State of the art architectures in classification for

vision

Alexander Binder
University of Oslo (UiO)
February 16, 2021

UiO ¢ Department of Informatics
University of Oslo

Takeaway points

at the end of this lecture you should be able to summarize:

©
©
©

dropout and batchnorm
VGG — specialties
googlenet — specialties
resnet — specialties
densenet — specialties

networks used for segmentation and GANs, image
captioning and other tasks use similar building blocks
(we will go for GANs later)

Takeaway points

good practices in state of the art models (not only for vi-
sion!!!):

© batchnormalization

@ residual connections/skip connections

© use an ensemble of models rather than a single model

© stack smaller kernels rather than use a big kernel.
The explanations for why these work well are often
rather conceptual (except for ensembles).

Takeaway for this lesson:

finetuning means you load weights from another pretrained
model as much as you can

load weights bottom-up until you find a layer where you
cannot load weights

Do not train from scratch!? Finetuning can improve
performance when training with small sample sizes greatly as
compared to training from scratch with a random
initialization.

?in ML exceptions always apply

Takeaway for this lesson:

© finetuning can be used for models with different types of
inputs and multiple forward streams, e.g. image and text —
but always bottom up: from one of the inputs until the first
layer where weights cannot be loaded anymore (bcs one
changed the network design at this point to either a
completely different layer, or due to shape mismatch). after
one such blocker-layer, it makes no sense to load weights
further above

@ finetuning has three flavours: train all layers, train only the
top layer, train only the k top-most layers

prereading / post reading

http://d2l.ai/chapter_convolutional-modern/index.html

http://d2l.ai/chapter_convolutional-modern/index.html

Architecture: VGG

Simonyan & Zisserman, ICLR 2015
https://arxiv.org/abs/1409.1556

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv (receptive field size)- (number of channcls)”.
The ReLU activation function is not shown for brevity.

‘ConvNet Configurati
ALRN B D
TTweight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (221 x 221 RGB image)

conva onv. conv3- Convi6d | conv3 o3
LRN | comv3-64 | com3-64 | comv3-64 | convi-64

maxpool
Conv3-128 | comv3-128 | com3-128 | com3-128 | comv3-128 | convi-I28
conv3-128 | conv3-128 | com3-128 | conv3-128

‘maxpool
Conv3-256 | comv3236 | com3-256 | com3-256 | comv3236 | conv3-256
conv3-256 | comv3-256 | conv3-256 | com3-256 | comv3-256 | conv3-256
conv1-256 | conv3-256 | conv3-256
cony3-256

maxpool
Conv3-512 | comv3-S12 | conv3-512 | com3-312 [comv3-512 | conva-512
conv3-512 | com3-S12 | conv3-512 | com3-512 | comv3S12 | conv3-512
conv1-512 | conv3-512 | conv3-512
conv3-512

maxpool
Comv3-S12 | com3SI2 | com3S12 | com3SI2 | com3SI2 | convaSIZ
conv3-512 | com3-S12 | com3-512 | com3-512 | comv3512 | conv3-512
conv1-512 | conv3-512 | conv3-512
cony3-512

maxpool

FC-409%

FC-409

FC-1000

soft-max

Table 2: Number of parameters (in millions).
[Network [AAIRN | B [C [D | E |
[Number; [135|135 138|138 | 18|

contribution: old-style
network: repeated blocks
of:
(convolution-relu)*"-pooling

only 3x3-convolutions to
achieve larger fields of view
by stacking

very large number of
parameters: 130 millions!

3 fully connected layers
contain a large part of the
parameters

dropout layer for less
overfitting between fc layers

2014 ILSVRC competition
second place.

https://arxiv.org/abs/1409.1556

Outline

@ Dropout

Method: Dropout

http://jmlr.org/papers/volumel5/srivastaval4a/srivastavalda.pdf
© Has one parameter: keep or drop probability p.
© At test time, rescaled identity.

© At training time: set randomly 1 — p of all neurons to zero. A
way of adding noise to the learning problem.

why does it work?

