Backpropagation

Alexander Binder
University of Oslo (UiO)
February 9, 2021

$\mathrm{UiO}:$ Department of Informatics

University of Oslo

Learning goals

© be able to explain the differences: batch gradient descent vs stochastic gradient descent

- be able to use the chain rule on functions
- Backpropagation is an algorithm to compute derivatives in a neural network (w.r.t. network parameters, and inputs)
- Backpropagation inside amounts to applying chain rule top-down along the graph structure of the network
- the backprop comes with an efficient mechanism to reuse computed partial derivatives for computing new derivatives further down in the network.
© you should be able to derive the derivative of a loss of a neural network as a sum-product of derivatives of single neurons with respect to their inputs and parameters

Learning goals

- Autograd and when to use with torch.no_grad():
- be able to understand how the product nature of chain rule may lead to vanishing/exploding gradients in a neural net
- be able to reproduce the key initialization points for ReLU and PReLU networks:
- biases to zero
- drawn weights as random numbers (why random?)
- drawn weights from a zero mean normal
- what are the variances for ReLU and PReLU activations

continue with Lecture 2

batch vs stochastic gradient descent ...

Have a nested function composed of neural network layers $f^{(I)}(z, w)$. $f^{(I)}(z, w)$ - i-th layer with parameters w and inputs to the layer z.

A single layer (fully connected layer):

$$
\begin{aligned}
z^{(I)} & =f\left(w^{(I)} \cdot z^{(I-1)}+b\right)=f\left(w^{(I)}, z^{(I-1)}\right) \\
z & \in \mathbb{R}^{d_{1}}, w^{(I)} \in \mathbb{R}^{d_{2} \times d_{1}}, b \in \mathbb{R}^{d_{2}}
\end{aligned}
$$

$f\left(w^{(I)} \cdot z+b\right)$ is the layer definition, $f\left(w^{(I)}, z\right)$ is a notation to denote dependency on parameters $w^{(i)}$ and the input to the network layer z.

A three layer network can be described as:

$$
y=f^{(3)}\left(w^{(3)}, f^{(2)}\left(w^{(2)}, f^{(1)}\left(w^{(1)}, x\right)\right)\right)
$$

An iterative writing would be:

$$
z^{(I)}=f^{(I)}\left(w^{(I)}, z^{(I-1)}\right)
$$

A three layer network can be described as:

$$
\begin{aligned}
z^{(I)} & =f^{(I)}\left(w^{(I)}, z^{(I-1)}\right) \\
y & =f^{(3)}\left(w^{(3)}, f^{(2)}\left(w^{(2)}, f^{(1)}\left(w^{(1)}, x\right)\right)\right)
\end{aligned}
$$

goal: to compute $\frac{\partial y}{\partial w_{d}^{(1)}}$ fast.

How to compute gradients generically for some function (if we had no autograd) ?

Finite difference method:

$$
\begin{aligned}
\frac{\partial f}{\partial w_{d}}(w) & =\lim _{\epsilon \rightarrow 0} \frac{f\left(x, w \backslash\left\{w_{d}\right\}, w_{d}+\epsilon\right)-f\left(x, w \backslash\left\{w_{d}\right\}, w_{d}\right)}{\epsilon} \\
& \approx \frac{f\left(x, w \backslash\left\{w_{d}\right\}, w_{d}+\epsilon\right)-f\left(x, w \backslash\left\{w_{d}\right\}, w_{d}\right)}{\epsilon}
\end{aligned}
$$

note: better is however:

$$
\frac{\partial f}{\partial w_{d}}(w) \approx \frac{f\left(x, w \backslash\left\{w_{d}\right\}, w_{d}+\epsilon\right)-f\left(x, w \backslash\left\{w_{d}\right\}, w_{d}-\epsilon\right)}{\epsilon^{2}}
$$

How can we compute the derivative $\frac{\partial L}{\partial w_{d}}$ of a loss $L\left(y, y_{g t}\right)$ with respect to parameters w_{d} once we have $\frac{\partial y}{\partial w_{d}}$?
(1) Chain rule as matrix multiplications
(2) Backpropagation
(3) Autograd
(4) The problem of gradient flow
(5) Neural network initialization
(6) Monitoring of the training
(7) off-class: derivation from the viewpoint of directional derivatives
© 1-dim case: $x \in \mathbb{R}, g(x) \in \mathbb{R}$

$$
\begin{aligned}
h(x) & =f \circ g(x) \\
\frac{\partial h}{\partial x}(x) & =\frac{\partial f \circ g}{\partial x}(x)=f^{\prime}(g(x)) g^{\prime}(x)=\frac{\partial f}{\partial z}(g(z)) \frac{\partial g}{\partial x}(x)
\end{aligned}
$$

© n -dim case Typically shown as:

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}, f\left(z_{1}, \ldots, z_{m}\right) \\
& g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, g\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{m} \\
& f \circ g(x)=f(g(x)) \\
& \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x)
\end{aligned}
$$

Contains a non-intuitive summing: derivatives over input components of f and over output components of g.

- n-dim case Typically shown as:

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}, f\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R}, g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, g\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{m} \\
& \\
& \quad \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x)
\end{aligned}
$$

Why this summing of columns with rows?
\odot A derivative is a linear mapping of directions h onto directional derivatives. Represented by vector/matrix-vector/matrix multiplication \star :

$$
f(x) \stackrel{\sim}{\longleftrightarrow} D f(x)[\cdot], \quad D f(x)[h]=\nabla f(x) \star h
$$

- concatenation of two functions - derivative $\stackrel{\sim}{\longleftrightarrow}$ concatenation of two linear mappings

$$
f \circ g(x) \stackrel{\sim}{\longleftrightarrow} D(f \circ g)(x)[h]=D f(g(x))[v], v=D g(x)[h]
$$

$$
\frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x)
$$

Why this summing?

- A derivative of one function is a linear mapping of directions h :

$$
f(x) \stackrel{\sim}{\longleftrightarrow} D f(x)[\cdot], D f(x)[h]=\nabla f(x) \star h
$$

- concatenation of two functions - derivative $\stackrel{\sim}{\longleftrightarrow}$ concatenation of two linear mappings:

$$
f \circ g(x) \stackrel{\sim}{\longleftrightarrow} D(f \circ g)(x)[h]=D f(g(x))[v], v=D g(x)[h]
$$

- since linear mapping $\stackrel{\sim}{\longleftrightarrow}$ vector/matrix-vector/matrix multiplication (between the gradient and direction vector h), the concatenation of two linear mappings $\stackrel{\sim}{\longleftrightarrow}$ matrix-multiply as well between the matrices defining both gradients and the direction vector h :

$$
\begin{aligned}
D(f \circ g)(x)[h] & =D f(g(x))[v]=\nabla f(g(x)) \star v, v=D g(x)[h]=\nabla g(x) \star h \\
& \approx " \nabla f(g(x)) \star \nabla g(x) \star h^{\prime \prime} \\
D(f \circ g)(x)[\cdot] & \approx " \nabla f(g(x)) \star \nabla g(x)
\end{aligned}
$$

$$
\frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x)
$$

Why this column-row type summing?

