Recurrent neural networks

IN5400 — Machine Learning for Image Analysis

Anne Solberg
07.04.2021

University of Oslo

= Motivation

= Vanilla Recurrent Neural Networks

= |nput-output structure

= Training recurrent networks

= LSTM cells

= GRU cells

= Short on text prediction

= RNNs and CNNs for image captioning

= Learning goals

Introduction and motivation

= Models we have learnt so far:

= Fully connected neural networks

= Convolutional neural networks
= When do these models not work well?

= Processing data with unknown length (time series data, text sequences, image sequences).
= Typical applications of recurrent networks (many types of sequence data):

= Speech recognition

= Music generation

= Sentiment analysis (e.g. rate a text)
= Video processing

= Text analysis and translation

Brief introduction to time series

= Given a time series of measurements

{X1y e Xn}
= Suppose we want to predict x;1 given

{X1y Xt}
= If x,11 only depends of previous values

({x1,x¢}), we say that x is causal. Output ! *
= |n probabilistic terms, we can state Hidden

Xer1 ~ P(Xer1|Xey ooeeen x1). state h,_, by

hl
= If x,11 only depends on x;, this is
simplified to xgy1 ~ P(Xer1|xt). Input

= Assume that the estimated X;;1 depends
on some unobserved latent variable state
describe by h;.

= We will see these latent states also in the

nodes in a recurrent network.

Recurrent neural network (RNN)

= Given a time series of input data
X ={Xq,...Xn} (text, images, time

series)
= X; is typically a vector, and X a Y, -) % E'
matrix T T T

= Estimate output Y; given {X;} and
the hidden state vector H;.

= Update state to get Hy = f{H;—1, X¢).

= For each time:

— —>H1—>H;—>H3

—>
e
>

= Take a new input
= Update the state
= Reuse weights

= Compute a new output

Vanilla Recurrent neural network (RNN)

= Input vector X;. Y,
= Hidden state vector H;
= Weight matrices Wy, Wiy, Wh,. Applyww
= Vanilla RNN update:
H; = tanh(WppH—1 + Wi X; + b).
= Output: Y; = g(Wh/ H; + b). Here g() is
typically sigmoid or softmax. Apply W,

= Remark: We often concatenate W, and
Wiy into W, and multiply with the
concatenation of H; and X;.

x

RNN computational graph - first update

RNN computational graph - second update

RNN computational graph - all state updates

RNN computational graph

RNN computational graph - reuse weights for all steps

Y4 Yz Y3 4

10

RNN computational graph - Computing loss L

11

Example - predict next character - training time

= Task: Predict the next character
target chars: ‘e’ T 1% 0"
= Training sequence: 'hello’ 10 05 01 02
. I TREREIER 2.2 03 0.5 -1.5
Vocabulary: ['h",’e’,'I",'0’] Output layer B 1.0 1.9 -0.1
= Encoding: onehot 4.1 1.2 141 2.2
4
= For character prediction and T [IW_hY
onehot labels: softmax used at 03 10 04 |y sl -03
output layer, cross-entropy loss hidden layer | -0.1 0.3 -05—* 09
between the softmax and the 0.9 0.1 03 07
onehot-vector of true next) T T [T
W_hx
character.
) o) 1 0 0 0
= During training: notice that the input layer g :) ? ?
input at step t+1 is equal to the 0 0 0 0
output at step t, X¢+1 = i input chars: “h" “g® o o b

Example: generate new sequences (during test/inference)

= Test time: generate new text by

. “@” “1"
sampling from the softmax Sample + 4
"probabilities”. 03 25
Softmax o r
= Sample from softmax by e.g. i5d i
drawing a random number [0, 1] —Io wen | mm S
1.4 A 1 .

i i 22 03 05 -15
and assign according to softmax outputayer | 22 el s it
values. [41] 12 | =11 22|

< Ll T D Jww
= The sampled character is input) A]
to the next time step. iaden teyer [ttt | JETHIw politE
09 0.1 -0.3 0.7
= Note that we do not use just the N T T T T
W_h
most probably character from A HI mr T ’
softmax, but sample from the input layer | 9 1 b g
softmax distribution. MON| | (WON| 0N |jEOM)
input chars: “p" ‘e" ar ETS 13

Typical text preprocessing

= The example above predicted single characters, we can also predict words.

= If so, typically we preprocess the text.

1.

Read as strings.

2. Split into tokens (word and symbols like "EOS”, "EOF"”, "UNK" and other special tokens.
3.
4. Convert text into numerical indices.

Build a vocabulary to map between tokens and numerical indices in the vocabulary.