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Method: Dropout

Consider at first bagging (boot strap aggregating), Leo Breiman,
1994:

© Have a dataset of D, = {x1,...,%n}

© train B many models f;,i=1,...,B
for each model f; train on random subset of d < n samples
drawn from D,
at test time how to predict?? use average of all B models:

) = 53)

often used with decision trees / random forest classifiers to
prevent them from overfitting.

How is dropout different from bagging 77

Method: Dropout

© bagging: using subsets of a (training) dataset
© dropout: using subsets of the features of all input sample x

Method: Dropout

Lets consider a simple setup (used in a similar way with decisions trees
and random forests too) which is similar to dropout - this is not exactly
dropout

© ¢(x) = (¢d1(x),...,dp(x)) is a the D — dim output of a layer
computed over input sample x, to which we want to apply a
dropout-like technique

© Let us create B models again, each using a randomly drawn but
fixed projection m;,i =1,..., B which zeroes out a number of
(1 — p)D of all the features:

¢a(x) for d € S(i)

mi(¢(x)) = {0 if d & S(i) (zeroing out this dimension)

fo(@) = w-ma(é(z))

fully connected layer

on top fl(x) =w- m1(</>(93)) fa(z) = w-mz(o(x))
dropout my(o(x)) 77'l2((b(l)) ma(¢(z))

E BN B HEE ER HE EEEE EH JNEE &S BN N
feature #(x) o(@) o(z)

T] OO

Method: Dropout

fo(@) = w-ma(é(x))

fully connected layer

on top f1(55) = w- ml(d)(ﬁ)) fa(z) = w-mz(d(x))
dropout my(é(z)) mao(o(x)) ma(¢(z))
E BN B EE ERy HE ENEE EH JNEE EE BN N
feature #(z) o(@) o(z)
OO OO] O

@ we train f; over the training samples processed by m;:
{z,E') = mj(¢(xk)), xk € Training data }

© at test prediction: use average of all B models again

Method: Dropout

Why does this work?

© two dimensions of the feature map ¢4, (x) and ¢g,(x) may
have a correlation which helps to classify sample x on training
data

example: 95% of all the time we have on training data for a
pair (x,y) of sample and label:

2¢d,(x) — ¢a,(x) > 0 whenever the label y > 0,
but if this correlation would not be not present in test data —
picking up such a correlation results in overfitting.

© setting ¢q,(x) or ¢a,(x) to zero, prevents the algorithm from
setting weights to use this non-generalizing correlation in a too
strong way. it has to rely also on other correlations in the data.

Method: Dropout

One way to explain is:

©

©

noise via setting features to zero reduces statistical correlation
between features.

Then the model cannot overfocus on one single correlation

instead it has to rely on a mixture of several different
correlations between features. Some of them may not
generalize / hold true for the source of your data Pies:.

How is true dropout different from this simplified setup above ?

@ for both: we set of all D neurons (1 — p)D of them to zero at
training time

© dropout training: we change the zeroed-out neurons in every
minibatch, thus we consider at every minibatch /i a different
model fi(x) = w - m;i(¢(x)) rather than a number of fixed B
models. Each of the models use the same low level features
¢(x).

fa(z) = w - ma((z))

fully connected layer

"A@)= w-m(9(@) Fs(@) = w - ma(@(x)
dropout my(¢(z)) ma(p(x)) m3(o(z))
E Em B En Eiy EN EEEE B AN BN BN B
o(x) o) o(z)
T OO 1) OO TIIITT11]

© training: learn weights from dropout-noised /randomized
features

©

at test time, use expectation over dropout to score:

E[mi(¢d(x))] = poa(x)

expectation = average over all possible dropouts. In
expectation every neuron output is ¢4(x) multiplied with p.

Using the expectation is comparable to use an average over all
models which you have

i=1

We use at test time the expected output E[-] to achieve an
average of all possible models (including those that were at
training time not realized by dropout).