- A derivative of one function is a linear mapping of directions h. concatenation of two functions - derivative will be a concat of two linear mappings

$$
\begin{aligned}
& f(x) \stackrel{\sim}{\longleftrightarrow} D f(x)[\cdot], D f(x)[h]=\nabla f(x) \star h \\
& f \circ g(x) \stackrel{\sim}{\longleftrightarrow} D(f \circ g)(x)[h]=D f(g(x))[v], v=D g(x)[h]
\end{aligned}
$$

\odot since linear mapping $\stackrel{\sim}{\longleftrightarrow}$ vector/matrix-vector/matrix multiplication (between the gradient and direction vector h), the concatenation of two linear mappings $\underset{ }{\sim}$ matrix-multiply (between the matrices defining both gradients) as well:

$$
\begin{aligned}
D(f \circ g)(x)[h] & =D f(g(x))[v]=\nabla f(g(x)) \star v, v=D g(x)[h]=\nabla g(x) \star h \\
& \approx " \nabla f(g(x)) \star \nabla g(x) \star h^{\prime \prime} \\
D(f \circ g)(x)[\cdot] & \approx " \nabla f(g(x)) \star \nabla g(x)
\end{aligned}
$$

- explanation for why ...? matrix multiply causing multiplication of columns (left side) with rows (right side)

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}, f\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R} \\
& g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, g\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{m} \\
& f \circ g(x)=f(g(x)) \\
& \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x) \\
& v_{r}=\nabla f(g(x))_{r}:=\frac{\partial f}{\partial z_{r}}(g(x)) \\
& J_{k r}:=\frac{\partial g_{r}}{\partial x_{k}}(x) \\
& \Rightarrow \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} J_{k r} v_{r}=(J \star v)_{k}
\end{aligned}
$$

See: the k-th partial derivative is the k-th component of matrix-vector product $J \star v, \star$ explicit for matrix multiplication

$$
\begin{gathered}
f: \mathbb{R}^{m} \rightarrow \mathbb{R}, f\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R} \\
g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, g\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{m} \\
f \circ g(x)=f(g(x)) \\
\frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x) \\
v_{r}=\nabla f(g(x))_{r}:=\frac{\partial f}{\partial z_{r}}(g(x)) \\
J_{k r}:=\frac{\partial g_{r}}{\partial x_{k}}(x) \\
(!) \Rightarrow \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} J_{k r} v_{r}=(J \star v)_{k} \\
\text { vectorize: } \Rightarrow\left(\begin{array}{c}
\frac{\partial f \circ g}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f \circ g}{\partial x_{d}}(x)
\end{array}\right)=J \star v=\text { by definition } J \star \nabla f(g(x))
\end{gathered}
$$

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}, f\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R} \\
& g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, g\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{m} \\
& \quad \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x)=\sum_{r=1}^{m} J_{k r} v_{r}=(J \star v)_{k} \\
& \Rightarrow\left(\begin{array}{c}
\frac{\partial f \circ g}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f \circ g}{\partial x_{d}}(x)
\end{array}\right)=J \star \nabla f(g(x))
\end{aligned}
$$

\odot by definition:

$$
\left(\begin{array}{c}
\frac{\partial f \circ g}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f \circ g}{\partial x_{d}}(x)
\end{array}\right)=\nabla(f \circ g)(x)
$$

- what is J ?

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}, f\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R} \\
& g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, g\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{m} \\
& \quad \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x)=\sum_{r=1}^{m} J_{k r} v_{r}=(J \star v)_{k} \\
& \Rightarrow\left(\begin{array}{c}
\frac{\partial f \circ g}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f \circ g}{\partial x_{d}}(x)
\end{array}\right)=\nabla(f \circ g)(x)=J \star \nabla f(g(x))
\end{aligned}
$$

© what is $J ? J_{k r} \stackrel{\text { by def }}{=} \frac{\partial g_{r}}{\partial x_{k}}(x)$.

$$
\Rightarrow J=J^{(g)}=\left(\begin{array}{c}
\frac{\partial g_{1}}{\partial x_{1}}(x), \ldots, \frac{\partial g_{m}}{\partial x_{1}}(x) \\
\frac{\partial g_{1}}{\partial x_{2}}(x), \ldots, \frac{\partial g_{m}}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial g_{1}}{\partial x_{d}}(x), \ldots, \frac{\partial g_{m}}{\partial x_{d}}(x)
\end{array}\right)=\underbrace{\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)}_{\text {Jacobi-matrix (or its transpose) }}
$$

- function f maps onto real numbers $(f(x) \in \mathbb{R})$
$\stackrel{\sim}{\leftrightarrow}$ apply ∇, Derivative: gradient

$$
f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R} \Rightarrow \nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{d}}(x)
\end{array}\right) \text { is the gradient }
$$

© function $g=\left(g_{1}, \ldots, g_{m}\right)$ maps onto vectors $\left(g(x) \in \mathbb{R}^{m}\right)$
$\stackrel{\sim}{\leftrightarrow}$ apply ∇ to each component g_{k}, Derivative: Jacobi-matrix.

Jacobi-Matrix $J^{(g)}$

is just a name for the matrix $\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)$ of concatenated gradients for each output component g_{i} of $g=\left(g_{1}, \ldots, g_{m}\right)$ (applied ∇ to each output component)
The definition is transposed sometimes!

Next step: How can the chain rule be efficiently implemented using linear algebra?

