
State of the art architectures in classification for
vision

Alexander Binder

University of Oslo (UiO)

February 16, 2021

... | 2

Takeaway points

at the end of this lecture you should be able to summarize:
� dropout and batchnorm
� VGG – specialties
� googlenet – specialties
� resnet – specialties
� densenet – specialties
� networks used for segmentation and GANs, image

captioning and other tasks use similar building blocks
(we will go for GANs later)

... | 3

Takeaway points

good practices in state of the art models (not only for vi-
sion!!!):
� batchnormalization
� residual connections/skip connections
� use an ensemble of models rather than a single model
� stack smaller kernels rather than use a big kernel.

The explanations for why these work well are often
rather conceptual (except for ensembles).

... | 4

Takeaway for this lesson:

� finetuning means you load weights from another pretrained
model as much as you can

� load weights bottom-up until you find a layer where you
cannot load weights

� Do not train from scratch!a Finetuning can improve
performance when training with small sample sizes greatly as
compared to training from scratch with a random
initialization.

ain ML exceptions always apply

... | 5

Takeaway for this lesson:

� finetuning can be used for models with different types of
inputs and multiple forward streams, e.g. image and text –
but always bottom up: from one of the inputs until the first
layer where weights cannot be loaded anymore (bcs one
changed the network design at this point to either a
completely different layer, or due to shape mismatch). after
one such blocker-layer, it makes no sense to load weights
further above

� finetuning has three flavours: train all layers, train only the
top layer, train only the k top-most layers

prereading / post reading | 6

http://d2l.ai/chapter convolutional-modern/index.html

http://d2l.ai/chapter_convolutional-modern/index.html

Architecture: VGG | 7

Simonyan & Zisserman, ICLR 2015
https://arxiv.org/abs/1409.1556

� contribution: old-style
network: repeated blocks
of:
(convolution-relu)∗n-pooling

� only 3x3-convolutions to
achieve larger fields of view
by stacking

� very large number of
parameters: 130 millions!

� 3 fully connected layers
contain a large part of the
parameters

� dropout layer for less
overfitting between fc layers

� 2014 ILSVRC competition
second place.

https://arxiv.org/abs/1409.1556

Outline | 8

1 Dropout

2 Googlenet v1 / Inception v1

3 ResNets and residual connections

4 Batch normalization

5 DenseNets

6 Finetuning

7 SOA 2019/2020?

Method: Dropout | 9

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
� Has one parameter: keep or drop probability p.
� At test time, rescaled identity.
� At training time: set randomly 1− p of all neurons to zero. A

way of adding noise to the learning problem.
why does it work?

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Method: Dropout | 10

Consider at first bagging (boot strap aggregating), Leo Breiman,
1994:
� Have a dataset of Dn = {x1, . . . , xn}
� train B many models fi , i = 1, . . . ,B

· for each model fi train on random subset of d < n samples
drawn from Dn

· at test time how to predict?? use average of all B models:

f̂ (x) = 1
B

B∑
i=1

fi (x)

· often used with decision trees / random forest classifiers to
prevent them from overfitting.

How is dropout different from bagging ??

Method: Dropout | 11

� bagging: using subsets of a (training) dataset
� dropout: using subsets of the features of all input sample x

Method: Dropout | 12

Lets consider a simple setup (used in a similar way with decisions trees
and random forests too) which is similar to dropout - this is not exactly
dropout
� φ(x) = (φ1(x), . . . , φD(x)) is a the D − dim output of a layer

computed over input sample x , to which we want to apply a
dropout-like technique

� Let us create B models again, each using a randomly drawn but
fixed projection mi , i = 1, . . . ,B which zeroes out a number of
(1− p)D of all the features:

mi (φ(x)) =
{
φd (x) for d ∈ S(i)
0 if d 6∈ S(i) (zeroing out this dimension)

fully connected layer

on top

dropout

feature

Method: Dropout | 13

fully connected layer

on top

dropout

feature

� we train fi over the training samples processed by mi :
{z(i)

k = mi (φ(xk)), xk ∈ Training data }
� at test prediction: use average of all B models again

f̂ (x) = 1
B

B∑
i=1

fi (x)

Method: Dropout | 14

Why does this work?
� two dimensions of the feature map φd1(x) and φd2(x) may

have a correlation which helps to classify sample x on training
data

example: 95% of all the time we have on training data for a
pair (x , y) of sample and label:

2φd1(x)− φd2(x) > 0 whenever the label y > 0,
but if this correlation would not be not present in test data –
picking up such a correlation results in overfitting.