Outline

@ Googlenet v1 / Inception vl

Googlenet v1 / Inception v1

SOPSIYA PUE S[10Q U [[F 1A SHOMIOU 1ONT3000) i€ amBL]

https://arxiv.org/abs/1409.4842

() contributionl: auxiliary output losses — at training time only — for
injecting gradient flow in layers close to the bottom. Auxiliary output is a
separate classification output. + cross entropy loss attached for training.
Loss to be optimized is weighted sum of main loss and aux losses.

https://arxiv.org/abs/1409.4842

Googlenet v1 / Inception v1 |

¢ contribution2: inception module: convolution layers in parallel with
different effective kernel sizes — this is classical multi-scale processing

Filter
Filter concatenaton
concatenation

3x3 convolutions | 5x5 convautons 1x1 canvalutons

1x1 cavelutons ‘ 3x3 convdutions ‘ 5x5 convolutions ‘ 3x3 max pooling
1x1 convautons ‘ 3 max pooling
(a) Inception module, naive version (b) Inception module with dimension reductions

Figure 2: Inception module

Googlenet v1 / Inception v1

() notable: 1x1 convolutions to reduce parameters

paich sizel outpui FIXT FHXE pool

type stride size depth | #1x1 | e | #F33 | duce | FI%5 proj params ops
convolution THT/2 1123 112X64 1 27K 3aM
max pool 3x3/2 56 56 x 64 0
convolution 3x3/1 56 56 x 192 2 64 192 112K 360M
max pool 3x3/2 28x 28 192 o
inception (3a) 28x 28 X 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 28 % 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x 14 x 480 0
inception (da) 14x 14%512 2 192 96 208 16 a8 4 364K 7IM
inception (4b) 14x 14512 2 160 12 24 24 64 o4 437K 88M
inception (4c) 14 14512 2 128 128 256 24 64 o 463K 100M
inception (4d) 14x 14 x 528 2 112 144 288 32 64 o4 580K 119M
inception (de) 14x 14 x 832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TxTx 832 0
inception (Sa) Tx T® 832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7T %1024 2 384 192 384 48 128 128 1388K 7IM
ave pool TRT/1 1x1%1024 0
dropout (405} 1x1%1024 0
linear 1x1x1000 1 1000K 1M
softmiax 1x1x1000 0

Table 1: GoogLeNet incamation of the Inception architecture

Googlenet v1 / Inception v1

() contribution3: at test time: average over multiple classifiers and massive
data augmentation

Number of models | Number of Crops | Cost | Top-5 error | compared to base
1 1 1 10.07% base

1 10 10 9.15% -0.92%

1 L4 144 7.89% -2.18%

7 1 7 8.09% -1.98%

7 10 70 T.62% -2.45%

7 L+ 1008 | 6.67% -345%

Table 3: GoogLeNet classificaton performance break down

preview for data augmentation:
http://d2l.ai/chapter_computer-vision /image-augmentation.html

http://d2l.ai/chapter_computer-vision/image-augmentation.html

Inception v3

© many small finetuning ideas on top of
v1 architecture

with batchnorm (big gain)

1 auxiliary loss only with BN (bcs
of better flow due batchnorm!)
no 7 x 7 filters at the start of the
net refactored them in to 3 layers
of 3x3

top-layers: modules with
factorizations replacing 5 x 5 and
7 x 7 kernels

© commonly used instead of googlenet

© no residual connections (introduced in
Inception v4)

patch size/stride

type ot remarks input size

COnY 3x3/2 200 <200 <3
cony 3x3/1 149 x149x 32
conv padded 3xdfl 147 5147 % 32
pool 3x3f2 147 < 14764
COnY 3x3/1 T3 xThxh64

cony 3x3/2 T1 xTLx B0

cony 3x3/1 35 35x 192
dxInception | Asinfigure[S[| 35x 35388
5o Incepiion As in figure 17x 172 THE
2 Inception Asin hgureH BBy 1280

pool 8 x8 8 % B x 2AMB
linear logits 11 x 2048
softmax classifier 1 1 3 1000

Inception v3

Fig 5,6,7 from table on the last slide. Remember from here only

the idea to replace larger n x n kernels by stacking 3 x 3 or (or
layers composed of a pair n x 1, 1 x n).

