
Recurrent neural networks
IN5400 — Machine Learning for Image Analysis

Anne Solberg
07.04.2021

University of Oslo

Outline

• Motivation
• Vanilla Recurrent Neural Networks
• Input-output structure
• Training recurrent networks
• LSTM cells
• GRU cells
• Short on text prediction
• RNNs and CNNs for image captioning
• Learning goals

1

Introduction and motivation

Overview

• Models we have learnt so far:
• Fully connected neural networks
• Convolutional neural networks

• When do these models not work well?
• Processing data with unknown length (time series data, text sequences, image sequences).

• Typical applications of recurrent networks (many types of sequence data):
• Speech recognition
• Music generation
• Sentiment analysis (e.g. rate a text)
• Video processing
• Text analysis and translation

2

Brief introduction to time series

• Given a time series of measurements
{x1,xN}

• Suppose we want to predict xt+1 given
{x1,xt}

• If xt+1 only depends of previous values
({x1,xt}), we say that x is causal.

• In probabilistic terms, we can state
xt+1 ∼ P(xt+1|xt,x1).

• If xt+1 only depends on xt, this is
simplified to xt+1 ∼ P(xt+1|xt).

• Assume that the estimated x̂t+1 depends
on some unobserved latent variable state
describe by ht.

• We will see these latent states also in the
nodes in a recurrent network.

3

Recurrent neural network (RNN)

• Given a time series of input data
X = {X1,XN} (text, images, time
series)

• Xt is typically a vector, and X a
matrix

• Estimate output Yt given {Xt} and
the hidden state vector Ht.

• Update state to get Ht = f(Ht−1,Xt).
• For each time:

• Take a new input
• Update the state
• Reuse weights
• Compute a new output

4

Vanilla Recurrent neural network (RNN)

• Input vector Xt.
• Hidden state vector Ht

• Weight matrices Whh, Whx, Why.
• Vanilla RNN update:

Ht = tanh(WhhHt−1 + WhxXt + b).
• Output: Yt = g(WhyHt + b). Here g() is

typically sigmoid or softmax.
• Remark: We often concatenate Whh and

Whx into W, and multiply with the
concatenation of Ht and Xt.

5

RNN computational graph - first update

6

RNN computational graph - second update

7

RNN computational graph - all state updates

8

RNN computational graph

9

RNN computational graph - reuse weights for all steps

10

RNN computational graph - Computing loss L

11

Example - predict next character - training time

• Task: Predict the next character
• Training sequence: ’hello’
• Vocabulary: [’h’,’e’,’l’,’o’]
• Encoding: onehot
• For character prediction and

onehot labels: softmax used at
output layer, cross-entropy loss
between the softmax and the
onehot-vector of true next
character.

• During training: notice that the
input at step t+1 is equal to the
output at step t, xt+1 = yt.

12

Example: generate new sequences (during test/inference)

• Test time: generate new text by
sampling from the softmax
”probabilities”.

• Sample from softmax by e.g.
drawing a random number [0, 1]
and assign according to softmax
values.

• The sampled character is input
to the next time step.

• Note that we do not use just the
most probably character from
softmax, but sample from the
softmax distribution.

13

Typical text preprocessing

• The example above predicted single characters, we can also predict words.
• If so, typically we preprocess the text.

1. Read as strings.
2. Split into tokens (word and symbols like ”EOS”, ”EOF”, ”UNK” and other special tokens.
3. Build a vocabulary to map between tokens and numerical indices in the vocabulary.
4. Convert text into numerical indices.

14

Input/output structure of RNNs

Input/output overview

• One-to-one
• One-to-many
• Many-to-one
• Many-to-many
• Many-to-many (encoder/decoder)

15

One-to-one models

• Normal feed-forward networks
• One input - one output (classification or

regression)

16

One-to-many models

• Example: Image captioning
• One input image - output: a sequence of

words.

17

Many-to-one models

• Example: video classification
• Example for text analysis: sentiment

classification

18

Many-to-Many models

• Example: frame-to-frame video
classification

19

Many-to-Many : encoder-decoder

• Example: text translation
• Note here that the input and the output

can have different lengths.

20

Training RNNs

RNNs and training

• Challenge: preserve long-range dependencies
• Vanilla recurrent networks

• Ht = f(WhhHt−1 + WhxXt + b)
• If f = ReLU we easily get exploding values or gradients
• If f = tanh we easily get vanishing gradients, and remembering many steps back is difficult.

• Finite memory will also set limitations.

Figure 1: Undirected graph

21

Exploding or vanishing gradients

• tanh() does not give exploding values.
• tanh() an give exploding gradients:
• Ht = tanh(WhhHt−1 + WhxXt + b)
• ∂Ht

∂Ht−1
=

[
1 − tanh2(WhhHt−1 + WhxXt + b)

]
Whh

• Depending on the size of Whh, the gradient can
either vanish or explode in time:

• For scalar Whh:
• If |Whh| < 1: vanishing gradients.
• If |Whh| > 1: exploding gradients.

• For matrix Whh:
• If largest singular value < 1 : vanishing gradients.
• If largest singular value > 1: exploding gradients.

22

Exploding gradients: Gradient clipping

• To avoid exploding gradients, clip them if they are larger than a threshold.
• Two common approaches: clipping-by-value or clipping-by-norm.
• Clipping-by-value: If g > threshold, g = threshold. (g is the gradient)
• Clipping-by-norm: If g > threshold, set g = threshold g

||g|| .

23

Is vanishing gradients a problem in RNNs?

• RNNs get a fresh input Xt at each time step
• Thus, vanishing gradients is not a big problem
• A bigger challenge is to remember many steps back (we will introduce LSTMs and GRU

cells to help this).