� setting φd1(x) or φd2(x) to zero, prevents the algorithm from
setting weights to use this non-generalizing correlation in a too
strong way. it has to rely also on other correlations in the data.

Method: Dropout | 15

One way to explain is:
� noise via setting features to zero reduces statistical correlation

between features.
� Then the model cannot overfocus on one single correlation
� instead it has to rely on a mixture of several different

correlations between features. Some of them may not
generalize / hold true for the source of your data Ptest .

... | 16

How is true dropout different from this simplified setup above ?
� for both: we set of all D neurons (1− p)D of them to zero at

training time
� dropout training: we change the zeroed-out neurons in every

minibatch, thus we consider at every minibatch i a different
model fi (x) = w ·mi (φ(x)) rather than a number of fixed B
models. Each of the models use the same low level features
φ(x).

fully connected layer

on top

dropout

feature

� training: learn weights from dropout-noised/randomized
features

... | 17

� at test time, use expectation over dropout to score:

E [mi (φd (x))] = pφd (x)

� expectation = average over all possible dropouts. In
expectation every neuron output is φd (x) multiplied with p.

� Using the expectation is comparable to use an average over all
models which you have

f (x) = 1
B

B∑
i=1

fi (x)

We use at test time the expected output E [·] to achieve an
average of all possible models (including those that were at
training time not realized by dropout).

Outline | 18

1 Dropout

2 Googlenet v1 / Inception v1

3 ResNets and residual connections

4 Batch normalization

5 DenseNets

6 Finetuning

7 SOA 2019/2020?

Googlenet v1 / Inception v1 | 19

https://arxiv.org/abs/1409.4842
� contribution1: auxiliary output losses – at training time only – for

injecting gradient flow in layers close to the bottom. Auxiliary output is a
separate classification output. + cross entropy loss attached for training.
Loss to be optimized is weighted sum of main loss and aux losses.

https://arxiv.org/abs/1409.4842

Googlenet v1 / Inception v1 | 20

� contribution2: inception module: convolution layers in parallel with
different effective kernel sizes – this is classical multi-scale processing

Googlenet v1 / Inception v1 | 21

� notable: 1x1 convolutions to reduce parameters

Googlenet v1 / Inception v1 | 22

� contribution3: at test time: average over multiple classifiers and massive
data augmentation

preview for data augmentation:
http://d2l.ai/chapter computer-vision/image-augmentation.html

http://d2l.ai/chapter_computer-vision/image-augmentation.html

Inception v3 | 23

� many small finetuning ideas on top of
v1 architecture
· with batchnorm (big gain)
· 1 auxiliary loss only with BN (bcs

of better flow due batchnorm!)
· no 7× 7 filters at the start of the

net refactored them in to 3 layers
of 3× 3

· top-layers: modules with
factorizations replacing 5× 5 and
7× 7 kernels

� commonly used instead of googlenet

� no residual connections (introduced in
Inception v4)

Inception v3 | 24

Fig 5,6,7 from table on the last slide. Remember from here only
the idea to replace larger n × n kernels by stacking 3× 3 or (or
layers composed of a pair n × 1, 1× n).

