

2 Backpropagation

3 Autograd

4 The problem of gradient flow

5 Neural network initialization

6 Monitoring of the training

7 off-class: derivation from the viewpoint of directional deriva-
tives

... | 28

Backpropagation computes gradients via chainrule along the
(directed) edges in the neural network graph.
Backprop = chainrule on a DAG

What is backprop? | 29

Executing chainrule along a directed graph.

z1

z2

z3

z4

z5

z6

z7

xi

more

layers

y

layers

∂y
∂z1

= ? ... compute directly

y =
∑

i
wizi + b

∂y
∂zi

= wi for i = 1, 2, 3

What is backprop? | 30

Executing chainrule along a directed graph.

∂y
∂z4

=???

∂y
∂z4

= ∂y
∂z1

∂z1
∂z4

+ ∂y
∂z2

∂z2
∂z4

+ ∂y
∂z3

∂z3
∂z4

What is backprop? | 31

Executing chainrule along a directed graph.

∂y
∂z5

= ??? ∂y
∂z5

= ∂y
∂z1

∂z1
∂z5

+ ∂y
∂z2

∂z2
∂z5

+ ∂y
∂z3

∂z3
∂z5

� Note the flow: each edge zk → zi has a partial derivative ∂zi
∂zk

flowing
backwards

� each path (e.g.z4 → y) is the product of its associated edge terms
∂zi
∂zk

.

What is backprop? | 32

Learning goals

� Note the flow: each edge zk → zi has a partial derivative ∂zi
∂zk

flowing backwards

� each path (e.g.z4 → y) is the product of its associated edge
terms ∂zi

∂zk

� In particular it is the product of the last edge with the
product at the last node :)

Now you can compute backpropagation on your own on any DAG graph

What is backprop? | 33

Executing chainrule along a directed graph.

∂y
∂z6

=??? The flow principle continues: ∂y
∂z6

= ∂y
∂z4

∂z4
∂z6

+ ∂y
∂z5

∂z5
∂z6

� how to use it: walk backwards and compute layer by layer

� at first ∂y
∂z1
, ∂y

∂z2
, ∂y

∂z3

� then ∂y
∂z4
, ∂y

∂z5
from the previous ∂y

∂zi

� then ∂y
∂z6
, ∂y

∂z7
from the previous ∂y

∂zi

What is backprop? | 34

Backpropagation first version (ignores layer structure)

1. Start at the top by finding the set of neurons zl such that
the loss function directly depends on their inputs L = L(zl)

(!) the graph structure of the neural net tells you which neurons
zk give input to zl

2. Then use for walking downwards (against directions of the
forward computation flow):

dL
dzk

=
∑

l : s.t. k gives input to l

dE
dzl

∂zl
∂zk

3. next: repeat step 2. for the zk until you reach the bottom /
or until you have covered all paths backwards from E to your
weight of interest wk

5 . Finish at the bottom by dL
dwk

= dL
dzk

∂zk
∂wk

Exercise example for backprop | 35

y

Exercise example for backprop | 36

y

Exercise example for backprop | 37

y

y

What is backprop? | 38

in practice walking down is done layer by layer
Backpropagation

1. Start at the top by finding the set of neurons zl such that
the loss function directly depends on their inputs L = L(zl).
Let the last layer index be M.

2. for i ∈ range(M − 1,−1, step = −1)

∀zk ∈ Layeri : dL
dzk

=
∑

l : s.t. k gives input to l

dE
dzl

∂zl
∂zk

3. next: repeat step 2. for the zk until you reach the bottom /
or until you have covered all paths backwards from E to your
weight of interest wk

4 Finish at the bottom by dL
dwk

= dL
dzk

∂zk
∂wk

Efficient Backprop via matrix multiplications | 39

Important for implementation: backprop is implemented efficiently by
writing the chain rules as matrix multiplications in matrix algebra.