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}, f\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R} \\
& g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, g\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{m} \\
& \frac{\partial f \circ g}{\partial x_{k}}(x)=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x) \\
& \Rightarrow\left(\begin{array}{c}
\frac{\partial f \circ g}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f \circ g}{\partial x_{d}}(x)
\end{array}\right)=\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right) \star\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(g(x)) \\
\vdots \\
\frac{\partial f}{\partial x_{d}}(g(x))
\end{array}\right) \\
& \Rightarrow \nabla(f \circ g)(x)=\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right) \star \nabla f(g(x))
\end{aligned}
$$

chain rule n-dim case as matrix multiplications

assume:

$$
f: \mathbb{R}^{m} \mapsto \mathbb{R}, f(x) \in \mathbb{R}
$$

and if ∇f is a column vector and if g is a row vector

$$
\begin{aligned}
& g: \mathbb{R}^{d} \mapsto \mathbb{R}^{m}, g(x)=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{R}^{m} \\
\text { then: } & \nabla(f \circ g)(x)=\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \star \nabla f(g(x)) \\
& =(\text { inner function } g \text { gradients }) \star(\text { outer function } f \text { gradients })
\end{aligned}
$$

Mind here that the shapes must be correctly in this form - gradients are assumed to be column vectors: g.shape $=(1, m) .\left(\nabla g_{i}\right)$.shape $=(d, 1)$ is a column vector.

If instead we would have g. shape $=(m, 1),(\nabla f)$.shape $=(1, m)$, and gradients are row vectors instead: $\left(\nabla g_{i}\right)$.shape $=(1, d)$, then J and ∇f are transposed to the above (!), then one has to use ... see next slides
if gradients are row vectors instead:
If instead we would have g.shape $=(m, 1),(\nabla f)$.shape $=(1, m)$, and gradients are row vectors instead: $\left(\nabla g_{i}\right)$.shape $=(1, d)$, then J and ∇f are transposed to the above (!), then one has to use

$$
\nabla(f \circ g)(x)=\nabla f(g(x)) \star\left(\begin{array}{c}
\nabla g_{1}(x) \\
\nabla g_{2}(x) \\
\vdots \\
\nabla g_{m}(x)
\end{array}\right)=\nabla f(g(x)) \star J^{(g)}
$$

How to remember that? consider the shapes:

$$
\begin{aligned}
& f: \mathbb{R}^{m} \mapsto \mathbb{R}, f(x) \in \mathbb{R}, \nabla f(x) \in \mathbb{R}^{m} \\
& g: \mathbb{R}^{d} \mapsto \mathbb{R}^{m}, g(x) \in \mathbb{R}^{m}, \nabla g(x)=J^{(g)} \in \mathbb{R}^{m * d}
\end{aligned}
$$

if gradients are columns: $\nabla f \circ g \sim(d, 1), \nabla f \sim(m, 1)$

$$
\begin{array}{ll}
(d, 1) & \cong \\
\nabla(f \circ g)(x) & =\left(\nabla g_{1}(x) \star(m, 1) \text { only one way for } J\right. \\
\left.\nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \star \nabla f(g(x))
\end{array}
$$

if gradients are rows: $\nabla f \circ g \sim(1, d), \nabla f \sim(1, m)$

$$
\begin{array}{ll}
(1, d) \quad \cong(1, m) \star(m, d) \text { transpose of the above } \\
\nabla(f \circ g)(x) \quad & =\nabla f(g(x)) \star\left(\begin{array}{c}
\nabla g_{1}(x) \\
\nabla g_{2}(x) \\
\vdots \\
\nabla g_{m}(x)
\end{array}\right)
\end{array}
$$

if gradients are row vectors instead:
chain rule n-dim case as matrix multiplications (transposed version)
$f: \mathbb{R}^{m} \mapsto \mathbb{R}, f(x) \in \mathbb{R}$
if $g: \mathbb{R}^{d} \mapsto \mathbb{R}^{m}, g(x)=\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{m}\end{array}\right) \in \mathbb{R}^{m}$ is a column vector and if
$\nabla f=$ is a row vector $\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{m}}\right)$
then: $\Rightarrow \nabla(f \circ g)(x)=\nabla f(g(x)) \star J=\nabla f(g(x)) \star\left(\begin{array}{c}\nabla g_{1}(x) \\ \nabla g_{2}(x) \\ \vdots \\ \nabla g_{m}(x)\end{array}\right)$
$=($ outer function f gradients $) \star$ (inner function g gradients)

Now: Chain rule for more than two functions using linear algebra (without any neural networks)?
assume: gradients are column vectors here. Then:

$$
\begin{aligned}
& \nabla(f \circ g)(x)=\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \star \nabla f(g(x)) \\
& =(\text { inner function } g \text { gradients }) \star(\text { outer function } f \text { gradients })
\end{aligned}
$$

This chains to more than two functions:

$$
\begin{aligned}
& \nabla(f \circ g \circ t)(x)=\nabla t(x) \star \nabla(f \circ g)(t(x))= \\
& =\left(\nabla t_{1}(x),, \ldots, \nabla t_{n}(x)\right) \star\left(\nabla g_{1}(t(x)), \ldots, \nabla g_{m}(t(x))\right) \star \nabla f(g(t(x))) \\
& =(\text { inner gradients }) \star(\text { mid gradients }) \star(\text { outer gradients }) \\
& =(\text { inner gradients })_{\mid x} \star(\text { mid gradients })_{\mid t(x)} \star(\text { outer gradients })_{\mid g(t(x))}
\end{aligned}
$$

(1) Chain rule as matrix multiplications
(2) Backpropagation
(3) Autograd
(4) The problem of gradient flow
(5) Neural network initialization
(6) Monitoring of the training
(7) off-class: derivation from the viewpoint of directional derivatives

Backpropagation computes gradients via chainrule along the (directed) edges in the neural network graph.
Backprop = chainrule on a DAG

Executing chainrule along a directed graph.

Executing chainrule along a directed graph.

$\frac{\partial y}{\partial z 4}=? ? ?$

$$
\frac{\partial y}{\partial z_{4}}=\frac{\partial y}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{4}}+\frac{\partial y}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{4}}+\frac{\partial y}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{4}}
$$

What is backprop?

Executing chainrule along a directed graph.

$\frac{\partial y}{\partial z_{5}}=? ? ? \quad \frac{\partial y}{\partial z_{5}}=\frac{\partial y}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{5}}+\frac{\partial y}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{5}}+\frac{\partial y}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{5}}$
(-) Note the flow: each edge $z_{k} \rightarrow z_{i}$ has a partial derivative $\frac{\partial z_{i}}{\partial z_{k}}$ flowing backwards
\odot each path (e.g. $z_{4} \rightarrow y$) is the product of its associated edge terms $\frac{\partial z_{i}}{\partial z_{k}}$.

What is backprop?

$$
\text { layers } \begin{array}{ll}
\left(z_{1}, z_{2}, z_{3}\right)= & y= \\
f^{(4)}\left(w^{(4)}, z=f^{(3)}\right) & f^{(5)}\left(w^{(5)}, z=f^{(4)}\right)
\end{array}
$$

Learning goals

- Note the flow: each edge $z_{k} \rightarrow z_{i}$ has a partial derivative $\frac{\partial z_{i}}{\partial z_{k}}$ flowing backwards
- each path (e.g. $z_{4} \rightarrow y$) is the product of its associated edge terms $\frac{\partial z_{i}}{\partial z_{k}}$
- In particular it is the product of the last edge with the product at the last node :)

What is backprop?