Outline | 25

1 Dropout

2 Googlenet v1 / Inception v1

3 ResNets and residual connections

4 Batch normalization

5 DenseNets

6 Finetuning

7 SOA 2019/2020?

ResNets and residual connections | 26

� https://arxiv.org/abs/1512.03385
� only 3× 3 and 1× 1 filters
� main contribution 1: residual connections – shortcuts across layers

(usually as a linear mapping whenever number of filters changes, not
as identity – see option B in Table 4)

� main contribution 2: uses batchnormalization after every convolution
� both contributions are about gradient flow
� in higher layers: once in a while half spatial size of feature maps,

double number of filter channels (so that one can a rich set of
detectors at higher layers)

https://arxiv.org/abs/1512.03385

ResNets and residual connections | 27

residual connection (2 conv blocks): f (x) = x + C1(C2(x))

Why do residual connections work ?

� gradient flows as the identity through the shortcut, no vanishing
gradient problem

� shortcut in forward pass: inputs feature from previous layer,
convolutions across the parallel path can learn additionally non-linear
function on top

ResNets and residual connections | 28

� identity+ optional nonlinearity: residual → convolutions across the
parallel path can learn additionally non-linear function on top.

� option for quick unlearning to identity: if poor fit was learned during
early phases of training, it can be undone: update weights of
convolution layers to zero, then have only the identity.
(unhindered information flow fwd & bwd)

� identity+ optional nonlinearity: allows to learn a more complex
representation layer by layer: Network can start as: 1 conv layer and
one fully connected layer, and (almost) only shortcuts in between.
Convolution kernels can add layer by layer some nonlinearities.

ResNets and residual connections | 29

Why do residual connections work ?

� gradient flows as the identity through the shortcut, no vanishing
gradient problem

� identity+ optional nonlinearity: residual → convolutions across the
parallel path can learn additionally non-linear function on top.

� later on: compare to the memory cell in LSTM (1998). Earlier idea
for gradient flow through time steps.

ResNets and residual connections | 30

� Resnets use also batchnormalization after every convolution before
the ReLU

Outline | 31

1 Dropout

2 Googlenet v1 / Inception v1

3 ResNets and residual connections

4 Batch normalization

5 DenseNets

6 Finetuning

7 SOA 2019/2020?

Batch normalization | 32

Ioffe and Szegedy, 2015 https://arxiv.org/pdf/1502.03167.pdf
Batchnorm at training time performs
2 steps

� step 1: take one neuron ,
normalize its outputs so that –
over the all elements in your
minibatch have zero mean and
standard deviation 1

� step 2: apply a simple affine
transformation on the normalized
output y = γx̂ + β

� after this output has standard
deviation γ and mean β , γ and
β trainable

https://arxiv.org/pdf/1502.03167.pdf

Batch normalization | 33

Ioffe and Szegedy, 2015 https://arxiv.org/pdf/1502.03167.pdf
Batchnorm at training time performs 2
steps

� batchnorm at training time learns to
output values which have constant
mean and constant standard deviation
(computed over the elements in a
minibatch)

� convolution layers: compute mean,
standard deviation, a, b not for one
neuron and all samples in the
minibatch but for all elements in the
feature map of one channel in a conv
layer and all samples in the minibatch –
reduces parameters, treats each neuron
in the same channel in the same way

https://arxiv.org/pdf/1502.03167.pdf

Batch normalization | 34

Ioffe and Szegedy, 2015 https://arxiv.org/pdf/1502.03167.pdf
Batchnorm at training time performs
2 steps

� batchnorm at training time
learns to output values which
have constant mean and
constant standard deviation
(computed over the elements in
a minibatch)

� training time: update running
mean and running variance for
your training dataset (will be
needed for test time)

� in order to work well requires
usually a batchsize of 8 at least,
better 16 or 32 or more.

https://arxiv.org/pdf/1502.03167.pdf

Batch normalization | 35

Batchnorm at val/test time performs 2 steps:
� step 1: take one neuron, normalize its outputs by the running

mean and running variance learnt at training time.

x̂ = x − µrun√
σ2

run + ε

� step 2: apply y = ax̂ + b. a,b the learnt rescaling parameters
� meaning: this simulates that the test sample would come from

a very large batch with mean and variance statistics equal to
the training data. under this assumption, any synthetic
minibatch composed of many test samples would have mean b
and std deviation a.