� Remember: f (l) = f (l)(w (l), f (l−1)), f (l−1) = f (l−1)(w (l−1), f (l−2))

� assume we have already computed the gradient with respect to
inputs to layer l : ∇f (l−1) (L · · · ◦ f (l)).

� want: ∇f (l−2) (L · · · ◦ f (l) ◦ f (l−1))
By slide 26:

∇f (l−2)
(L · · · ◦ f (l) ◦ f (l−1)) = ∇f (l−2)

f (l−1) ?∇f (l−1)
(L · · · ◦ f (l))

� have now: ∇f (l−2) (L · · · ◦ f (l−1))

� iterate further down (+ reusing)

∇f (l−3)
(L · · · ◦ f (l−1) ◦ f (l−2)) = ∇f (l−3)

f (l−2) ?∇f (l−2)
(L · · · ◦ f (l−1))

Efficient Backprop via matrix multiplications | 40

� Remember for the network f (l) = f (l)(w (l), f (l−1))
� One thing to finish: we need gradients with respect to the

trainable parameters ∇w (l−1)(L · · · ◦ f (l) ◦ f (l−1))

f (l) = f (l)(w (l), f (l−1))
and so f (l−1) = f (l−1)(w (l−1), f (l−2))

∇f (l−2)(L · · · ◦ f (l) ◦ f (l−1)) = ∇f (l−2)f (l−1) ?∇f (l−1)(L · · · ◦ f (l))

∇w (l−1)(L · · · ◦ f (l) ◦ f (l−1)) = ∇w (l−1)f (l−1) ?∇f (l−1)(L · · · ◦ f (l))

Backpropagation

The last two equations are the iterative version of backprop
in matrix algebra ... BUT: mind the shapes (gradients are
column or row vectors)

Why is this efficient ? | 41

Exemplary three layer network:

z (l) = f (l)(w (l), z (l−1))

y = f (3)(w (3), f (2)(w (2), f (1)(w (1), x)))

goal: to compute ∇wd y – using chain rule, ∇(z)y denotes which vector z of
variables the gradient of y is computed for.

∇w (3)
y → compute directly

∇w (2)
y = ∇w (2)

(f (3) ◦ f (2)) = ∇w (2)
f (2) ?∇f (2)

f (3)

= ∇w (2)
f (2) ?∇f (2)

f (3)(w (3), f (2)(. . .))

∇w (1)
y = ∇w (1)

(f (3) ◦ f (2) ◦ f (1)) = ∇w (1)
f (1) ?∇f (1)

(f (3) ◦ f (2))

= ∇w (1)
f (1) ?∇f (1)

f (2) ?∇f (2)
f (3)(w (3), f (2)(. . .))

Observation

We need to have the Jacobi-matrix ∇f (k−1)
f (k)(w (k), f (k−1)(. . .)) for com-

puting the gradients for all parameters w (k−1), w (k−2), . . . , w (1) in layers
closer to the input. Backprop: compute it once, reuse it for all layers.

Single layer gradients | 42

Piece of cake
f (l−1) = g(f (l−2) ? w (l−1) + b(l−1)), g(·) activation

Note f (l−1) is a (1,m)-shaped vector, and w (l−1) is a matrix (n,m) , and
f (l−2) is a (1, n)-shaped vector.

Consider a single output neuron f (l−1)[0, k] of the layer f (l−1):
then: f (l−1)[0, k] = g(f (l−2) ? w (l−1)[:, k] + b(l−1)[0, k])

∇f (l−2)
f (l−1)[0, k] =?

∇w (l−1)[:,k]f (l−1)[0, k] =? the two red must match

⇒ ∂f (l−1)[0, k]
∂f (l−2)[0, d]

= g ′(f (l−2) ? w (l−1)[:, k] + b(l−1)[0, k])w (l−1)[d , k]

⇒ ∂f (l−1)[0, k]
∂w (l−1)[d , k]

= g ′(f (l−2) ? w (l−1)[:, k] + b(l−1)[0, k])f (l−2)[0, d]

and ∂f (l−1)[0, k]
∂b(l−1)[0, k]

= g ′(f (l−2) ? w (l−1),[:,k] + b(l−1)[0, k])

Outline | 43

1 Chain rule as matrix multiplications

2 Backpropagation

3 Autograd

4 The problem of gradient flow

5 Neural network initialization

6 Monitoring of the training

7 off-class: derivation from the viewpoint of directional deriva-
tives

The computational graph | 44

A directed-graph representation of computations done.

