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Object detection

IN5400, spring 2021

● Single-instance detection and localization

● Object detection (multiple objects)

● Performance metrics

 ← Know enough to implement it

 ← Know core principles and techniques

 ← Know the most common ones
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Image classification and object 
localization

● Classify an image with (at most) a single object
● Draw a bounding box around the object
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Image classification

    1 x 1 x K

You already know this!

The VGG16 network; however, think of it as just a conceptual illustration of a convolutional network

Network output
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Image classification + localization

1 x 1 x (K+1+4)
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Class probabilities

Bounding box

Background class / no object
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Example I/III
Note: These examples show
what our network ideally should
have as output for such images,
cf. training data.
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Example II/III
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Example III/III

Ø : We do not care!
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Loss function

L1 or “smooth-L1”
also common

The terms can
also be weighted

Only compare bounding box if there is an object
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Multiple objects

● (Sliding windows)
● Single stage networks
● Region proposal algorithms
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(Sliding window approach)

● Slide (multiple-sized) windows 
across the image

● Apply an image classifier on every 
location

● Extract local score-peaks
● OK for “cheap” classification 

methods
● Very slow for CNN classifiers
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● Simple idea: Make the network output many bounding boxes (and 
class-belongings)!

● How to assign these outputs to the different objects?
– Let them each have a default box, and let them find and predict objects 

that have a similar shape and location

Towards multiple object 
detections I/II

“Default boxes” also go by the 
name anchor boxes or priors.
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● With thousands of predicted boxes, straight-forward implementation 
too flexible  impossible to train→

● Network design and re-use of weights is important
● Key elements:

– Let the identically-shaped boxes be predicted by a shared set of 
weights

– Convolutions all the way to class+bbox predictions

Towards multiple object 
detections II/II
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Feature maps

Your network already produces features that are spatially distributed
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Convolutions all the way

7 x 7 x (K+1+4)

...
These outputs can be produced by a set of spatially small convolution 
kernels (e.g. 3x3xn kernels) → the final stage all share weights!

Coords relative to its center/grid
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.. more predictions per location

7 x 7 x 4 x (K+1+4)

Number of anchor boxes (could be more/fewer)

Sometimes anchor boxes go by 
the name priors or default boxes.

Anchor boxes allow multiple objects 
to have the same center location
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Subsampling and box size

Likely fewer bigger boxes needed

4 x 4 x 4 x (K+1+4)

.. and, if still using 3x3 convolutions, 
the bigger boxes is predicted using
a larger image context
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Single-shot multibox detector (SSD)

Note that the YOLO algorithm, RetinaNet and SSD have 
strong similarities and are often grouped together
(“single-stage detectors”).

Liu, Wei, et al. "SSD: Single shot multibox detector", ECCV, 2016.

Even though this “simple” design works well in practice, we 
visit some common-seen refinements/improvements later.
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Non-max suppression I/III

Illustration from the YOLO 2015 paper
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Non-max suppression II/III
Intersection over Union (IoU)

Illustrations: www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
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Non-max suppression III/III

Remove all boxes having no c
1
, c

2
, .., c

K
 larger than, say 0.5
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Notes on how to train I/III

● Match anchors with ground truth boxes:

for every ground-truth box:
    match the ground-truth box with anchor-box having the biggest IoU

for every anchor-box:
    ious = IoU(anchor-box, ground_truth_boxes)
    max_iou = max(ious)
    if max_iou > threshold:
        i = argmax(ious)
        match the anchor-box with ground_truth_boxes[i]

That is, how to go from human 
annotated ground truth to “ideal” 
network outputs
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Notes on how to train II/III

● Often many more anchor-boxes without a match  →
imbalanced dataset
– Hard Negative Mining

● Select only the most difficult background patches (lowest 
background score) when computing loss

– Change loss function to downscale importance of highly certain 
background patches  “→ focal loss” (see later slide)
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Notes on how to train III/III

● Data augmentation (as always..)
– Create more (and plausible so) data; cropping, resizing, 

mirroring, photometric distortions, ...
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Focal loss
Cursory syllabus

Lin et al.. "Focal Loss for Dense Object Detection", ICCV, 2017.

