Object detection

IN5400, spring 2021

- Single-instance detection and localization
- Object detection (multiple objects)
- Performance metrics
\leftarrow Know enough to implement it
\leftarrow Know core principles and techniques
\leftarrow Know the most common ones

Image classification and object Iocalization

- Classify an image with (at most) a single object
- Draw a bounding box around the object

[^0]
Image classification

Δ

The VGG16 network; however, think of it as just a conceptual illustration of a convolutional network

Image classification + localization

Background class / no object

$\mid b_{r}:$ Center row coordinate
$b_{c}:$ Center column coordinate
$b_{h}:$ Box height
$b_{w}:$ Box width

Example I/III

c_{1} : Tiger
c_{2} : Leopard
c_{3} : Lion
$y=\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ b_{r} \\ b_{c} \\ b_{h} \\ b_{w}\end{array}\right]$

Figure 17: Tiger. Image source: https://www. pixabay.com

Example II/III

c_{1} : Tiger
c_{2} : Leopard
c_{3} : Lion

$$
y=\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
b_{r} \\
b_{c} \\
b_{h} \\
b_{w}
\end{array}\right]
$$

Figure 18: Lion. Image source: https://www.pixabay.com

Example III/III

c_{1} : Tiger
c_{2} : Leopard
c_{3} : Lion

$y=\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ b_{r} \\ b_{c} \\ b_{h} \\ b_{w}\end{array}\right]$

Figure 19: Savannah. Image source: https://www.pixabay. com
$\varnothing:$ We do not care!

Loss function

- Partition y into $y=[c, b]$, with

$$
\begin{aligned}
c & =\left[c_{0}, c_{1}, \ldots, c_{N_{c}}\right] \\
\cdot b & =\left[b_{r}, b_{c}, b_{h}, b_{w}\right]
\end{aligned}
$$

- L_{2} loss for object bounding box location b

$$
L_{b}(b, \hat{b})=\sum_{i \in\{x, y, h, w\}}\left(b_{i}-\hat{b}_{i}\right)^{2}
$$

- Cross entropy loss for object categories c

$$
L_{c}(c, \hat{c})=-\sum_{i=0}^{n} c_{i} \log \hat{c}_{i}
$$

- The total loss can be written as

$$
L(y, \hat{y})=L_{c}+\left[c_{0}=0\right] L_{b}
$$

Multiple objects

- (Sliding windows)
- Single stage networks
- Region proposal algorithms

(Sliding window approach)

- Slide (multiple-sized) windows across the image
- Apply an image classifier on every location
- Extract local score-peaks
- OK for "cheap" classification methods
- Very slow for CNN classifiers

Towards multiple object detections I/II

- Simple idea: Make the network output many bounding boxes (and class-belongings)!
- How to assign these outputs to the different objects?
- Let them each have a default box, and let them find and predict objects that have a similar shape and location

Towards multiple object detections II/II

- With thousands of predicted boxes, straight-forward implementation too flexible \rightarrow impossible to train
- Network design and re-use of weights is important
- Key elements:
- Let the identically-shaped boxes be predicted by a shared set of weights
- Convolutions all the way to class+bbox predictions

Feature maps

Your network already produces features that are spatially distributed

Convolutions all the way

.. more predictions per location

Sometimes anchor boxes go by the name priors or default boxes.

Subsampling and box size

Likely fewer bigger boxes needed
.. and, if still using 3×3 convolutions, the bigger boxes is predicted using a larger image context

Single-shot multibox detector (SSD)

Liu, Wei, et al. "SSD: Single shot multibox detector", ECCV, 2016.

Even though this "simple" design works well in practice, we visit some common-seen refinements/improvements later.

Note that the YOLO algorithm, RetinaNet and SSD have strong similarities and are often grouped together
("single-stage detectors").

Non-max suppression I/III

Illustration from the YOLO 2015 paper

Non-max suppression II/III

Intersection over Union (IoU)

Non-max suppression III/III

- Important step in several object detection algorithms
- Remove all boxes having no $\mathrm{C}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{K}}$ larger than, say 0.5
- For each class $i=1,2, \ldots, n$
- Create a list of unseen" regions U_{i} that contains all the regions in the image
- Create an empty list of regions to keep K_{i}
- While there are regions left in U_{i}
- Find the most probable region $R_{\text {max }}$
$R_{\max }$ can be the region with highest value of c_{i} (or some similar criterion)
Remove all regions that overlaps with $R_{\max }$ (e.g. with
iou >0.5), from U_{i}
- Move $R_{\text {max }}$ from U_{i} to K_{i}

Figure 29: Top: Original. Middle: Too low c_{0} removed Bottom: iou >0.5 removed. Image source:
https://www.pixabay.com

Notes on how to train I/III

- Match anchors with ground truth boxes:

```
for every ground-truth box:
    match the ground-truth box with anchor-box having the biggest IoU
for every anchor-box:
    ious = IoU(anchor-box, ground_truth_boxes)
    max_iou = max(ious)
    if max_iou > threshold:
        i = argmax(ious)
        match the anchor-box with ground_truth_boxes[i]
```

That is, how to go from human annotated ground truth to "ideal" network outputs

Notes on how to train II/III

- Often many more anchor-boxes without a match \rightarrow imbalanced dataset
- Hard Negative Mining
- Select only the most difficult background patches (lowest background score) when computing loss
- Change loss function to downscale importance of highly certain background patches \rightarrow "focal loss" (see later slide)

Notes on how to train III/III

- Data augmentation (as always..)
- Create more (and plausible so) data; cropping, resizing, mirroring, photometric distortions, ...