The computational graph | 45

Forward pass: the actual computation

The computational graph | 46

Backward pass: computing derivates

autograd | 47

What ? Automatic differentiation with respect to variables used in
computations.
You can define a sequence of computations, then call .backward()
or torch.autograd.grad(...). see autograf2.py,
print computationalgraph.py

When ?
� If tensors are leaf tensors and have the requires grad=True

flag set, then they are marked for tracking operations along
the computation sequence for later gradient computation.

� leaf tensor: not created as the result of an operation but
defined by you as an input.

https://pytorch.org/tutorials/beginner/blitz/autograd tutorial.
html#sphx-glr-beginner-blitz-autograd-tutorial-py

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py

autograd | 48

...

if e is a tensor with 1 element, then e.backward() com-
putes the gradient of e with respect to all its inputs that were
involved in computing e.

see print computationalgraph.py: the whole backward graph

autograd | 49

if e is a tensor of n ≥ 2 elements, then the gradient of e is a
matrix, the Jacobi-matrix. Example for 3 elements:

e = (e1, e2, e3)

de/dx =

de1
dx1

de2
dx1

de3
dx1

de1
dx2

de2
dx2

de3
dx2...

...
...

de1
dx8

de2
dx8

de3
dx8...

...
...

de1
dxD

de2
dxD

de3
dxD

autograd | 50

if e is a tensor of n ≥ 2 elements, then the gradient of e is a matrix, the
Jacobi-matrix.
In this case: (for an example where e has 3 elements)
e.backward(torch.tensor([-5,2,6])) computes the D-dim
weighted gradient vector

de1
dx ∗ (−5) + de2

dx ∗ 2 + de3
dx ∗ 6

=

de1
dx1
∗ (−5) + de2

dx1
∗ 2 + de3

dx1
∗ 6

de1
dx2
∗ (−5) + de2

dx2
∗ 2 + de3

dx2
∗ 6

...
de1
dx8
∗ (−5) + de2

dx8
∗ 2 + de3

dx8
∗ 6

...
de1
dxD
∗ (−5) + de2

dxD
∗ 2 + de3

dxD
∗ 6

This is an inner product between the jacobi matrix and a vector that has
as many elements as e in the forward pass.

autograd | 51

Autograd

� Autograd tracks the graph of computations
� Tracked computations will be used to compute a

gradient automatically
� use with torch.no grad(): environment to not

record computations for gradient calculations for some
larger block of code that is reused

� use case for with torch.no grad():: everything
outside of handling training data, e.g. computing
validation or test predictions/ scores.a

aWhy you dont want to track gradient computations in this case?

autograd | 52

with torch.no grad():

� use with torch.no grad(): environment to not
record computations for gradient calculations for some
larger block of code that is reused – use case:
everything outside of handling training data, e.g.
computing validation or test scores.a

� source of mistakes: every computation outside of a
with torch.no grad(): environment will be used to
compute gradients, and in the end to update
parameters (e.g. predict on validation data).