14

Input/output structure of RNNs

Input/output overview

= One-to-one

= One-to-many
= Many-to-one
= Many-to-many

= Many-to-many (encoder/decoder)

15

One-to-one models

one to one

= Normal feed-forward networks T

= One input - one output (classification or
regression)

16

One-to-many models

one to many

= Example: Image captioning i i i
= One input image - output: a sequence of Ll |

words. o] [Se] [S

17

Many-to-one models

many to one

= Example: video classification - L

= Example for text analysis: sentiment m N
classification

18

Many-to-Many models

many to many

= Example: frame-to-frame video
classification

19

Many-to-Many : encoder-decoder

= Example: text translation t

= Note here that the input and the output D’D’

can have different lengths.

-

-
=
I

20

Training RNNs

RNNs and training

= Challenge: preserve long-range dependencies
= Vanilla recurrent networks
. Hy = AWinHi—1 + WiXe + b)
= |If f= RelLU we easily get exploding values or gradients
= |f f= tanh we easily get vanishing gradients, and remembering many steps back is difficult.

= Finite memory will also set limitations.

Figure 1: Undirected graph

21

Exploding or vanishing gradients

= tanh() does not give exploding values.
= tanh() an give exploding gradients:
L Ht = tanh(Whth_]_ + WhXXt + b)

1-tanh?(x)

o o = |1~ tanh® (WanHe 1 + WaeXc + b)| W
= Depending on the size of W}y, the gradient can o7
either vanish or explode in time:
= For scalar Wh:
» If |Whs| < 1: vanishing gradients. .
» If |Whs| > 1: exploding gradients. e s v s e 7 e s o

= For matrix Wh:

= |f largest singular value < 1 : vanishing gradients.
= If largest singular value > 1: exploding gradients.

22

Exploding gradients: Gradient clipping

= To avoid exploding gradients, clip them if they are larger than a threshold.

= Two common approaches: clipping-by-value or clipping-by-norm.

Clipping-by-value: If g > threshold, g = threshold. (g is the gradient)

Clipping-by-norm: If g > threshold, set g = thresho/d@.

23

Is vanishing gradients a problem in RNNs?

= RNNs get a fresh input X; at each time step

= Thus, vanishing gradients is not a big problem
= A bigger challenge is to remember many steps back (we will introduce LSTMs and GRU

cells to help this).

24

Backpropagation through time (we will not go into computational details)

= Training a recurrent network is done using backpropagation through time.

= To calculate gradients you have to keep your inputs in memory until you get the
backpropagated gradient.

= What do you do if you are reading a long book?

25

Truncated backpropagation through time

= Stop after some steps and update the weights as if you were done.
= Advantages: Reducing the memory requirement, faster parameter updates.

= Disadvantage: Not able to capture longer dependencies then the truncated length.

26

Alternative hidden state
computations - GRU and LSTM
cells

Gated Recurrent Units (GRU) main concepts

= Let each hidden state have a memory cell H,.

= This memory can learn to keep important concepts from earlier in the sequence (e.g. if a
noun is plural or not in "The cars, that we used to go to the mountains, were dirty”).

= Define an update gate that controls how the memory is updated.

= The gate has the same dimension as the hidden state vector and has elements between 0
and 1.

= Note that we use a sigmoid as a "soft” gate to squeeze the input to be betweeen 0 and 1.

= Also introduce a gate to decide how much of the input is used to combine the input with
the memory.

27

Gated Recurrent Units (GRU)

= Gate computations:

= Reset gate: Ry = o(XeW, + Hy—1 Wi, + b;)

= Update gate: Z; = o(XWiz + He—1 Wh, + b,)

» Candidat hidden state: H, = tanh(XeW,, + (Rt © Hy—1) Whp + bp)
= Hidden state update: H;=Z; O Hy1+ (1 — Z;) ® H,

Hidden state (
H,

-1

Update

gate Candidate
hidden state

Hr

Input X,
FC layer with Elementwise c Concatenat
- activation fuction operator J oPy | oncatenate

Fig. 9.1.3: Computing the hidden state in a GRU model.
28

Gated Recurrent Units (GRU) - some observations

= Gate computations:

= Reset gate: Ry = o(XeWay + Hy—1 Wh, + by)

= Update gate: Z; = o(Xi Wi, + Hi—1 Wi, + b,)

» Candidat hidden state: H, = tanh(XiWy, + (Rt © Hy—1)Whn + bp)

= Hidden state update: H;=Z; O Hy1+ (1 — Z;) ® H,

= If the update gate is close to 1, the hidden state will remember the previous state.
= If both the update and the reset gate are close to 0, the GRU will forget the past.

= In a vanilla RNN, we update the hidden state no matter how useful we find the input.