Focal loss

- "Focal loss .. focuses training on a sparse set of hard examples"
- Vigor of this focus controlled by a γ-parameter
- One can in addition add more weights to the non-background patches
- Cf. the α factor often mentioned in conjunction with focal loss
$p_{\mathrm{t}}= \begin{cases}p & \text { if } y=1 \\ 1-p & \text { otherwise }\end{cases}$

Lin et al.. "Focal Loss for Dense Object Detection", ICCV, 2017.
"Ordinary" cross-entropy loss
"Focal loss"

Let's say we have many background patches which we are quite certain about being correctly labeled ($p \approx 0.7$).

Using the CE-loss, we can substantially reduce this loss by going from "quite certain" to "very certain" ($p \approx 0.9$), not so for the FL-loss.

Near-infinite set of refinements..

- "Backbones"
- VGGs / ResNets / ResNeXts / ResNeSts / ..
- Pretraining
- What data and tasks are they trained on?
- Methods/implementations
- SSD / RetinaNet / YOLO / YOLOv2 / YOLOv3 / ..
- Many versions and combinations of concepts (adaptive anchor-boxes, layer-merges, losses..)
- However, the ubiquitous "FPN" needs special attention ... (next slide)

Feature-pyramid networks (FPN) I/II

- Cf. the SSD illustration (slide 18)
- Deeper layers \rightarrow semantically stronger features
- Only the largest anchor boxes benefit from this
- Let us try to propagate some of this "semantic strength" into the earlier layers before detecting our objects!

Feature-pyramid networks (FPN) II/II

Feature-pyramid networks (FPN) II/II

Ensures all layers have identical dimensions (e.g. d=256)

Lin et al. "Feature Pyramid Networks for Object Detection", CVPR, 2017.

Region proposal algorithms

- A subclass of object detection methods
- Use a separate method to find candidate regions
- Filter out regions without an object, or redundant, overlapping regions with an object
- Classify these regions and refine region boundary

Figure 23: Image source: https://www. pixabay.com

Example: Faster R-CNN I/II

- Stage 1: Region proposal network (RPN) similar to a simplified SSD/RetinaNet (background / no background only)
- Note that we again have some "backbone" and e.g. a FPN step
- Stage 2: Regions (at the feature level, not pixel level) are resampled to a fixed-size patch, and fed into a refinement network which classifies and tunes the bounding boxes

Example: Faster R-CNN II/II

- Traditionally more precise than the one-stage detectors, however slower

"Anchor-free" approaches

- No pre-defined set of anchor boxes
- Example: FCOS
- Instead of anchor boxes, we output:
- class

- (left, right, top ,bottom)
- "centerness"

Performance and evaluation metrics

- Precision
 Per class!
- Recall
- Average precision (AP) / mean average precision (mAP)

Assuming a single class: "animal"

Note: Requires an IoU threshold, e.g. 0.5 or 0.75 .

Precision $=\frac{T P}{T P+F P}$

(How many of our predictions are actually true/objects)

$$
\text { Recall }=\frac{T P}{T P+F N}
$$

(How many of the objects of interest are found)

Precision-recall curves

- All detected objects have a class score, $\mathrm{c}_{\mathrm{k}^{\prime}}$ for each class k
- If we alter the score-threshold for what constitutes a predicted object of a given class, the precision and recall for this class will change
- Typically, lowering the threshold gives more detections, which increases the recall but lowers the precision
- By changing this score-threshold, we
 get a curve for each class

Average precision (AP)

- For a given class, the average precision is the area under its precision-recall curve (or some approximation of it)
- Note, we have an AP_{k} for each class k

Mean average precision (mAP)

- The mean average precision (mAP) is simply the average AP over all the classes:

$$
\mathrm{mAP}=\frac{1}{K} \sum_{i=1}^{K} \mathrm{AP}_{i}
$$

In practice

- PyTorch/torchvision
- Currently RetinaNet and Faster-RCNN
- pytorch.org/hub/
- MMDetection, Detectron2
- Actively developed toolboxes
- A wealth of "backbones", architectures and techniques

Summary

- Single-instance detection and localization
- Add network outputs, provide examples (training data), specify loss
- Object detection (multiple objects)
- Single-stage networks | SSD/YOLO/RetinaNet
- Many bounding boxes + classifiers
- Default boxes / priors / anchor boxes
- Re-use of weights \rightarrow convolutions all the way..
- Semantic richness on all feature levels \rightarrow e.g. FPN
- Region-proposal approaches | Faster R-CNN
- Performance evaluation metrics | Precision, recall, IoU, AP, mAP

[^0]: b_{r} : Center row coordinate
 b_{c} : Center column coordinate
 b_{h} : Box height
 b_{w} : Box width