� outlook: for GAN-training sometensor.detach()
prevents the gradient flowing from sometensor to all
those modules/variables used to compute sometensor.

aWhy you dont want to track gradient computations in this case?

autograd | 53

Note: If you have a tensor with attached gradient, then the .data
stores the tensor values, and .grad.data the gradient values

vals=x.data.numpy() #exports function values to numpy
g_vals=x.grad.data.numpy() #exports gradient values to numpy

Outline | 54

1 Chain rule as matrix multiplications

2 Backpropagation

3 Autograd

4 The problem of gradient flow

5 Neural network initialization

6 Monitoring of the training

7 off-class: derivation from the viewpoint of directional deriva-
tives

the vanishing gradient | 55

Here I like to show that for classical neural networks the size of the gradient can
become very small for layers close to the input.
Consider the following NN:

∂L
∂z4

= ∂L
∂z1

∂z1

∂z2

∂z2

∂z4
+ ∂L

∂z1

∂z1

∂z3

∂z3

∂z4
∂L
∂z5

= ∂L
∂z1

∂z1

∂z2

∂z2

∂z4

∂z4

∂z5
+ ∂L

∂z1

∂z1

∂z3

∂z3

∂z4

∂z4

∂z5
∂L
∂z6

= ∂L
∂z1

∂z1

∂z2

∂z2

∂z4

∂z4

∂z5

∂z5

∂z6
+ ∂L

∂z1

∂z1

∂z3

∂z3

∂z4

∂z4

∂z5

∂z5

∂z6
∂L
∂zn

= ∂L
∂z1

∂z1

∂z2

∂z2

∂z4

∂z4

∂z5

∂z5

∂z6
· . . . · ∂zn−1

∂zn
+ ∂L

∂z1

∂z1

∂z3

∂z3

∂z4

∂z4

∂z5

∂z5

∂z6
· . . . · ∂zn−1

∂zn

The partial derivatives are sums of chains of products. For neurons close to the
input these chains are longer.

the vanishing gradient | 56

Now lets consider a classical neural network neuron with a sigmoid
activation

z1 = tanh(w12z2 + b)
∂z1
∂z2

= tanh′(w12z2 + b)w12 = (1− tanh2(w12z2 + b))w12

(1− tanh2(w12z2 + b)) is 1 at zero, otherwise quickly dropping to zero.
Weights are usually initialized to be random values close to zero. Most of
the time, such a derivative will be smaller than 1 in absolute value.

Multiplying long chains of values in (−1,+1) quickly drops to zero:

0.54 = 0.0625, 0.510 ≈ 0.001, 0.520 ≈ 0.000001, 0.110 etc

In theory also gradient explosion may occur, if weights are set to large
values.

The implication? Gradient updates far from the output can get very
small.

the vanishing gradient | 57

one challenge in deep learning

In total this raises three problems:
� the gradients may become very small. Small gradients
→ small weight updates, slow learning

� the sizes of gradients will highly vary between neurons
in a NN. So update speeds will vary across the network

� if used sigmoids as activations, a saturated sigmoid will
result in a gradient close to zero, thus killing gradients
along the whole chain downwards(see ReLU, leaky
ReLU as alternatives)

One key challenge in deep learning is to maintain gradient
flow so as to be able to update weights quickly, and at ap-
proximately the same speeds across the whole network

Outline | 58

1 Chain rule as matrix multiplications

2 Backpropagation

3 Autograd

4 The problem of gradient flow

5 Neural network initialization

6 Monitoring of the training

7 off-class: derivation from the viewpoint of directional deriva-
tives

neural net init | 59

http://neuralnetworksanddeeplearning.com/chap3.html#
weight initialization
https://www.youtube.com/watch?v=6by6Xas Kho

http://neuralnetworksanddeeplearning.com/chap3.html#weight_initialization
http://neuralnetworksanddeeplearning.com/chap3.html#weight_initialization
https://www.youtube.com/watch?v=6by6Xas_Kho

neural net init | 60

have to initialize neural network values so that gradient flows well
at initialization. How to?
� symmetry breaking
� right scale of weights

Current standard for convolution layers in ReLU-type networks is
Kaiming He et al. 2015 https://arxiv.org/pdf/1502.01852.pdf

https://arxiv.org/pdf/1502.01852.pdf

neural net init | 61

Initialization for ReLU networks

� set biases to zero b = 0

� initialize weights as random values for symmetry breaking

� conv layers: draw weights from a normal with standard
deviation equal to σ =

√
2
n

wd ∼ N(0, σ2)