Figure 5. Inception modules where each 5 x 5 convolution is re-
placed by two 3 x 3 convolution, as suggested by principle [§]of
Section

Filter Concat

Figure 6. Inception modules after the factorization of the n x n
convolutions. In our proposed architecture, we chose n. = 7 for
the 17 5 17 grid. (The filter sizes are picked using principle[T

Filter Concat

Figure 7. Inception modules with expanded the filter bank outputs.
This architecture is used on the coarsest (8 x &) grids to promote
high dimensional representations. us suggested by principle [ZJof
Section[Z] We are using this solution only on the coarsest grid,
since that is the place where producing high dimensional sparse
representation is the most eritical as the ratio of local processing
(by 1 % 1 convolutions) is increased cotnpared 1o the spatial ag-
gregution

Outline

© ResNets and residual connections

34-1ayer residual
[Crewen

3d-layer plain
[roemen]

=
—

e]
[sansia)

=
i
[Esem
[
==

VGG-19
[|
[|
[eewan |
[
==

——

i
o
2 [onm]
ava
vt
pe
Sy
et

0
=
.9
)
()
()
(=
(=
(@)
O
m
-}
S
0
()
—
-5
=
(9]
0
)
()
=
0
Q
o

I —

https://arxiv.org/abs/1512.03385

ResNets and residual connections

256-d

1x1, 256

residual connection (2 conv blocks): f(x) = x + G (G (x))

Why do residual connections work ?

© gradient flows as the identity through the shortcut, no vanishing
gradient problem

 shortcut in forward pass: inputs feature from previous layer,
convolutions across the parallel path can learn additionally non-linear
function on top

ResNets and residual connections

©

256-d

1x1, 256

identity+ optional nonlinearity: residual — convolutions across the
parallel path can learn additionally non-linear function on top.

option for quick unlearning to identity: if poor fit was learned during
early phases of training, it can be undone: update weights of
convolution layers to zero, then have only the identity.

(unhindered information flow fwd & bwd)

identity+ optional nonlinearity: allows to learn a more complex
representation layer by layer: Network can start as: 1 conv layer and
one fully connected layer, and (almost) only shortcuts in between.
Convolution kernels can add layer by layer some nonlinearities.

ResNets and residual connections

64-d 256-d

1x1, 256

relu

Why do residual connections work ?

O]

O]

gradient flows as the identity through the shortcut, no vanishing
gradient problem

identity+ optional nonlinearity: residual — convolutions across the
parallel path can learn additionally non-linear function on top.

later on: compare to the memory cell in LSTM (1998). Earlier idea
for gradient flow through time steps.

ResNets and residual connections

64-d 256-d

relu

© Resnets use also batchnormalization after every convolution before
the ReLU

Outline

@ Batch normalization

Batch normalization

loffe and Szegedy, 2015 https://arxiv.org/pdf/1502.03167.pdf

Batchnorm at training time performs

2 steps
Input: Values of = over a mini-batch: B = {z1. m}; .
Parameters to be leamed: 5. 8 © step 1..talfe one neuron ,
Output: {y; = BN, a(z:)} normalize its outputs so that —
L& over the all elements in your
BB — 72:“ // mini-batch mean ..
m minibatch have zero mean and
o iz(mi*lllﬁf / mini-batch variance standard deviation 1
i=1
e Dt J normalize © step 2: apply a simple affine
Voste transformation on the normalized
yi + yTi + B = BNy s(z4) /I scale and shift A
output y =yx+

Algorithm 1: Batch Normalizing Transform, applied to
activation & over a mini-batch. © after this output has standard

deviation v and mean 3, v and
[trainable

https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

loffe and Szegedy, 2015 https://arxiv.org/pdf/1502.03167.pdf
Batchnorm at training time performs 2
steps

© batchnorm at training time learns to

Input: Values of = over a mini-batch: B = {1 };
Parameters to be learned: v, 3
Output: {y; = BN, 5(x:)}

L
a5 ;gzi
=

[
2 2
o5 — — E T —

B v 1(HB)

// mini-batch mean

// mini-batch variance

Ti — BB

T // normalize
B \/ag +e
Yi < VZ; + B = BN, 5(z;) /I scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation = over a mini-batch.