Executing chainrule along a directed graph.

$$
\text { layers } \begin{array}{ll}
\left(z_{1}, z_{2}, z_{3}\right)= & y= \\
f^{(4)}\left(w^{(4)}, z=f^{(3)}\right) & f^{(5)}\left(w^{(5)}, z=f^{(4)}\right)
\end{array}
$$

$\frac{\partial y}{\partial z_{6}}=? ? ?$ The flow principle continues: $\frac{\partial y}{\partial z_{6}}=\frac{\partial y}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{6}}+\frac{\partial y}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{6}}$

- how to use it: walk backwards and compute layer by layer
© at first $\frac{\partial y}{\partial z_{1}}, \frac{\partial y}{\partial z_{2}}, \frac{\partial y}{\partial z_{3}}$
\odot then $\frac{\partial y}{\partial z_{4}}, \frac{\partial y}{\partial z_{5}}$ from the previous $\frac{\partial y}{\partial z_{i}}$
\odot then $\frac{\partial y}{\partial z_{6}}, \frac{\partial y}{\partial z_{i}}$ from the previous $\frac{\partial y}{\partial z_{i}}$

What is backprop?

Backpropagation first version (ignores layer structure)

1. Start at the top by finding the set of neurons z_{l} such that the loss function directly depends on their inputs $L=L\left(z_{l}\right)$
(!) the graph structure of the neural net tells you which neurons z_{k} give input to z_{l}
2. Then use for walking downwards (against directions of the forward computation flow):

$$
\frac{d L}{d z_{k}}=\sum_{\text {l: s.t. }} \sum_{k \text { gives input to } /} \frac{d E}{d z_{l}} \frac{\partial z_{l}}{\partial z_{k}}
$$

3. next: repeat step 2. for the z_{k} until you reach the bottom / or until you have covered all paths backwards from E to your weight of interest w_{k}
4. Finish at the bottom by $\frac{d L}{d w_{k}}=\frac{d L}{d z_{k}} \frac{\partial z_{k}}{\partial w_{k}}$

What is backprop?

in practice walking down is done layer by layer

Backpropagation

1. Start at the top by finding the set of neurons z_{l} such that the loss function directly depends on their inputs $L=L\left(z_{l}\right)$. Let the last layer index be M.
2. for $i \in \operatorname{range}(M-1,-1$, step $=-1)$

$$
\forall z_{k} \in \text { Layer }_{i}: \frac{d L}{d z_{k}}=\sum_{\text {I: s.t. } k \text { gives input to } I} \frac{d E}{d z_{l}} \frac{\partial z_{l}}{\partial z_{k}}
$$

3. next: repeat step 2. for the z_{k} until you reach the bottom / or until you have covered all paths backwards from E to your weight of interest w_{k}
4 Finish at the bottom by $\frac{d L}{d w_{k}}=\frac{d L}{d z_{k}} \frac{\partial z_{k}}{\partial w_{k}}$

Important for implementation: backprop is implemented efficiently by writing the chain rules as matrix multiplications in matrix algebra.

- Remember: $f^{(I)}=f^{(I)}\left(w^{(I)}, f^{(I-1)}\right), f^{(I-1)}=f^{(I-1)}\left(w^{(I-1)}, f^{(I-2)}\right)$
- assume we have already computed the gradient with respect to inputs to layer $I: \nabla^{f^{(I-1)}}\left(L \cdots \circ f^{(I)}\right)$.
\odot want: $\nabla^{f^{(I-2)}}\left(L \cdots \circ f^{(I)} \circ f^{(I-1)}\right)$
By slide 26:

$$
\nabla^{f^{(I-2)}}\left(L \cdots \circ f^{(I)} \circ f^{(I-1)}\right)=\nabla^{f^{(I-2)}} f^{(I-1)} \star \nabla^{f^{(I-1)}}\left(L \cdots \circ f^{(I)}\right)
$$

\odot have now: $\nabla^{f^{(I-2)}}\left(L \ldots \circ f^{(I-1)}\right)$
\odot iterate further down (+ reusing)

$$
\nabla^{f^{(I-3)}}\left(L \cdots \circ f^{(I-1)} \circ f^{(I-2)}\right)=\nabla^{f^{(I-3)}} f^{(I-2)} \star \nabla^{f^{(I-2)}}\left(L \cdots \circ f^{(I-1)}\right)
$$

- Remember for the network $f^{(I)}=f^{(I)}\left(w^{(I)}, f^{(I-1)}\right)$
- One thing to finish: we need gradients with respect to the trainable parameters $\nabla^{w^{(I-1)}}\left(L \cdots \circ f^{(I)} \circ f^{(I-1)}\right)$

$$
f^{(I)}=f^{(I)}\left(w^{(I)}, f^{(I-1)}\right)
$$

$$
\text { and so } f^{(I-1)}=f^{(I-1)}\left(w^{(I-1)}, f^{(I-2)}\right)
$$

$$
\nabla^{f^{(I-2)}}\left(L \cdots \circ f^{(I)} \circ f^{(I-1)}\right)=\nabla^{f^{(I-2)}} f^{(I-1)} \star \nabla^{f^{(I-1)}}\left(L \cdots \circ f^{(I)}\right)
$$

$$
\nabla^{w^{(I-1)}}\left(L \cdots \circ f^{(I)} \circ f^{(I-1)}\right)=\nabla^{w^{(I-1)}} f^{(I-1)} \star \nabla^{f^{(I-1)}}\left(L \cdots \circ f^{(I)}\right)
$$

Backpropagation

The last two equations are the iterative version of backprop in matrix algebra ... BUT: mind the shapes (gradients are column or row vectors)

Why is this efficient?