� later: use transfer learning instead of training with random
init

neural net init | 62

Initialization for pReLU networks

� set biases to zero b = 0

� initialize weights as random values for symmetry breaking

� conv layers: draw weights from a normal with standard
deviation equal to σ =

√
2

(1+a)2n where a is the negative
slope
wd ∼ N(0, σ2)

� later: use transfer learning instead of training with random
init

neural net init | 63

what is n for conv layers?
� either kernelsize(h)∗ kernelsize(w) ∗ input channels
� or kernelsize(h)∗ kernelsize(w) ∗ output channels

what is n for linear layers ?
� either input channels
� or output channels

neural net init | 64

if we use pReLu/ leaky ReLU with negative slope a:

g(z) = 1[z > 0]− a1[z < 0]

conv layers: σ =
√

2
(1+a2)n

wd ∼ N(0, σ2)

neural net init | 65

https://pytorch.org/docs/stable/nn.init.html
torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')

https://pytorch.org/docs/stable/nn.init.html

Neural Net initialization: symmetry breaking | 66

The weights of different neurons should be initialized with
asymmetric values. Reason: allow different neurons to learn to
become detectors for different structures.

Next: show that non-randomized initialization can result in
symmetries. Then different neurons keep same weights – same
function.

Consider a fully symmetrically initialized neural network:

z1

z2

z3

z4

z5

Neural Net initialization: symmetry breaking | 67

z1

z2

z3

z4

z5

� If w13 = w14 and w23 = w24, then the neuron
activations of z3 and z4 are the same. If now
also w35 = w45, then we would have
identically gradient updates for w13 versus
w14, as well as for w23 versus w24.

� then: the weights of w13 versus w14 change in
the same way, during learning it stays
w13 = w14 and z3 vs z4 nevers learns
something different from z1

Neural Net initialization: symmetry breaking | 68

z1

z2

z3

z4

z5

∂L
∂w13

= ∂L
∂z5

∂z5
∂z3

∂z3
∂w13

,
∂L
∂w14

= ∂L
∂z5

∂z5
∂z4

∂z4
∂w14

∂z5
∂z3

= σ′(w35z3 + w45z4)w35

∂z5
∂z4

= σ′(w35z3 + w45z4)w34

w35 = w34 ⇒
∂z5
∂z3

= ∂z5
∂z4

!!

∂z3
∂w13

= σ′(w13z1 + w23z2)z1

∂z4
∂w14

= σ′(w14z1 + w24z2)z1

w13 = w14,w23 = w24 ⇒
∂z3
∂w13

= ∂z4
∂w14

⇒ ∂L
∂w13

= ∂L
∂w14

neural net init | 69

� the right scale
� idea: initialize so that the average variance of outputs is

constant in all the layers, and there is no value explosion
during the forward pass

� similar argument holds for variance of gradients in the
backward pass

see lec initialization2.pdf for the derivation of the Kaiming-He
Intializer

?? | 70

...

Outline | 71

1 Chain rule as matrix multiplications

2 Backpropagation

3 Autograd

4 The problem of gradient flow

5 Neural network initialization

6 Monitoring of the training

7 off-class: derivation from the viewpoint of directional deriva-
tives

Loss functions and learning rate | 72

epoch

loss

too high
learning rate

low learning rate

good choice of lr

high lr: early plateau

� too high lr: if non-convergence visible on the training loss already

� high lr: if have early plateau on train loss. learning rate decrease
scheme can help!

� good choice of lr if visible on train loss. On val loss it can go up due
to overfitting even when lr is set optimally

Typical results after training | 73

� Gap between
training error
and validation
error.

� Need
regularization
(or more data)
to avoid
overfitting.