� important/error source in coding: use model.eval() or
model.train(False) at testing time for your neural network!

Batch normalization | 36

Why does batchnorm improve performance?

Equation on page 5 in the paper – Gradient with respect to inputs
does not depend on scale of weight parameter anymore. Makes
gradient flow more uniform across the channels of a layer.

Group normalization | 37

Group Normalization as newer alternative: Wu & He, ECCV 2018
when cannot use large batchsizes
http://kaiminghe.com/eccv18gn/group norm yuxinwu.pdf
� remember: convolution outputs a feature map (b, c, h,w) of

responses for channel c in spatial dimensions h,w
� batchnorm: compute mean µ and std dev σ used for

normalization: for every channel over all spatial positions
(h,w) and minibatch samples b
µc = 1

BHW
∑

b,h,w f (b, c, h,w)
� cannot compute over large minibatch ?
� compute minibatch statistics over and over subset of filter

channels in your feature map
µb,c = 1

HW |G|
∑

h,w ,c∈G f (b, c, h,w)
statistic depend on sample index b and channel index c

http://kaiminghe.com/eccv18gn/group_norm_yuxinwu.pdf

Group normalization + weight standardization | 38

Is this a toy?
� Combining: GN + Weight Standardization with batchsize= 1

outperforms BatchNorm https://arxiv.org/abs/1903.10520
� Relevance: provided you have a sufficient large training set,

then you can try to train with batchnorm= 1! Big ease down
on GPU memory!!1

1as in ML, due to the probabilistic nature always test on val data before
deciding

https://arxiv.org/abs/1903.10520

Outline | 39

1 Dropout

2 Googlenet v1 / Inception v1

3 ResNets and residual connections

4 Batch normalization

5 DenseNets

6 Finetuning

7 SOA 2019/2020?

Densenets | 40

Huang, Liu, van der Maaten, Weinberger,
https://arxiv.org/abs/1608.06993
� resnets to the extreme: within a block of same feature map

size (“dense block”), each layer contains the feature maps of
each previous layer (of the same block) via concatenation of
feature maps.

https://arxiv.org/abs/1608.06993

Densenets | 41

The whole net looks like:

Densenets | 42

� Important parameter: growth rate - the number of newly added
output channels in a convolution layer, typically small like 12,24,40

� problem: within a block that starts with k0 channels, at depth index
l one has as inputs k0 + (l − 1) · growthrate many channels.

� Densenet-B: 1x1 convolutions with BN and ReLU before each layer
(with 4 · growthrate output channels) to reduce the # of channels
and parameters in subsequent 3x3 kernels.

Densenets | 43

� Densenet-C: in transition layer (see figure: where feature map size is
downscaled by 1/2): 1x1 conv generates as output channels half the
number of incoming channels

� usually used: Densenet-BC

Densenets | 44

� usually used: Densenet-BC

� low parameter count among the heavier networks, good performance

Outline | 45

1 Dropout

2 Googlenet v1 / Inception v1

3 ResNets and residual connections

4 Batch normalization

5 DenseNets

6 Finetuning

7 SOA 2019/2020?

... | 46

The main lesson for deep learning

Do not train deep neural networks from scratch!a Always
initialize the NN with weights from similar tasks trained on a
very large dataset, except your data is in the order of hundred
thousands and more.

aML has always exceptions :)

While for some tasks with precise knowledge training from scratch
works, 99% fine tuning of all layers is better than training from
scratch.

where to get and how ? torchvision.models
https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html

MNIST / Cifar-10 the seducers | 47

Mnist and Cifar-10 work without finetuning - are misleading.
Note the simplicity of the tasks: images with 28× 28, or 32× 32
have limited variability and complexity compared to larger images!
Mnist and Cifar-10 are very useful for testing small ideas, but they
are outliers within deep learning tasks.

how to do that ? | 48

Practice session: you will take a deep network (densenet or a
mobilenet), initialize it with weights from a 1000 class imagenet
task, and then retrain it for 102 flowers classes. Why one can
re-use weights from 1000 object classes that are mostly things and
animals for flowers? The low level filters likely will be very similar.