Exemplary three layer network:

$$
\begin{aligned}
z^{(I)} & =f^{(I)}\left(w^{(I)}, z^{(I-1)}\right) \\
y & =f^{(3)}\left(w^{(3)}, f^{(2)}\left(w^{(2)}, f^{(1)}\left(w^{(1)}, x\right)\right)\right)
\end{aligned}
$$

goal: to compute $\nabla^{w_{d}} y$ - using chain rule, $\nabla^{(z)} y$ denotes which vector z of variables the gradient of y is computed for.

$$
\begin{aligned}
& \nabla^{w^{(3)}} y \rightarrow \text { compute directly } \\
& \begin{aligned}
\nabla^{w^{(2)}} y & =\nabla^{w^{(2)}}\left(f^{(3)} \circ f^{(2)}\right)=\nabla^{w^{(2)}} f^{(2)} \star \nabla^{f^{(2)}} f^{(3)} \\
& =\nabla^{w^{(2)}} f^{(2)} \star \nabla^{f^{(2)}} f^{(3)}\left(w^{(3)}, f^{(2)}(\ldots)\right) \\
\nabla^{w^{(1)}} y & =\nabla^{w^{(1)}}\left(f^{(3)} \circ f^{(2)} \circ f^{(1)}\right)=\nabla^{w^{(1)}} f^{(1)} \star \nabla^{f^{(1)}}\left(f^{(3)} \circ f^{(2)}\right) \\
& =\nabla^{w^{(1)}} f^{(1)} \star \nabla^{f^{(1)}} f^{(2)} \star \nabla^{f^{(2)}} f^{(3)}\left(w^{(3)}, f^{(2)}(\ldots)\right)
\end{aligned}
\end{aligned}
$$

Observation

We need to have the Jacobi-matrix $\nabla^{f^{(k-1)}} f^{(k)}\left(w^{(k)}, f^{(k-1)}(\ldots)\right)$ for computing the gradients for all parameters $w^{(k-1)}, w^{(k-2)}, \ldots, w^{(1)}$ in layers closer to the input. Backprop: compute it once, reuse it for all layers.

Piece of cake

$$
f^{(I-1)}=g\left(f^{(I-2)} \star w^{(I-1)}+b^{(I-1)}\right), g(\cdot) \text { activation }
$$

Note $f^{(I-1)}$ is a $(1, m)$-shaped vector, and $w^{(I-1)}$ is a matrix (n, m), and $f^{(I-2)}$ is a $(1, n)$-shaped vector.

Consider a single output neuron $f^{(I-1)}[0, k]$ of the layer $f^{(I-1)}$:

$$
\text { then: } f^{(I-1)}[0, k]=g\left(f^{(I-2)} \star w^{(I-1)}[:, k]+b^{(I-1)}[0, k]\right)
$$

$$
\nabla^{f^{(I-2)}} f^{(I-1)}[0, k]=?
$$

$\nabla^{w^{(I-1)}[:, k]} f^{(I-1)}[0, k]=$? the two red must match

$$
\begin{aligned}
& \Rightarrow \frac{\partial f^{(I-1)}[0, k]}{\partial f^{(I-2)}[0, d]}=g^{\prime}\left(f^{(I-2)} \star w^{(I-1)}[:, k]+b^{(I-1)}[0, k]\right) w^{(I-1)}[d, k] \\
& \Rightarrow \frac{\partial f^{(I-1)}[0, k]}{\partial w^{(I-1)}[d, k]}=g^{\prime}\left(f^{(I-2)} \star w^{(I-1)}[:, k]+b^{(I-1)}[0, k]\right) f^{(I-2)}[0, d] \\
& \text { and } \frac{\partial f^{(I-1)}[0, k]}{\partial b^{(I-1)}[0, k]}=g^{\prime}\left(f^{(I-2)} \star w^{(I-1),[:, k]}+b^{(I-1)}[0, k]\right)
\end{aligned}
$$

(1) Chain rule as matrix multiplications
(2) Backpropagation
(3) Autograd
(4) The problem of gradient flow
(5) Neural network initialization
(6) Monitoring of the training
(7) off-class: derivation from the viewpoint of directional derivatives

A directed-graph representation of computations done.

What is a computational graph?

$$
f(\vec{x})=x_{1} * x_{2}+x_{3} * x_{4} \quad f(\vec{x})=z_{1}+z_{2}
$$

Forward pass: the actual computation

Forward propagation

Backward pass: computing derivates

Backward propagation

What if we want to get the derivative of f with respect to the $x 1$?

$$
f(\vec{x})=x_{1} * x_{2}+x_{3} * x_{4} \quad f(\vec{x})=z_{1}+z_{2} \quad \frac{\partial f(\vec{x})}{\partial x_{1}}=\frac{\partial f}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{1}}=x_{2}
$$

What ? Automatic differentiation with respect to variables used in computations.
You can define a sequence of computations, then call .backward() or torch.autograd.grad(...). see autograf2.py, print_computationalgraph.py

When ?
(-) If tensors are leaf tensors and have the requires_grad=True flag set, then they are marked for tracking operations along the computation sequence for later gradient computation.

- leaf tensor: not created as the result of an operation but defined by you as an input.
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial. html\#sphx-glr-beginner-blitz-autograd-tutorial-py
if e is a tensor with 1 element, then e.backward() computes the gradient of e with respect to all its inputs that were involved in computing e.
see print_computationalgraph.py: the whole backward graph
if e is a tensor of $n \geq 2$ elements, then the gradient of e is a matrix, the Jacobi-matrix. Example for 3 elements:

$$
\begin{aligned}
e= & \left(e_{1}, e_{2}, e_{3}\right) \\
d e / d x= & \left(\begin{array}{ccc}
\frac{d e_{1}}{d x_{1}} & \frac{d e_{2}}{d x_{1}} & \frac{d e_{3}}{d x_{1}} \\
\frac{d e_{1}}{d x_{2}} & \frac{d e_{2}}{d x_{2}} & \frac{d e_{3}}{d x_{2}} \\
\vdots & \vdots & \vdots \\
\frac{d e_{1}}{d x_{8}} & \frac{d e_{2}}{d x_{8}} & \frac{d e_{3}}{d x_{8}} \\
\vdots & \vdots & \vdots \\
\frac{d e_{1}}{d x_{D}} & \frac{d e_{2}}{d x_{D}} & \frac{d e_{3}}{d x_{D}}
\end{array}\right)
\end{aligned}
$$

if e is a tensor of $n \geq 2$ elements, then the gradient of e is a matrix, the Jacobi-matrix.
In this case: (for an example where e has 3 elements)
e.backward(torch.tensor([-5, 2, 6])) computes the D-dim weighted gradient vector

$$
\begin{gathered}
\frac{d e_{1}}{d x} *(-5)+\frac{d e_{2}}{d x} * 2+\frac{d e_{3}}{d x} * 6 \\
=\left(\begin{array}{c}
\frac{d e_{1}}{d x_{1}} *(-5)+\frac{d e_{2}}{d x_{1}} * 2+\frac{d e_{3}}{d x_{1}} * 6 \\
\frac{d e_{1}}{d x_{2}} *(-5)+\frac{d e_{2}}{d x_{2}} * 2+\frac{d e_{3}}{d x_{2}} * 6 \\
\vdots \\
\frac{d e_{1}}{d x_{8}} *(-5)+\frac{d e_{2}}{d x_{8}} * 2+\frac{d e_{3}}{d x_{8}} * 6 \\
\vdots \\
\frac{d e_{1}}{d x_{D}} *(-5)+\frac{d e_{2}}{d x_{D}} * 2+\frac{d e_{3}}{d x_{D}} * 6
\end{array}\right)
\end{gathered}
$$

This is an inner product between the jacobi matrix and a vector that has as many elements as e in the forward pass.