What is happening at the jumps? | 74

source: a paper from next lecture https://arxiv.org/abs/1903.10520
and https://arxiv.org/abs/1705.08292

https://arxiv.org/abs/1903.10520
https://arxiv.org/abs/1705.08292

The effects of learning rate decrease are drastic! | 75

source: a paper from next lecture https://arxiv.org/abs/1903.10520
and https://arxiv.org/abs/1705.08292

https://arxiv.org/abs/1903.10520
https://arxiv.org/abs/1705.08292

Outline | 76

1 Chain rule as matrix multiplications

2 Backpropagation

3 Autograd

4 The problem of gradient flow

5 Neural network initialization

6 Monitoring of the training

7 off-class: derivation from the viewpoint of directional deriva-
tives

Recap: chain rule | 77

� 1-dim case: x ∈ R, g(x) ∈ R

h(x) = f ◦ g(x)
∂h
∂x (x) = ∂f ◦ g

∂x (x) = f ′(g(x))g ′(x) = ∂f
∂z (g(z))∂g

∂x (x)

� n-dim case:
· recap: derivatives tell you about directional derivatives

Dg(x)[h] = ∇g(x)T h
· recap: derivatives define linear mappings L[·] = Dg(x)[·] :

directions h onto slopes Dg(x)[h]
· derivative of chained functions ↔ chaining of linear mappings

Df ◦ g(x)[h] = Df (g(x))[Dg(x)[h]]

� meaning ?
· compute the directional derivative Dg(x)[h] of the inner

mapping g in direction h at point x
· plug it into the linear mapping Df (g(x))[·] for the directional

derivative of the outer mapping f

chain rule as linear mappings | 78

chain rule n-dim case

for 2 functions f , g the chainrule of their concatenation
f ◦ g(x) is given as the chaining of their linear mappings
Df (g(x))[·] and Dg(x)[·] used to compute the directional
derivatives for f (in point g(x)) and g (in point x):

f : Rm → R, f (z1, . . . , zm) ∈ R
g : Rd → Rm, g(x1, . . . , xd)

= (g1(x1, . . . , xd), . . . , gm(x1, . . . , xd)) ∈ Rm

Df ◦ g(x)[h] = Df (g(x))[Dg(x)[h]]

∂f ◦ g
∂xk

=
m∑

r=1

∂f
∂zr

(g(x))∂gr
∂xk

(x)

The fact that it is a concatenation of two linear mappings ↔ must
correspond to matrix multiplication of two matrices, explains why you
have to do that summing.

Towards chain rule via matrix multiplications | 79

f : Rm → R, f (z1, . . . , zm) ∈ R
g : Rd → Rm, g(x1, . . . , xd)

= (g1(x1, . . . , xd), . . . , gm(x1, . . . , xd)) ∈ Rm

Df ◦ g(x)[h] = Df (g(x))[Dg(x)[h]]

How does this translate into linear algebra?

Df (g(x))[u] =
m∑

r=1

∂f
∂zr

(g(x)) ur = (u1, . . . , um)

∂f
∂z1

(x)
...

∂f
∂zm

(x)

=

u1
...

um

T

∂f
∂z1

(x)
...

∂f
∂zm

(x)

 = uT∇f (g(x))

Towards chain rule via matrix multiplications | 80

directional derivative via matrix multiplications

Df (g(x))[u] =
m∑

r=1

∂f
∂zr

(g(x)) ur = (u1, . . . , um)

∂f
∂z1

(x)
...

∂f
∂zm

(x)

=

u1
...

um

T

∂f
∂z1

(x)
...

∂f
∂zm

(x)

 = uT∇f (g(x))

Towards chain rule via matrix multiplications | 81

� gi (x) = gi (x1, . . . , xd) ∈ R, ∇gi is defined same as ∇f for f .
Dg(x)[h] can be represented by what structure?

g(x) = (g1(x), . . . gm(x))
Dg(x)[h] = (Dg1(x)[h], . . . , Dgm(x)[h])

= (hT∇g1(x), hT∇g2(x), . . . , hT∇gm(x))

=

(h1, . . . , hd)

∂g1
∂x1
...