output values which have constant
mean and constant standard deviation
(computed over the elements in a
minibatch)

convolution layers: compute mean,
standard deviation, a, b not for one
neuron and all samples in the
minibatch but for all elements in the
feature map of one channel in a conv
layer and all samples in the minibatch —
reduces parameters, treats each neuron
in the same channel in the same way

https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

loffe and Szegedy, 2015 https://arxiv.org/pdf/1502.03167.pdf
Batchnorm at training time performs
2 steps

Input: Values of x over a mini-batch: B = {z1. m};
Parameters to be learned: -, 3
Output: {y; = BNy s(xi)}

L
pe D
2

// mini-batch mean

L
o} o Z(z, — ug)? // mini-batch variance
i=1

Ti— pB

T // normalize
R4 a'g + €
yi yTi + B = BN, g(z:) /I scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation z over a mini-batch.

©

batchnorm at training time
learns to output values which
have constant mean and
constant standard deviation
(computed over the elements in
a minibatch)

training time: update running
mean and running variance for
your training dataset (will be
needed for test time)

in order to work well requires
usually a batchsize of 8 at least,
better 16 or 32 or more.

https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

Batchnorm at val/test time performs 2 steps:

© step 1: take one neuron, normalize its outputs by the running
mean and running variance learnt at training time.

X — Hrun
2
\ Ofun T €

© step 2: apply y = aX + b. a,b the learnt rescaling parameters

X =

© meaning: this simulates that the test sample would come from
a very large batch with mean and variance statistics equal to
the training data. under this assumption, any synthetic
minibatch composed of many test samples would have mean b
and std deviation a.

© important/error source in coding: use model.eval() or
model.train(False) at testing time for your neural network!

Batch normalization

Why does batchnorm improve performance?

Equation on page 5 in the paper — Gradient with respect to inputs
does not depend on scale of weight parameter anymore. Makes
gradient flow more uniform across the channels of a layer.

Group normalization

Group Normalization as newer alternative: Wu & He, ECCV 2018
when cannot use large batchsizes
http://kaiminghe.com/eccv18gn/group_norm_yuxinwu.pdf

O]
Y

©

remember: convolution outputs a feature map (b, ¢, h, w) of
responses for channel ¢ in spatial dimensions h, w

batchnorm: compute mean p and std dev o used for
normalization: for every channel over all spatial positions
(h, w) and minibatch samples b

Me = ﬁ Zb,h,w f(b7 ¢, h, W)

cannot compute over large minibatch ?

compute minibatch statistics over and over subset of filter
channels in your feature map

1
Hb,e = HW[G| Eh,w,ceG f(b’ c, h, W)
statistic depend on sample index b and channel index ¢

http://kaiminghe.com/eccv18gn/group_norm_yuxinwu.pdf

Group normalization + weight standardization

Is this a toy?

@ Combining: GN 4+ Weight Standardization with batchsize= 1
outperforms BatchNorm https://arxiv.org/abs/1903.10520
@ Relevance: provided you have a sufficient large training set,

then you can try to train with batchnorm= 1! Big ease down
on GPU memory!!!

as in ML, due to the probabilistic nature always test on val data before
deciding

https://arxiv.org/abs/1903.10520

Outline

@ DenseNets

Densenets

Huang, Liu, van der Maaten, Weinberger,
https://arxiv.org/abs/1608.06993
© resnets to the extreme: within a block of same feature map
size (“dense block”), each layer contains the feature maps of
each previous layer (of the same block) via concatenation of
feature maps.

Figure 1: A 5-layer dense block with a growth rate of k£ = 4.
Each layer takes all preceding feature-maps as input.

https://arxiv.org/abs/1608.06993

Densenets

Th}e \{vhole net looks like:
npu

]
Tomorios

==

Dense Block 1

UouNIoAUoD

Prediction

Dense Block 3

=

Dense Block 2

S

UORNOAUGD

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change

feature-map sizes via convolution and pooling.