Autograd

- Autograd tracks the graph of computations
- Tracked computations will be used to compute a gradient automatically
© use with torch.no_grad(): environment to not record computations for gradient calculations for some larger block of code that is reused
© use case for with torch.no_grad():: everything outside of handling training data, e.g. computing validation or test predictions/ scores. ${ }^{a}$
${ }^{2}$ Why you dont want to track gradient computations in this case?
with torch.no_grad():
© use with torch.no_grad(): environment to not record computations for gradient calculations for some larger block of code that is reused - use case: everything outside of handling training data, e.g. computing validation or test scores. ${ }^{a}$
- source of mistakes: every computation outside of a with torch.no_grad() : environment will be used to compute gradients, and in the end to update parameters (e.g. predict on validation data).
© outlook: for GAN-training sometensor.detach() prevents the gradient flowing from sometensor to all those modules/variables used to compute sometensor.
${ }^{a}$ Why you dont want to track gradient computations in this case?

Note: If you have a tensor with attached gradient, then the . data stores the tensor values, and .grad.data the gradient values

```
vals=x.data.numpy() #exports function values to numpy
g_vals=x.grad.data.numpy() #exports gradient values to numpy
```

(1) Chain rule as matrix multiplications
(2) Backpropagation
(3) Autograd
(4) The problem of gradient flow
(5) Neural network initialization
(6) Monitoring of the training
(7) off-class: derivation from the viewpoint of directional derivatives

Here I like to show that for classical neural networks the size of the gradient can become very small for layers close to the input.
Consider the following NN:

$$
\begin{array}{rrr}
\frac{\partial L}{\partial z_{4}} & =\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{4}} & +\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{4}} \\
\frac{\partial L}{\partial z_{5}} & =\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{5}} & +\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{5}} \\
\frac{\partial L}{\partial z_{6}} & =\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{6}} & +\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{6}} \\
\frac{\partial L}{\partial z_{n}} & =\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{6}} \ldots \cdot \frac{\partial z_{n-1}}{\partial z_{n}} & +\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{6}} \cdot \ldots \cdot \frac{\partial z_{n-1}}{\partial z_{n}}
\end{array}
$$

The partial derivatives are sums of chains of products. For neurons close to the input these chains are longer.

Now lets consider a classical neural network neuron with a sigmoid activation

$$
\begin{aligned}
z_{1} & =\tanh \left(w_{12} z_{2}+b\right) \\
\frac{\partial z_{1}}{\partial z_{2}} & =\tanh ^{\prime}\left(w_{12} z_{2}+b\right) w_{12}=\left(1-\tanh ^{2}\left(w_{12} z_{2}+b\right)\right) w_{12}
\end{aligned}
$$

$\left(1-\tanh ^{2}\left(w_{12} z_{2}+b\right)\right)$ is 1 at zero, otherwise quickly dropping to zero. Weights are usually initialized to be random values close to zero. Most of the time, such a derivative will be smaller than 1 in absolute value.

Multiplying long chains of values in $(-1,+1)$ quickly drops to zero:

$$
0.5^{4}=0.0625,0.5^{10} \approx 0.001,0.5^{20} \approx 0.000001,0.1^{10} \text { etc }
$$

In theory also gradient explosion may occur, if weights are set to large values.

The implication? Gradient updates far from the output can get very small.

one challenge in deep learning

In total this raises three problems:
\odot the gradients may become very small. Small gradients \rightarrow small weight updates, slow learning
© the sizes of gradients will highly vary between neurons in a NN. So update speeds will vary across the network

- if used sigmoids as activations, a saturated sigmoid will result in a gradient close to zero, thus killing gradients along the whole chain downwards(see ReLU, leaky ReLU as alternatives)
One key challenge in deep learning is to maintain gradient flow so as to be able to update weights quickly, and at approximately the same speeds across the whole network
(1) Chain rule as matrix multiplications
(2) Backpropagation
(3) Autograd
(4) The problem of gradient flow
(5) Neural network initialization
(6) Monitoring of the training
(7) off-class: derivation from the viewpoint of directional derivatives
http://neuralnetworksanddeeplearning.com/chap3.html\# weight_initialization
https://www.youtube.com/watch?v=6by6Xas_Kho
have to initialize neural network values so that gradient flows well at initialization. How to?
- symmetry breaking
© right scale of weights
Current standard for convolution layers in ReLU-type networks is Kaiming He et al. 2015 https://arxiv.org/pdf/1502.01852.pdf

Initialization for ReLU networks

© set biases to zero $b=0$
© initialize weights as random values for symmetry breaking
© conv layers: draw weights from a normal with standard deviation equal to $\sigma=\sqrt{\frac{2}{n}}$
$w_{d} \sim N\left(0, \sigma^{2}\right)$

- later: use transfer learning instead of training with random init

Initialization for pReLU networks

© set biases to zero $b=0$
© initialize weights as random values for symmetry breaking
© conv layers: draw weights from a normal with standard deviation equal to $\sigma=\sqrt{\frac{2}{(1+a)^{2} n}}$ where a is the negative slope
$w_{d} \sim N\left(0, \sigma^{2}\right)$

- later: use transfer learning instead of training with random init
what is n for conv layers?
- either kernelsize(h)* kernelsize(w) * input_channels
- or kernelsize(h)* kernelsize(w) * output_channels what is n for linear layers ?
- either input_channels
- or output_channels
if we use pReLu/ leaky ReLU with negative slope a :

$$
g(z)=\mathbb{1}[z>0]-a \mathbb{1}[z<0]
$$

conv layers: $\sigma=\sqrt{\frac{2}{\left(1+a^{2}\right) n}}$

$$
w_{d} \sim N\left(0, \sigma^{2}\right)
$$

https://pytorch.org/docs/stable/nn.init.html
torch.nn.init.kaiming_normal_(tensor, $a=0$, mode='fan_in', nonlinearity='leaky_relu')

The weights of different neurons should be initialized with asymmetric values. Reason: allow different neurons to learn to become detectors for different structures.