∂g1
∂xd

 , (h1, . . . , hd)

∂g2
∂x1
...

∂g2
∂xd

 , . . . , (h1, . . . , hd)

∂gm
∂x1
...

∂gm
∂xd

= (h1, . . . , hd)

∂g1
∂x1
...

∂g1
∂xd

 ,

∂g2
∂x1
...

∂g2
∂xd

 , . . . ,

∂gm
∂x1
...

∂gm
∂xd

= (h1, . . . , hd)(∇g1(x),∇g2(x), . . . ,∇gm(x))

= hT (∇g1(x),∇g2(x), . . . ,∇gm(x))

Towards chain rule via matrix multiplications | 82

All I have been showing:

g(x) = (g1(x), . . . gm(x))
Dg(x)[h] = (Dg1(x)[h], . . . ,Dgm(x)[h])

= (hT∇g1(x), hT∇g2(x), . . . , hT∇gm(x))
= hT (∇g1(x),∇g2(x), . . . ,∇gm(x))

Derivative for a vector valued function | 83

Dg(x)[h] can be represented by what structure for
g(x) = (g1(x), . . . gm(x)?

See the analogy:

f (x) = f (x)
g(x) = (g1(x), . . . gm(x))

Df (x)[u] = uT∇f (x)
Dg(x)[h] = hT (∇g1(x),∇g2(x), . . . ,∇gm(x))

This is the Jacobi-matrix. To remember it, simply remember it as
(∇g1(x), . . . ,∇gm(x)) where every gradient is a column vector

(∇g1(x), . . . ,∇gm(x)) =

∂g1
∂x1
, ∂g2

∂x1
, . . . , ∂gm

∂x1
∂g1
∂x2
, ∂g2

∂x2
, . . . , ∂gm

∂x2...
∂g1
∂xd
, ∂g2

∂xd
, . . . , ∂gm

∂xd

the result: chain rule in matrix form | 84

Now we can derive the final result

D(f ◦ g)(x)[h] = Df (g(x))[Dg(x)[h]]
Df (g(x))[u] = uT∇f (x) where u is a column vector

and uT is a row vector
Dg(x)[h] = hT (∇g1(x),∇g2(x), . . . ,∇gm(x)) is a row vector!!

� This implies that you have to plug in
hT (∇g1(x),∇g2(x), . . . ,∇gm(x)) as uT and not as u!
Therefore:

⇒ D(f ◦ g)(x)[h] = Df (g(x))[Dg(x)[h]]
= hT (∇g1(x),∇g2(x), . . . ,∇gm(x))∇f (g(x))

the result: chain rule in matrix form | 85

chain rule n-dim case as matrix multiplications

f : Rm 7→ R, f (x) ∈ R
g : Rd 7→ Rm, g(x) = (g1, . . . , gm) ∈ Rm

D(f ◦ g)(x)[h] = hT (∇g1(x),∇g2(x), . . . ,∇gm(x))∇f (g(x))
= hT (inner function g gradients)(outer function f gradients)

chain rule vs linear algebra | 86

D(f ◦ g)(x)[h] = hT (∇g1(x),∇g2(x), . . . ,∇gm(x))∇f (g(x))
= hT (inner function gradients)(outer function gradients)

This chains to more than two functions:

D(f ◦ g ◦ t)(x)[h] =
D(f ◦ g)(t(x))[Dt(x)[h]] =
= hT (∇t1(x), , . . . ,∇tn(x))(∇g1(t(x)), . . . ,∇gm(t(x)))∇f (g(t(x)))
= hT (inner f gradients)(mid f gradients)(outer f gradients)
= hT (inner f gradients)|x (mid f gradients)|t(x)(outer f gradients)|g(t(x))

Questions?!

	Chain rule as matrix multiplications
	Backpropagation
	Autograd
	The problem of gradient flow
	Neural network initialization
	Monitoring of the training
	off-class: derivation from the viewpoint of directional derivatives