Layers Output Size | DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264
Comvolution | 112 112 7 7 conv, stride 2
Pooling 56 % 56 3 3 max pool. stride 2
Dense Block T 1 conv T 1 conv T 1 conv T 1 conv
5
W) 3636 [3x3cum *6 Haxzconv] ‘|:3><3cnnv} H!xzcnm °
Transition Layer | 56 x 56 T 1conv
38 %28 2 X 2 average pool, stride 2
Dense Block T 1 conv T 1 conv T 1 conv T 1 conv
@ 2828 [3xacum 12 [JXBConv]xu‘|i3><3(:nnvj|xu‘|:3><3cunv 12
Transition Layer | 28 x 28 T 1 conv
1414 3 5 2 average pool, stride 2
Dense Block T T conv T T conv T T conv T T conv
o) 1 [3x3cnnv]’<“ [stconv]ansxzcnnv] “Hzmcnm’]
Transition Layer | 14 14 T 1 conv
3 77 2 % 2 average pool, stride 2
Dense Block T T conv T Tconv T T conv T T conv
) 7 [3x3conv]xm‘[3x300nv]>(32‘[3x3c0nv} 2H3x3conv]”8
Classification Tx1 7 7 global average pool
Layer 1000D fully-connected, softmax

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32. Note that each “conv” layer shown in the
table corresponds the sequence BN-ReLU-Conv.

Densenets

Layers Output Size DenseNet-12I | DenseNet-169 | DenseNet:201 | DenseNet-264)
Convolution | 112 < 112 7 7 conv, stride 2
Pooling 56 56 3 3 max pool, stride 2
Dense Block T Toonv Tx Tconv T Loon T Teonv
[0 3636 [3><3cnm, ¢ ‘[]xf‘»conv])(ﬁ ‘|:3><3cnnvj|xe ‘|:3><3cnnv:|>(6
Transition Layer | 56 56 T 1 conv,
) 28 < 28 2 % 2 average ool stride 2
Dense Block T Tconv T 1conv Tx Tcon T Teonv
28 %28 12 12 2 12
@ ~ [3><Sconv]x ‘[JXZConv]x [3x3conv}x Hzmcom]x
Transition Layer | _28 28 151 conv
@ 414 2 2 average pool. stride 2
DenseBlock | || [TxTeonw | [Tx Leon | [[T eony | T T T Teom |)
[©) 3 %3 conv 3% 3 conv 3 %3 conv 3 %3 conv
Transition Layer | 14 x 14 1 L conv
&) 737 2 2 average pool. stride 2
Dense Block T Tconv T Teonv T Leonv T Tconv
3 3
“@ T |:3><3cnnv:|xw‘|:3x3conv:|x2‘|:S><3cnnv:|x2‘[3x3cnnv:|x‘.8
Classification Tx1 7 7 global average pool
Layer 1000D fully—connected, softmax

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32. Note that each “conv” layer shown in the
table corresponds the sequence BN-ReLU-Conv.

© Important parameter: growth rate - the number of newly added
output channels in a convolution layer, typically small like 12,24,40

 problem: within a block that starts with kg channels, at depth index
I one has as inputs ko + (/ — 1) - growthrate many channels.

 Densenet-B: 1x1 convolutions with BN and RelLU before each layer
(with 4 - growthrate output channels) to reduce the # of channels
and parameters in subsequent 3x3 kernels.

Densenets

Layers Output Size DenseNet-121 | DenseNet-169 | DenseNet-20l | DenseNet-264,
Convolution | 112 x 112 7 x 7 conv, stride 2
Pooling 56 % 56 3 % 3 max pool, stride 2
Dense Block T T conv T 1 conv T 1 conv 1 T conv
) 5656 [3><3c0nv]><6 stzcm]”’ stsconv]“ stzmnv]xs
Transition Layer | 56 X 56 T 1 conv
W W %28 2 % 2 average pool, stride 2
Dense Block T 1 conv T L conv T T conv T 1 conv
28 x 28 12 12 12 12
@ * {3x3c0nv]x stzcom]x {3x300nv]x stzconv]x
Transition Layer |28 x 28 T 1 conv
@ 4% 14 2 % 2 average pool, stride 2
Dense Block T T conv T Tconv T T conv T T conv
14 x 14 48 64
&) * {3x3cnnv] stsconv] {3x300nv]x H3><3conv]><
Transition Layer |14 x 14 T 1 conv
&) 7x7 2 % 2 average pool, stride 2
Dense Block T T conv T Tconv T T conv T T conv
“ 7 [3x3conv] stsconv] [3x3conv]><32‘[3><3conv]><48
Classificati Tx1 7 % 7 global average pool
Layer 1000D fullyconnected, softmax

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32. Note that each “conv™ layer shown in the
table corresponds the sequence BN-ReLU-Conv.