Next: show that non-randomized initialization can result in symmetries. Then different neurons keep same weights - same function.

Consider a fully symmetrically initialized neural network:

© If $w_{13}=w_{14}$ and $w_{23}=w_{24}$, then the neuron activations of z_{3} and z_{4} are the same. If now also $w_{35}=w_{45}$, then we would have identically gradient updates for w_{13} versus w_{14}, as well as for w_{23} versus w_{24}.

- then: the weights of w_{13} versus w_{14} change in the same way, during learning it stays $w_{13}=w_{14}$ and z_{3} vs z_{4} nevers learns something different from z_{1}

$$
\begin{aligned}
\frac{\partial L}{\partial w_{13}} & =\frac{\partial L}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{13}}, \frac{\partial L}{\partial w_{14}}=\frac{\partial L}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{4}} \frac{\partial z_{4}}{\partial w_{14}} \\
\frac{\partial z_{5}}{\partial z_{3}} & =\sigma^{\prime}\left(w_{35} z_{3}+w_{45} z_{4}\right) w_{35} \\
\frac{\partial z_{5}}{\partial z_{4}} & =\sigma^{\prime}\left(w_{35} z_{3}+w_{45} z_{4}\right) w_{34} \\
w_{35} & =w_{34} \Rightarrow \frac{\partial z_{5}}{\partial z_{3}}=\frac{\partial z_{5}}{\partial z_{4}}!! \\
\frac{\partial z_{3}}{\partial w_{13}} & =\sigma^{\prime}\left(w_{13} z_{1}+w_{23} z_{2}\right) z_{1} \\
\frac{\partial z_{4}}{\partial w_{14}} & =\sigma^{\prime}\left(w_{14} z_{1}+w_{24} z_{2}\right) z_{1} \\
w_{13} & =w_{14}, w_{23}=w_{24} \Rightarrow \frac{\partial z_{3}}{\partial w_{13}}=\frac{\partial z_{4}}{\partial w_{14}} \\
& \Rightarrow \frac{\partial L}{\partial w_{13}}=\frac{\partial L}{\partial w_{14}}
\end{aligned}
$$

- the right scale
- idea: initialize so that the average variance of outputs is constant in all the layers, and there is no value explosion during the forward pass
- similar argument holds for variance of gradients in the backward pass
see lec_initialization2.pdf for the derivation of the Kaiming-He Intializer
??
... ...
(1) Chain rule as matrix multiplications
(2) Backpropagation
(3) Autograd
(4) The problem of gradient flow
(5) Neural network initialization
(6) Monitoring of the training
(7) off-class: derivation from the viewpoint of directional derivatives

Loss functions and learning rate

© too high Ir: if non-convergence visible on the training loss already
© high Ir: if have early plateau on train loss. learning rate decrease scheme can help!

- good choice of Ir if visible on train loss. On val loss it can go up due to overfitting even when Ir is set optimally

- Gap between training error and validation error.
- Need
regularization (or more data) to avoid overfitting.

source: a paper from next lecture https://arxiv.org/abs/1903.10520 and https://arxiv.org/abs/1705.08292

source: a paper from next lecture https://arxiv.org/abs/1903.10520 and https://arxiv.org/abs/1705.08292

(1) Chain rule as matrix multiplications

(2) Backpropagation
(3) Autograd
(4) The problem of gradient flow
(5) Neural network initialization
(6) Monitoring of the training
(7) off-class: derivation from the viewpoint of directional derivatives
© 1-dim case: $x \in \mathbb{R}, g(x) \in \mathbb{R}$

$$
\begin{aligned}
h(x) & =f \circ g(x) \\
\frac{\partial h}{\partial x}(x) & =\frac{\partial f \circ g}{\partial x}(x)=f^{\prime}(g(x)) g^{\prime}(x)=\frac{\partial f}{\partial z}(g(z)) \frac{\partial g}{\partial x}(x)
\end{aligned}
$$

© n -dim case:

- recap: derivatives tell you about directional derivatives $D g(x)[h]=\nabla g(x)^{T} h$ recap: derivatives define linear mappings $L[\cdot]=\operatorname{Dg}(x)[\cdot]$: directions h onto slopes $\operatorname{Dg}(x)[h]$
- derivative of chained functions \leftrightarrow chaining of linear mappings

$$
D f \circ g(x)[h]=\operatorname{Df}(g(x))[D g(x)[h]]
$$

© meaning ?
compute the directional derivative $D g(x)[h]$ of the inner mapping g in direction h at point x
plug it into the linear mapping $\operatorname{Df}(g(x))[\cdot]$ for the directional derivative of the outer mapping f

chain rule n-dim case

for 2 functions f, g the chainrule of their concatenation $f \circ g(x)$ is given as the chaining of their linear mappings $D f(g(x))[\cdot]$ and $D g(x)[\cdot]$ used to compute the directional derivatives for f (in point $g(x)$) and g (in point x):

$$
\begin{array}{rlr}
f: \mathbb{R}^{m} \rightarrow \mathbb{R}, & f\left(z_{1}, \ldots, z_{m}\right) & \in \mathbb{R} \\
g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, & g\left(x_{1}, \ldots, x_{d}\right) & \\
& =\left(g_{1}\left(x_{1}, \ldots, x_{d}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{d}\right)\right) & \in \mathbb{R}^{m} \\
D f \circ g(x)[h] & =D f(g(x))[D g(x)[h]] &
\end{array}
$$

$$
\frac{\partial f \circ g}{\partial x_{k}}=\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) \frac{\partial g_{r}}{\partial x_{k}}(x)
$$

The fact that it is a concatenation of two linear mappings \leftrightarrow must correspond to matrix multiplication of two matrices, explains why you have to do that summing.

$$
\begin{aligned}
f: \mathbb{R}^{m} \rightarrow \mathbb{R}, & f\left(z_{1}, \ldots, z_{m}\right) & \in \mathbb{R} \\
g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, & g\left(x_{1}, \ldots, x_{d}\right) & \\
& =\left(g_{1}\left(x_{1}, \ldots, x_{d}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{d}\right)\right) & \in \mathbb{R}^{m} \\
D f \circ g(x)[h] & =\operatorname{Df}(g(x))[\operatorname{Dg}(x)[h]] &
\end{aligned}
$$

How does this translate into linear algebra?

