
2021.03.10 IN5400 1 / 41

Object detection

IN5400, spring 2021

● Single-instance detection and localization

● Object detection (multiple objects)

● Performance metrics

 ← Know enough to implement it

 ← Know core principles and techniques

 ← Know the most common ones

2021.03.10 IN5400 2 / 41

Image classification and object
localization

● Classify an image with (at most) a single object
● Draw a bounding box around the object

2021.03.10 IN5400 3 / 41

Image classification

 1 x 1 x K

You already know this!

The VGG16 network; however, think of it as just a conceptual illustration of a convolutional network

Network output

2021.03.10 IN5400 4 / 41

Image classification + localization

1 x 1 x (K+1+4)

2021.03.10 IN5400 5 / 41

Class probabilities

Bounding box

Background class / no object

2021.03.10 IN5400 6 / 41

Example I/III
Note: These examples show
what our network ideally should
have as output for such images,
cf. training data.

2021.03.10 IN5400 7 / 41

Example II/III

2021.03.10 IN5400 8 / 41

Example III/III

Ø : We do not care!

2021.03.10 IN5400 9 / 41

Loss function

L1 or “smooth-L1”
also common

The terms can
also be weighted

Only compare bounding box if there is an object

2021.03.10 IN5400 10 / 41

Multiple objects

● (Sliding windows)
● Single stage networks
● Region proposal algorithms

2021.03.10 IN5400 11 / 41

(Sliding window approach)

● Slide (multiple-sized) windows
across the image

● Apply an image classifier on every
location

● Extract local score-peaks
● OK for “cheap” classification

methods
● Very slow for CNN classifiers

2021.03.10 IN5400 12 / 41

● Simple idea: Make the network output many bounding boxes (and
class-belongings)!

● How to assign these outputs to the different objects?
– Let them each have a default box, and let them find and predict objects

that have a similar shape and location

Towards multiple object
detections I/II

“Default boxes” also go by the
name anchor boxes or priors.

2021.03.10 IN5400 13 / 41

● With thousands of predicted boxes, straight-forward implementation
too flexible impossible to train→

● Network design and re-use of weights is important
● Key elements:

– Let the identically-shaped boxes be predicted by a shared set of
weights

– Convolutions all the way to class+bbox predictions

Towards multiple object
detections II/II

2021.03.10 IN5400 14 / 41

Feature maps

Your network already produces features that are spatially distributed

2021.03.10 IN5400 15 / 41

Convolutions all the way

7 x 7 x (K+1+4)

...
These outputs can be produced by a set of spatially small convolution
kernels (e.g. 3x3xn kernels) → the final stage all share weights!

Coords relative to its center/grid

2021.03.10 IN5400 16 / 41

.. more predictions per location

7 x 7 x 4 x (K+1+4)

Number of anchor boxes (could be more/fewer)

Sometimes anchor boxes go by
the name priors or default boxes.

Anchor boxes allow multiple objects
to have the same center location

2021.03.10 IN5400 17 / 41

Subsampling and box size

Likely fewer bigger boxes needed

4 x 4 x 4 x (K+1+4)

.. and, if still using 3x3 convolutions,
the bigger boxes is predicted using
a larger image context

2021.03.10 IN5400 18 / 41

Single-shot multibox detector (SSD)

Note that the YOLO algorithm, RetinaNet and SSD have
strong similarities and are often grouped together
(“single-stage detectors”).

Liu, Wei, et al. "SSD: Single shot multibox detector", ECCV, 2016.

Even though this “simple” design works well in practice, we
visit some common-seen refinements/improvements later.

2021.03.10 IN5400 19 / 41

Non-max suppression I/III

Illustration from the YOLO 2015 paper

2021.03.10 IN5400 20 / 41

Non-max suppression II/III
Intersection over Union (IoU)

Illustrations: www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

2021.03.10 IN5400 21 / 41

Non-max suppression III/III

Remove all boxes having no c
1
, c

2
, .., c

K
 larger than, say 0.5

2021.03.10 IN5400 22 / 41

Notes on how to train I/III

● Match anchors with ground truth boxes:

for every ground-truth box:
 match the ground-truth box with anchor-box having the biggest IoU

for every anchor-box:
 ious = IoU(anchor-box, ground_truth_boxes)
 max_iou = max(ious)
 if max_iou > threshold:
 i = argmax(ious)
 match the anchor-box with ground_truth_boxes[i]

That is, how to go from human
annotated ground truth to “ideal”
network outputs

2021.03.10 IN5400 23 / 41

Notes on how to train II/III

● Often many more anchor-boxes without a match →
imbalanced dataset
– Hard Negative Mining

● Select only the most difficult background patches (lowest
background score) when computing loss

– Change loss function to downscale importance of highly certain
background patches “→ focal loss” (see later slide)

2021.03.10 IN5400 24 / 41

Notes on how to train III/III

● Data augmentation (as always..)
– Create more (and plausible so) data; cropping, resizing,

mirroring, photometric distortions, ...

2021.03.10 IN5400 25 / 41

Focal loss
Cursory syllabus

Lin et al.. "Focal Loss for Dense Object Detection", ICCV, 2017.