© Densenet-C: in transition layer (see figure: where feature map size is
downscaled by 1/2): 1x1 conv generates as output channels half the
number of incoming channels

@ usually used: Densenet-BC

Densenets

@ usually used: Densenet-BC

© low parameter count among the heavier networks, good performance

27.5 — 275
= —- | —- |
65l 4ResNei-34 | —— DenseNets-BC 265 ‘ DenseNets—BC
Z 2551 255
8 DenseNet-121 g
g 205 | ResNet:50 g 245
3 DenseNet-169 g
% 235 e o % 235
DenseNet-: 1 Re:sNer—:!OI
22,50 : i : ResNet-152 225
DenseNet-264 : : :
215 i H il i H 215 HE N i i
o 1 2 3 4 5 & 7 8 05 075 1 125 15 175 X
#parameters %107 #flops 10

Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop

testing) on the ImageNet validation dataset as a function of learned parameters (lefr)
and FLOPs during test-time (right).

Outline

@ Finetuning

The main lesson for deep learning

Do not train deep neural networks from scratch!? Always
initialize the NN with weights from similar tasks trained on a
very large dataset, except your data is in the order of hundred
thousands and more.

ML has always exceptions :)

While for some tasks with precise knowledge training from scratch
works, 99% fine tuning of all layers is better than training from
scratch.

where to get and how ? torchvision.models
https: //pytorch.org/docs/stable/torchvision /models.html

https://pytorch.org/docs/stable/torchvision/models.html

MNIST / Cifar-10 the seducers

Mnist and Cifar-10 work without finetuning - are misleading.

Note the simplicity of the tasks: images with 28 x 28, or 32 x 32

have limited variability and complexity compared to larger images!
Mnist and Cifar-10 are very useful for testing small ideas, but they
are outliers within deep learning tasks.

how to do that 7

Practice session: you will take a deep network (densenet or a
mobilenet), initialize it with weights from a 1000 class imagenet
task, and then retrain it for 102 flowers classes. Why one can
re-use weights from 1000 object classes that are mostly things and
animals for flowers? The low level filters likely will be very similar.

© What needs to be changed? The last layer: to the number of
output classes in your problem instead of 1000.

@ therefore: last layer will not use pretrained weights
© see Figure 13.2.1 in https://d2l.ai/d2l-en.pdf in Chapter 13

https://d2l.ai/d2l-en.pdf

162 Layer
RasNet

[omer]| (o] [rmos] [imes
what the man doing

Figure 2. An overview of our model. We use a convolutional neural network based on ResNet [©] to embed the image. The input question
is tokenized and embedded and fed to a multi-layer LSTM. The concatenated image features and the final state of LSTMs are then used 1o
compute multiple attention distributions over image features. The concatenated image feature glimpses and the state of the LSTM is fed to
two fully connected layers two produce probabilities over answer classes.

- skiing: 0.73
« snowboarding: 0.21
« falling: 0.01

» jumping: 0.01

« ski: 0.01

Kazemi and Elqursh https://arxiv.org/pdf/1704.03162.pdf
What parts here can profit from transfer learning?

Above shows a VQA-architecture with attention. An image is processed
by a CNN. A question is processed by embeddings, then an LSTM. The
features are fused and weighted by attention layers. Final prediction is
made by FC-layers with classification over possible answers as output.

https://arxiv.org/pdf/1704.03162.pdf

It makes no sense to load weights for a layer, when one skips
loading weights for any layer below. why ?

more neural net magic here

!

‘ conv3: load weights ‘

A

‘ conv2: load weights ‘

’ convl:frw ‘

a neural net where finetuning makes NO sense —because we skip a
layer early on.