$$
\begin{aligned}
D f(g(x))[u] & =\sum_{r=1}^{m} \frac{\partial f}{\partial z_{r}}(g(x)) u_{r} \quad=\left(u_{1}, \ldots, u_{m}\right)\left(\begin{array}{c}
\frac{\partial f}{\partial z_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial z_{m}}(x)
\end{array}\right) \\
& =\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right)^{T}\left(\begin{array}{c}
\frac{\partial f}{\partial z_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial z_{m}}(x)
\end{array}\right)
\end{aligned}
$$

directional derivative via matrix multiplications

$$
=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right)^{T}\left(\begin{array}{c}
\frac{\partial f}{\partial z_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial z_{m}}(x)
\end{array}\right) \quad=u^{T} \nabla f(g(x))
$$

© $g_{i}(x)=g_{i}\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}, \nabla g_{i}$ is defined same as ∇f for f. $D g(x)[h]$ can be represented by what structure?

$$
\begin{aligned}
g(x) & =\left(g_{1}(x), \ldots g_{m}(x)\right) \\
D g(x)[h] & =\left(D g_{1}(x)[h], \ldots, D g_{m}(x)[h]\right) \\
& =\left(h^{T} \nabla g_{1}(x), h^{T} \nabla g_{2}(x), \ldots, h^{T} \nabla g_{m}(x)\right) \\
& =\left(\left(h_{1}, \ldots, h_{d}\right)\left(\begin{array}{c}
\frac{\partial g_{1}}{\partial x_{1}} \\
\vdots \\
\frac{\partial g_{1}}{\partial x_{d}}
\end{array}\right),\left(h_{1}, \ldots, h_{d}\right)\left(\begin{array}{c}
\frac{\partial g_{2}}{\partial x_{1}} \\
\vdots \\
\frac{\partial g_{2}}{\partial x_{d}}
\end{array}\right), \ldots,\left(h_{1}, \ldots, h_{d}\right)\left(\begin{array}{c}
\frac{\partial g_{m}}{\partial x_{1}} \\
\vdots \\
\frac{\partial g_{m}}{\partial x_{d}}
\end{array}\right)\right) \\
& =\left(h_{1}, \ldots, h_{d}\right)\left(\left(\begin{array}{c}
\frac{\partial g_{1}}{\partial x_{1}} \\
\vdots \\
\frac{\partial g_{1}}{\partial x_{d}}
\end{array}\right),\left(\begin{array}{c}
\frac{\partial g_{2}}{\partial x_{1}} \\
\vdots \\
\frac{\partial g_{2}}{\partial x_{d}}
\end{array}\right), \ldots,\left(\begin{array}{c}
\frac{\partial g_{m}}{\partial x_{x_{1}}} \\
\vdots \\
\frac{\partial g_{m}}{\partial x_{d}}
\end{array}\right)\right) \\
& =\left(h_{1}, \ldots, h_{d}\right)\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \\
& =h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right)
\end{aligned}
$$

All I have been showing:

$$
\begin{aligned}
g(x) & =\left(g_{1}(x), \ldots g_{m}(x)\right) \\
D g(x)[h] & =\left(D g_{1}(x)[h], \ldots, D g_{m}(x)[h]\right) \\
& =\left(h^{T} \nabla g_{1}(x), h^{T} \nabla g_{2}(x), \ldots, h^{T} \nabla g_{m}(x)\right) \\
& =h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right)
\end{aligned}
$$

$D g(x)[h]$ can be represented by what structure for $g(x)=\left(g_{1}(x), \ldots g_{m}(x)\right.$?

See the analogy:

$$
\begin{aligned}
f(x) & =f(x) \\
g(x) & =\left(g_{1}(x), \ldots g_{m}(x)\right) \\
D f(x)[u] & =u^{T} \nabla f(x) \\
D g(x)[h] & =h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right)
\end{aligned}
$$

This is the Jacobi-matrix. To remember it, simply remember it as ($\left.\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)$ where every gradient is a column vector

$$
\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)=\left(\begin{array}{c}
\frac{\partial g_{1}}{\partial x_{1}}, \frac{\partial g_{2}}{\partial x_{1}}, \ldots, \frac{\partial g_{m}}{\partial x_{1}} \\
\frac{\partial g_{1}}{\partial x_{2}}, \frac{\partial g_{2}}{\partial x_{2}}, \ldots, \frac{\partial g_{m}}{\partial x_{2}} \\
\vdots \\
\frac{\partial g_{1}}{\partial x_{d}}, \frac{\partial g_{2}}{\partial x_{d}}, \ldots, \frac{\partial g_{m}}{\partial x_{d}}
\end{array}\right)
$$

Now we can derive the final result

$$
\begin{aligned}
D(f \circ g)(x)[h]= & D f(g(x))[D g(x)[h]] \\
D f(g(x))[u]= & u^{T} \nabla f(x) \text { where } u \text { is a column vector } \\
& \text { and } u^{T} \text { is a row vector } \\
D g(x)[h]= & h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \text { is a row vector!! }
\end{aligned}
$$

© This implies that you have to plug in $h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right)$ as u^{T} and not as u! Therefore:

$$
\begin{aligned}
\Rightarrow D(f \circ g)(x)[h] & =\operatorname{Df}(g(x))[D g(x)[h]] \\
& =h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \nabla f(g(x))
\end{aligned}
$$

chain rule n-dim case as matrix multiplications
$f: \mathbb{R}^{m} \mapsto \mathbb{R}, f(x) \in \mathbb{R}$
$g: \mathbb{R}^{d} \mapsto \mathbb{R}^{m}, g(x)=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{R}^{m}$
$D(f \circ g)(x)[h]=h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \nabla f(g(x))$
$=h^{T}$ (inner function g gradients)(outer function f gradients)

$$
\begin{aligned}
D(f \circ g)(x)[h] & =h^{T}\left(\nabla g_{1}(x), \nabla g_{2}(x), \ldots, \nabla g_{m}(x)\right) \nabla f(g(x)) \\
& =h^{T}(\text { inner function gradients })(\text { outer function gradients })
\end{aligned}
$$

This chains to more than two functions:
$D(f \circ g \circ t)(x)[h]=$
$D(f \circ g)(t(x))[D t(x)[h]]=$
$=h^{T}\left(\nabla t_{1}(x), \ldots, \nabla t_{n}(x)\right)\left(\nabla g_{1}(t(x)), \ldots, \nabla g_{m}(t(x))\right) \nabla f(g(t(x)))$
$=h^{T}$ (inner f gradients) (mid f gradients)(outer f gradients)
$=h^{T}$ (inner f gradients $)_{\mid x}(\text { mid } \mathrm{f} \text { gradients })_{\mid t(x)}(\text { outer } \mathrm{f} \text { gradients })_{\mid g(t(x))}$

Questions?!