“Ordinary” cross-entropy loss “Focal loss”

● “Focal loss .. focuses training on
a sparse set of hard examples”

● Vigor of this focus controlled by
a γ-parameter

● One can in addition add more
weights to the non-background
patches

– Cf. the α factor often mentioned
in conjunction with focal loss

Let’s say we have many background patches which we
are quite certain about being correctly labeled (p ≈ 0.7).

Using the CE-loss, we can substantially reduce this loss
by going from “quite certain” to “very certain” (p ≈ 0.9),
not so for the FL-loss.

CE

2021.03.10 IN5400 26 / 41

Near-infinite set of refinements..

● “Backbones”
– VGGs / ResNets / ResNeXts / ResNeSts / ..

● Pretraining

– What data and tasks are they trained on?

● Methods/implementations
– SSD / RetinaNet / YOLO / YOLOv2 / YOLOv3 / ..

● Many versions and combinations of concepts (adaptive
anchor-boxes, layer-merges, losses..)

● However, the ubiquitous “FPN” needs special attention … (next
slide)

2021.03.10 IN5400 27 / 41

Feature-pyramid networks (FPN) I/II

● Cf. the SSD illustration (slide 18)
● Deeper layers semantically stronger features→

– Only the largest anchor boxes benefit from this
● Let us try to propagate some of this “semantic

strength” into the earlier layers before detecting
our objects!

Note that there are many different ways of achieving this, however the ”FPN” described
on the next slides is easily implemented, fast and does wonders in practice..

2021.03.10 IN5400 28 / 41

Feature-pyramid networks (FPN) II/II

2021.03.10 IN5400 29 / 41

Feature-pyramid networks (FPN) II/II

Lin et al. "Feature Pyramid Networks for Object Detection", CVPR, 2017.

Ensures all layers have identical
dimensions (e.g. d = 256)

2021.03.10 IN5400 30 / 41

Region proposal algorithms

2021.03.10 IN5400 31 / 41

Example: Faster R-CNN I/II

● Stage 1: Region proposal network (RPN) similar to a simplified
SSD/RetinaNet (background / no background only)

➢ Note that we again have some “backbone” and e.g. a FPN step

● Stage 2: Regions (at the feature level, not pixel level) are
resampled to a fixed-size patch, and fed into a refinement
network which classifies and tunes the bounding boxes

2021.03.10 IN5400 32 / 41

Example: Faster R-CNN II/II

● Traditionally more precise than the one-stage
detectors, however slower

TODO: Source of illustration.

2021.03.10 IN5400 33 / 41

“Anchor-free” approaches

● No pre-defined set of
anchor boxes

● Example: FCOS
● Instead of anchor boxes,

we output:
– class
– (left, right, top ,bottom)
– “centerness”

Tian et al, “FCOS: A simple and strong anchor-free object detector", 2020.

Cursory syllabus

2021.03.10 IN5400 34 / 41

Performance and evaluation
metrics

● Precision
● Recall
● Average precision (AP) / mean average precision (mAP)

Per class!

.. over classes
Single number covering all classes!

2021.03.10 IN5400 35 / 41

TP (true positives)

FP (false positive)

FN (false negative)

Note: Requires an IoU threshold,
e.g. 0.5 or 0.75.

Assuming a single class: “animal”

2021.03.10 IN5400 36 / 41

(How many of our predictions are actually true/objects)

(How many of the objects of interest are found)

Remember: Precision/recall is
calculated per class!

2021.03.10 IN5400 37 / 41

Precision-recall curves

● All detected objects have a class
score, ck, for each class k

● If we alter the score-threshold for
what constitutes a predicted object
of a given class, the precision and
recall for this class will change

● Typically, lowering the threshold
gives more detections, which
increases the recall but lowers the
precision

● By changing this score-threshold, we
get a curve for each class

Remember that such curves
depend on an IoU threshold.

2021.03.10 IN5400 38 / 41

Average precision (AP)

● For a given class, the average
precision is the area under its
precision-recall curve (or some
approximation of it)

● Note, we have an APk for each
class k

2021.03.10 IN5400 39 / 41

Mean average precision (mAP)

● The mean average precision (mAP) is simply the
average AP over all the classes:

One can also average over different IoU thresholds,
e.g. as in the COCO and PASCAL VOC challenges.

2021.03.10 IN5400 40 / 41

In practice

● PyTorch/torchvision
– Currently RetinaNet and Faster-RCNN

● pytorch.org/hub/
● MMDetection, Detectron2

– Actively developed toolboxes
– A wealth of “backbones”, architectures and techniques

2021.03.10 IN5400 41 / 41

Summary
● Single-instance detection and localization

– Add network outputs, provide examples (training data), specify loss

● Object detection (multiple objects)

– Single-stage networks | SSD/YOLO/RetinaNet
● Many bounding boxes + classifiers
● Default boxes / priors / anchor boxes
● Re-use of weights convolutions all the way..→

– Semantic richness on all feature levels e.g. FPN→

– Region-proposal approaches | Faster R-CNN

● Performance evaluation metrics | Precision, recall, IoU, AP, mAP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