24

Backpropagation through time (we will not go into computational details)

• Training a recurrent network is done using backpropagation through time.
• To calculate gradients you have to keep your inputs in memory until you get the

backpropagated gradient.
• What do you do if you are reading a long book?

25

Truncated backpropagation through time

• Stop after some steps and update the weights as if you were done.
• Advantages: Reducing the memory requirement, faster parameter updates.
• Disadvantage: Not able to capture longer dependencies then the truncated length.

26

Alternative hidden state
computations - GRU and LSTM
cells

Gated Recurrent Units (GRU) main concepts

• Let each hidden state have a memory cell H̃t.
• This memory can learn to keep important concepts from earlier in the sequence (e.g. if a

noun is plural or not in ”The cars, that we used to go to the mountains, were dirty”).
• Define an update gate that controls how the memory is updated.
• The gate has the same dimension as the hidden state vector and has elements between 0

and 1.
• Note that we use a sigmoid as a ”soft” gate to squeeze the input to be betweeen 0 and 1.
• Also introduce a gate to decide how much of the input is used to combine the input with

the memory.

27

Gated Recurrent Units (GRU)

• Gate computations:
• Reset gate: Rt = σ(XtWxr + Ht−1Whr + br)

• Update gate: Zt = σ(XtWxz + Ht−1Whz + bz)

• Candidat hidden state: H̃t = tanh(XtWxr + (Rt ⊙ Ht−1)Whh + bh)

• Hidden state update: Ht = Zt ⊙ Ht−1 + (1 − Zt)⊙ H̃t

28

Gated Recurrent Units (GRU) - some observations

• Gate computations:
• Reset gate: Rt = σ(XtWxr + Ht−1Whr + br)

• Update gate: Zt = σ(XtWxz + Ht−1Whz + bz)

• Candidat hidden state: H̃t = tanh(XtWxr + (Rt ⊙ Ht−1)Whh + bh)

• Hidden state update: Ht = Zt ⊙ Ht−1 + (1 − Zt)⊙ H̃t

• If the update gate is close to 1, the hidden state will remember the previous state.
• If both the update and the reset gate are close to 0, the GRU will forget the past.
• In a vanilla RNN, we update the hidden state no matter how useful we find the input.

29

Long Short Term Memory (LSTM) cells

• The LSTM cells have an additional type of gate: an output gate, and a candidate memory
cell.

30

Long Short Term Memory (LSTM) cell - equations

• Input gate: It = σ(XtWxi + Ht−1Whi + bi)

• Forget gate: Ft = σ(XtWxf + Ht−1Whf + bf)

• Output gate: Ot = σ(XtWxo + Ht−1Who + bo)

• Candidate memory cell C̃t = tanh(XtWxc + Ht−1)Whc + bh)

• Memory cell update: Ct = Ft ⊙ Ct−1 + It ⊙ C̃t

• Hidden state update: Ht = Ot ⊙ tanh(Ct)

31

GRU vs. LSTM?

• GRU is simpler than LSTM, have fewer
parameters and might train faster

• LSTMs have more power, and for some
applications work better.

32

Multilayer RNNs

• Multilayer RNNs can be used to enhance
model complexity

• Stacking layers creates a higher level
feature representation.

• Normally max 3 layers are used. More
complex relationships are learning in the
time dimension.

33

Bidirectional recurrent neural networks

• A standard RNN can only model causal
sequences, where the output and hidden
states only depend on past times.

• For many applications, causality is not a
reasonable assumption.

• Example text 1: ”Teddy bears are on sale”.
• Example text 2: ”Teddy Roosevelt was a

great president.”
• The solution is to use bidirectional RNNs.
• They traverse the hidden states in both

time directions and combine the output.
• Concatenate the hidden states in both

direction to get Ht and compute the
output as Ot = HtWhq + bq.

34

Introducing Mandatory 2 - Image
captioning using RNNs

Introduction to image captioning

• Combining text RNNs with the output
from a CNN.

• RNN input: CNN features.

35

Introduction to image captioning - CNN features to RNN

36

Introduction to image captioning - X0

37

Introduction to image captioning - generate text/inference

• At training time we compare the true word with the softmax output.
• During inference/text generation, we sample from the softmax distribution to get the

input to the next hidden state.

38

Introduction to image captioning - stopping the sequence.

39

Example of good captions.

40

Example of not so good captions.

41

Measuring the quality of a caption - BLEU score

• We can measure the performance of the model if we use a criterion for similarity between
the true caption and the generated caption e.g. on validation datat.

• One such measure is the BLEU score (Bilingual evalution understudy) see .e.g
https://en.wikipedia.org/wiki/BLEU.

• Given two reference sentences like ” The cat is on the mat” and ”There is a cat on the
mat”.

• Given one candidate ML translation like ”The the cat on cat”, we measure a modified
precision score between the reference sentences and the ML candidate.

• BLEU is a modified precision measure that handles sequences of different length. It
combines counts of unigrams, bigrams, and n-grams into one score 0-100%.

• Read more on e.g.
https://towardsdatascience.com/bleu-bilingual-evaluation-understudy-2b4eab9bcfd1

42

Do you want to do state-of-the-art language modelling

• Currently, language models use transformers and attention.
• If you want to learn, check out IN 5550 Neural methods in natural language processing.

43

Learning goals RNN

• Vanilla RNNs
• RNN computational graphs
• Input/Output structures
• Challenges in learning.
• GRU and LSTM - basic concepts.
• From Mandatory 2: practical RNNs for image captioning.
• If you want to learn, check out IN 5550 Neural methods in natural language processing.

44

Questions?

45

	Introduction and motivation
	 Input/output structure of RNNs
	Training RNNs
	Alternative hidden state computations - GRU and LSTM cells
	Introducing Mandatory 2 - Image captioning using RNNs