Why does fine tuning help? [

Top-1 Top-5

Alias Network #Parameters Accuracy Accuracy origin
i Consider training a neural network:
e e e N oo non-convex problem: One always

e oo mme o om o finds some local optimum. Quality
D | | WD GOp | |emp | G of it varies.

from pytorch

o |oen | mases [wm Jome | coes Deep NNs: high dimensionality of
from pytorch
e e e N oy e their parameters.
i frusnd
ey APy e PR R https://mxnet.incubator.apache.org/
mobllenet0S | MoblleNec0s 134253 06307 oss s api / python / g| uon / model_zoo.html .
s st s s oo s Training 15 million parameters with
e e T T 1000 samples violates the golden
B oows o rule. You will overfit for sure.
o e o oy T

mobilenetv2 025 MobileNetV2 1,526,856 05074 07456 Trained with
script

https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html

Why does fine tuning help?

Top-1 Top-5

You can learn filters well only
e P i e when you have enough training
samples, often one needs

T e e e
P e e AT hundreds of thousands.

o o o Non-convex problem: optimum
densenet201 DenseNet-201 20,242,984 07732 09362 E’:"r:pr;‘e:m depends on initialization_
T I ey

e e e T When having only a few thousand
moblenet0S WobieNe03 i3S osw osers samples it is best to start from a
e P P e good initialization — loading

ey} e v T e e weights does that.

s | | vpopes s amer | e But why it is a good

mobenen2 025 Mot Tszsess 05 onss Trameswen initialization?
i initialization

Why does fine tuning help?

©

©

Finetuning preinitializes your network to some features which
were good on another task.

empirical evidence: low-level features in deep networks learnt
over wide and general tasks (e.g. Imagenet) can be reused for
many other tasks, even with strange color distributions or
geometrical tasks

Why does fine tuning help?

©

©

A good initialization from finetuning will be destroyed when
trained too long with too little samples.

In practice backpropagating gradients changes the highest level
weights faster (due to vanishing gradients), so that — at the
beginning of training — the weights in the upper layers adapt
faster towards what one wants to learn — and the overfitting by
changing lower layer weights to bad optima sets in only later.

fine tuning: train only the top layer

A good initialization from finetuning will be destroyed when trained too
long... 7

@ Finetuning has a special case: when the number of training data is
very small, then one may want to retrain only the top layers.
Finetuning in the narrowest sense: only train the top-layer. Works
best when the number of training samples is very small.

| oy rere oy racient
I to change parameters 2

! wilast) (lﬂsf) s
0 wy -1 3w(1ast)

«conv99: load we\ghts 0
8Z(last 0~
set to zero

.
.

endlessly many layers & load weights
.

®(Image)
no gradient *
backpropagated convi: Ioad welghls

here!!
fixed feature

Here an example when you retrain
only the last Iayer as an extreme case of finetuning. This is often shown
in tutorials

fine tuning: train only the top layer

training only top layers:
© can be better for very small data sizes

© for larger data sizes training all layers can be better ... check
on validation data

© training only top-layers: without data augmentation can
precompute bottom features for a speed up (but usually data
augmentation improves test error! ... tradeoff speed vs
performance)

Outline

@ SOA 2019/2020?

2019/2020 state of the art ?

in the next two lectures:
© Efficientnet https://arxiv.org/abs/1905.11946

@ Noisy student with Efficientnet
https://arxiv.org/abs/1911.04252

© (out of exams) Big Transfer https://arxiv.org/abs/1912.11370
— a collection of experimental experience for training and
transfer learning / fine tuning

© (out of exams) if you have too much compute: Vision
Transformers https://openreview.net/forum?id=YicbFdNT Ty
(for the best results they are using the huge JFT-300M for
pretraining. This is hardly feasible for an SME or private
budget.)

in the next two lectures ...

https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1912.11370
https://openreview.net/forum?id=YicbFdNTTy

Questions?!

	Dropout
	Googlenet v1 / Inception v1
	ResNets and residual connections
	Batch normalization
	DenseNets
	Finetuning
	SOA 2019/2020?