� What needs to be changed? The last layer: to the number of
output classes in your problem instead of 1000.

� therefore: last layer will not use pretrained weights
� see Figure 13.2.1 in https://d2l.ai/d2l-en.pdf in Chapter 13

https://d2l.ai/d2l-en.pdf

... | 49

Kazemi and Elqursh https://arxiv.org/pdf/1704.03162.pdf
What parts here can profit from transfer learning?

Above shows a VQA-architecture with attention. An image is processed
by a CNN. A question is processed by embeddings, then an LSTM. The
features are fused and weighted by attention layers. Final prediction is
made by FC-layers with classification over possible answers as output.

https://arxiv.org/pdf/1704.03162.pdf

... | 50

It makes no sense to load weights for a layer, when one skips
loading weights for any layer below. why ?

a neural net where finetuning makes NO sense –because we skip a
layer early on.

Why does fine tuning help? | 51

Consider training a neural network:
non-convex problem: One always
finds some local optimum. Quality
of it varies.
Deep NNs: high dimensionality of
their parameters.
https://mxnet.incubator.apache.org/
api/python/gluon/model zoo.html .
Training 15 million parameters with
1000 samples violates the golden
rule. You will overfit for sure.

https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html

Why does fine tuning help? | 52

You can learn filters well only
when you have enough training
samples, often one needs
hundreds of thousands.

Non-convex problem: optimum
depends on initialization.

When having only a few thousand
samples it is best to start from a
good initialization – loading
weights does that.

But why it is a good
initialization?

Why does fine tuning help? | 53

� Finetuning preinitializes your network to some features which
were good on another task.

� empirical evidence: low-level features in deep networks learnt
over wide and general tasks (e.g. Imagenet) can be reused for
many other tasks, even with strange color distributions or
geometrical tasks

Why does fine tuning help? | 54

� A good initialization from finetuning will be destroyed when
trained too long with too little samples.

� In practice backpropagating gradients changes the highest level
weights faster (due to vanishing gradients), so that – at the
beginning of training – the weights in the upper layers adapt
faster towards what one wants to learn – and the overfitting by
changing lower layer weights to bad optima sets in only later.

fine tuning: train only the top layer | 55

A good initialization from finetuning will be destroyed when trained too
long... ?
� Finetuning has a special case: when the number of training data is

very small, then one may want to retrain only the top layers.
Finetuning in the narrowest sense: only train the top-layer. Works
best when the number of training samples is very small.

Here an example when you retrain
only the last layer as an extreme case of finetuning. This is often shown

in tutorials

fine tuning: train only the top layer | 56

training only top layers:
� can be better for very small data sizes
� for larger data sizes training all layers can be better ... check

on validation data
� training only top-layers: without data augmentation can

precompute bottom features for a speed up (but usually data
augmentation improves test error! ... tradeoff speed vs
performance)

Outline | 57

1 Dropout

2 Googlenet v1 / Inception v1

3 ResNets and residual connections

4 Batch normalization

5 DenseNets

6 Finetuning

7 SOA 2019/2020?

2019/2020 state of the art ? | 58

in the next two lectures:
� Efficientnet https://arxiv.org/abs/1905.11946
� Noisy student with Efficientnet

https://arxiv.org/abs/1911.04252
� (out of exams) Big Transfer https://arxiv.org/abs/1912.11370

– a collection of experimental experience for training and
transfer learning / fine tuning

� (out of exams) if you have too much compute: Vision
Transformers https://openreview.net/forum?id=YicbFdNTTy
(for the best results they are using the huge JFT-300M for
pretraining. This is hardly feasible for an SME or private
budget.)

in the next two lectures ...

https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1912.11370
https://openreview.net/forum?id=YicbFdNTTy

Questions?!

	Dropout
	Googlenet v1 / Inception v1
	ResNets and residual connections
	Batch normalization
	DenseNets
	Finetuning
	SOA 2019/2020?