“Ordinary” cross-entropy loss “Focal loss”

● “Focal loss .. focuses training on 
a sparse set of hard examples”

● Vigor of this focus controlled by 
a γ-parameter

● One can in addition add more 
weights to the non-background 
patches

– Cf. the α factor often mentioned 
in conjunction with focal loss

Let’s say we have many background patches which we 
are quite certain about being correctly labeled (p ≈ 0.7).

Using the CE-loss, we can substantially reduce this loss 
by going from “quite certain” to “very certain” (p ≈ 0.9), 
not so for the FL-loss.

CE
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Near-infinite set of refinements..

● “Backbones”
– VGGs / ResNets / ResNeXts / ResNeSts / ..

● Pretraining

– What data and tasks are they trained on?

● Methods/implementations
– SSD / RetinaNet / YOLO / YOLOv2 / YOLOv3 / ..

● Many versions and combinations of concepts (adaptive 
anchor-boxes, layer-merges, losses..)

● However, the ubiquitous “FPN” needs special attention … (next 
slide)
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Feature-pyramid networks (FPN) I/II

● Cf. the SSD illustration (slide 18)
● Deeper layers  semantically stronger features→

– Only the largest anchor boxes benefit from this
● Let us try to propagate some of this “semantic 

strength” into the earlier layers before detecting 
our objects!

Note that there are many different ways of achieving this, however the ”FPN” described 
on the next slides is easily implemented, fast and does wonders in practice.. 
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Feature-pyramid networks (FPN) II/II
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Feature-pyramid networks (FPN) II/II

Lin et al. "Feature Pyramid Networks for Object Detection", CVPR, 2017.

Ensures all layers have identical 
dimensions (e.g. d = 256)
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Region proposal algorithms
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Example: Faster R-CNN  I/II

● Stage 1: Region proposal network (RPN) similar to a simplified 
SSD/RetinaNet (background / no background only)

➢ Note that we again have some “backbone” and e.g. a FPN step

● Stage 2: Regions (at the feature level, not pixel level) are 
resampled to a fixed-size patch, and fed into a refinement 
network which classifies and tunes the bounding boxes
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Example: Faster R-CNN  II/II

● Traditionally more precise than the one-stage 
detectors, however slower

TODO: Source of illustration.
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“Anchor-free” approaches

● No pre-defined set of 
anchor boxes

● Example: FCOS
● Instead of anchor boxes, 

we output:
– class
– (left, right, top ,bottom)
– “centerness”

Tian et al, “FCOS: A simple and strong anchor-free object detector", 2020.

Cursory syllabus
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Performance and evaluation 
metrics

● Precision
● Recall
● Average precision (AP) / mean average precision (mAP)

Per class!

.. over classes
Single number covering all classes!
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TP (true positives)

FP (false positive)

FN (false negative)

Note: Requires an IoU threshold,
e.g. 0.5 or 0.75.

Assuming a single class: “animal”
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(How many of our predictions are actually true/objects)

(How many of the objects of interest are found)

Remember: Precision/recall is
calculated per class!
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Precision-recall curves

● All detected objects have a class 
score, ck, for each class k

● If we alter the score-threshold for 
what constitutes a predicted object 
of a given class, the precision and 
recall for this class will change

● Typically, lowering the threshold 
gives more detections, which 
increases the recall but lowers the 
precision

● By changing this score-threshold, we 
get a curve for each class

Remember that such curves
depend on an IoU threshold.
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Average precision (AP)

● For a given class, the average 
precision is the area under its 
precision-recall curve (or some 
approximation of it)

● Note, we have an APk for each 
class k
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Mean average precision (mAP)

● The mean average precision (mAP) is simply the 
average AP over all the classes:

One can also average over different IoU thresholds, 
e.g. as in the COCO and PASCAL VOC challenges.
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In practice

● PyTorch/torchvision
– Currently RetinaNet and Faster-RCNN

● pytorch.org/hub/
● MMDetection, Detectron2

– Actively developed toolboxes
– A wealth of “backbones”, architectures and techniques
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Summary
● Single-instance detection and localization

– Add network outputs, provide examples (training data), specify loss

● Object detection (multiple objects)

– Single-stage networks | SSD/YOLO/RetinaNet
● Many bounding boxes + classifiers
● Default boxes / priors / anchor boxes
● Re-use of weights  convolutions all the way..→

– Semantic richness on all feature levels  e.g. FPN→

– Region-proposal approaches | Faster R-CNN

● Performance evaluation metrics | Precision, recall, IoU, AP, mAP
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