29

Long Short Term Memory (LSTM) cells

= The LSTM cells have an additional type of gate: an output gate, and a candidate memory
cell.

Memory (@ I \ c

=

Forget Input

gate gate Output

gate
o,

d

Hidden state
H_, C h "
Input X,

FC layer with Elementwise Col Concatenate
- activation fuction operator _L. Py

Fig. 9.2.4: Computing the hidden state in an LSTM model.

30

Long Short Term Memory (LSTM) cell - equations

= Input gate: Iy = o(XeW,i + He—1 Whi + b))

= Forget gate: F; = o(X;Wir+ He—1 Whe+ bf)

= Output gate: O; = o(XyWio + Hi—1Wio + bo)

= Candidate memory cell C = tanh(XeWie + He—1)Whe + bp)
= Memory cell update: C,=F,® Ceq + 1, ® C,

= Hidden state update: H; = O; ® tanh((;)

31

GRU vs. LSTM?

= GRU is simpler than LSTM, have fewer = LSTMs have more power, and for some
parameters and might train faster applications work better.
ien st Y Memory c
[Ov“:m':‘,“ L, o 7 Comcstsie oty Somertis § coy < Concaona
Fig. 9.1.3: Computing the hidden state in a GRU model. Fig. 9.2.4: Computing the hidden state in an LSTM model.

32

Multilayer RNNs

= Multilayer RNNs can be used to enhance
model complexity

= Stacking layers creates a higher level
feature representation.

= Normally max 3 layers are used. More
complex relationships are learning in the
time dimension.

Fig. 9.3.1: Architecture of a deep RNN.

33

Bidirectional recurrent neural networks

= A standard RNN can only model causal
sequences, where the output and hidden
states only depend on past times.

= For many applications, causality is not a
reasonable assumption.

”

= Example text 1: "Teddy bears are on sale”.

= Example text 2: "Teddy Roosevelt was a

great president.”
= T he solution is to use bidirectional RNNs. Fig. 9.4.2: Architecture of a bidirectional RNN.

= They traverse the hidden states in both) T
WL H, W) b)),

time directions and combine the output. ﬁt =o(X
H = oxW") + H,, W) + b)),

= Concatenate the hidden states in both
direction to get H; and compute the

output as Op = HWiq + by. 34

Introducing Mandatory 2 - Image
captioning using RNNs

Introduction to image captioning

“straw” “hat” END

Yt
= Combining text RNNs with the output Wy LWor
from a CNN. N >N b hy

= RNN input: CNN features.

CNNg, hi
Wh:t
Tt

START “straw” “hat”

35

Introduction to image captioning - CNN features to RNN

Introduction to image captioning - X;

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

37

Introduction to image captioning - generate text/inference

= At training time we compare the true word with the softmax output.
= During inference/text generation, we sample from the softmax distribution to get the
input to the next hidden state.

test image

|_maxpool
|_FCa0%6 0 38

Introduction to image captioning - stopping the seque

test image

sample
<END> token
=> finish.

39

Example of good caption

A cat sitting on a A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

40

Example of not so good captions.

A bird is perched on
a tree branch

‘A woman is holding a

cat in her hand

Amanina
baseball uniform
throwing a ball

A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

41

Measuring the quality of a caption - BLEU score

= We can measure the performance of the model if we use a criterion for similarity between
the true caption and the generated caption e.g. on validation datat.

= One such measure is the BLEU score (Bilingual evalution understudy) see .e.g
https://en.wikipedia.org/wiki/BLEU.

= Given two reference sentences like " The cat is on the mat” and "There is a cat on the

mat .

= Given one candidate ML translation like "The the cat on cat”, we measure a modified
precision score between the reference sentences and the ML candidate.

= BLEU is a modified precision measure that handles sequences of different length. It
combines counts of unigrams, bigrams, and n-grams into one score 0-100%.

= Read more on e.g.
https://towardsdatascience.com/bleu-bilingual-evaluation-understudy-2b4eab9bcfd1l

42

Do you want to do state-of-the-art language modelling

= Currently, language models use transformers and attention.

= If you want to learn, check out IN 5550 Neural methods in natural language processing.

43

Learning goals RNN

= Vanilla RNNs

= RNN computational graphs

= Input/Output structures

= Challenges in learning.

= GRU and LSTM - basic concepts.

= From Mandatory 2: practical RNNs for image captioning.

= If you want to learn, check out IN 5550 Neural methods in natural language processing.

44

45

	Introduction and motivation
	 Input/output structure of RNNs
	Training RNNs
	Alternative hidden state computations - GRU and LSTM cells
	Introducing Mandatory 2 - Image captioning using RNNs

