
IN5400/IN9400 - Mandatory 1

Alex

February 22, 2022

Submission due 9th of March 11:59pm

1 The mandatory exercise 1

Learning goals:

• writing a custom data loader

• changing the architecture of pre-trained networks

• Define and use a custom loss for a problem which is classification but not
multi-class classification

• feel the importance of proper presentation of prediction results: the top-
ranked images look well at the top and bottom even though your prediction
accuracy over the whole dataset is so-so. The reason is that: thresholded
subsets can have high accuracies even if the average performance over the
whole dataset is not great.

In summary: Work with a custom loss on a bit more challenging vision
dataset.

The dataset you will be using, collected by Planet, is images of the Ama-
zon basin which includes Brazil, Peru, Uruguay, Colombia, Venezuela, Guyana,
Bolivia, and Ecuador. The labels can broadly be broken into three groups: at-
mospheric conditions, common land cover/land use phenomena, and rare land
cover/land use phenomena. Each image will have one and potentially more than
one atmospheric label and zero or more common and rare labels. Images that
are labeled as cloudy should have no other labels, but there may be labeling
errors.

1



img credit: Planet. Example images contained in the dataset. In red are their
corresponding labels.

1.1 What to consider before starting to train

It has one important property: it is not a multiclass dataset, and in that sense
way more realistic than imagenet

• each image can have multiple groundtruth labels, e.g. primary rainforest
and roads can be present as labels for the same image.

• prediction: you cannot use the argmax over classes of the logits or softmax
predictions, because labels per image are not mutually exclusive.

• training: You cannot use just 17-class crossentropy loss, because labels
per image are not mutually exclusive.

• you need to think: how to predict on a single image, what should the
outputs be. If you have no idea after 15 minutes of thinking, look at
examples of the training and validation labels and consider sources online.

• you need to think: what loss to use for training.

• the data is in:

– images in /itf-fi-ml/shared/IN5400/2022 mandatory1/train-tif-v2/

– labels in /itf-fi-ml/shared/IN5400/2022 mandatory1/train v2.csv

– all packed in /itf-fi-ml/shared/IN5400/2022 mandatory1/rainforest.tar
(for copying off)

– for test runs at home you might consider to copy just 1000 images
from the image path above rather than copying off the whole tar file

1.2 an overview over tasks

• write a dataloader for Planet rainforest train and val datasets. In the sci-
kit learn library is a useful function that can help you to binarise strings.
Perform a test train split of the data, and use a manual seed so that you
use the same train and test data in each of your experiments.

Task1 First classification, only RGB parts: using the SingleNetwork class,
change the last linear layer of a pre-trained network (resnet-18), which can
then be trained on using only the rgb channels of the images. The data
has four channels, so use the class ChannelSelect in your transforms to
keep only the channels you need. Get this task working first, and if you
manage this move on to the following architectures below.

– with a proper loss for minimizing and for training of the network.
note that an image can have multiple labels present in it. Thus
cross-entropy-loss over 17 classes, or any other multi-class
loss, is not the right way to do here and will result in a
large penalty. Use a loss which can minimize 17 separate binary
classifiers. How to design that ? It is easy if you think about it for
15 minutes.

2



– Report the average precision measure (google for it, sci-kit learn has
it too in a metrics subpackage, you can use that one) on the valida-
tion set – for every class of the 17, and the mean average precision
over all 17 classes. The average precision is a measure for the quality
of a ranking of predictions.

– note in particular: the average precision for one class is computed
over the set of all predicted scores for this class. All predicted scores
refers to scores for this one class obtained for all samples in the vali-
dation set and their labels for this particular class (which is binary,
presence or absence). You need to compute average precision using
an ordered set of prediction scores (for the whole validation set) and
the corresponding binary labels (for the whole validation set). It is
not computed in the same way as accuracy (one number for each sam-
ple, then averaged over all samples) would be. Therefore: to compute
mean average precision, you must collect the set of predictions for all
samples, and this for all 17 classes.

Task 2 tailaccuracies and ranking: Take the predictions from the model of
Task 1. For a class with high AP sort the images according to descending
prediction scores of that class. Take a look at the top-10 or top-20 images.
You will observe that the top-ranked images look great. Why the top-50
highest scoring images for a given class looks so well when the ranking
measure (average precision) is not perfect ? Compute for each of the 17
classes the accuracy of predictions in the upper tail, for 10 to 20 values of t
from t = 0 if classification threshold is zero, or from t = 0.5 if classification
threshold is 0.5, until t = maxx f(x).

Tailacc(t) =
1∑n

i=1 I[f(xi) > t]

n∑
i=1

I[f(xi) = yi]I[f(xi) > t], t > 0

Show in your final report

– for the chosen class above the top-10 ranked images and the bottom-
10 ranked images.

– a plot of Tailacc(t) averaged over all 17 classes for 10 to 20 values
of t as above. A reasonable choice for t would be such that each t
separates a percentage of the validation data. Note how the Tailacc(t)
accuracy increases as we look at the more top-ranked results (by
increasing the value of t) – this is the explanation.

The point here is to show you, that it is a matter of HCI (human
computer interaction) how to deal with the errors of a deep
learning system!

• The next two tasks are easy once you solve task1. They use the same loss,
dataloader and optimizer. Only the model is modified.

3



Task3 using the TwoNetwork class, use two pre-trained networks (again both
resnet-18), one to handle the rgb and the other to handle the near infrared.
Concatenate the high level features, and feed these features into a final
linear layer.

Task4 using the SingleNetwork class, use the pre-trained weights from layers
two and onwards. For the first layer, copy the three channel weights and
initialise a fourth channel as “Kaiming-He-initialization”. This means:
one of the input channels (corresponding to the near infrared channel)
to all output channels is initialized as per “Kaiming-He-initialization”,
the other 3 input channels to all output channels are initialized from the
pretrained weights. Hint: you need to change for a resnet model named
model the weights tensor of model.conv1

• write a report of 2 to 10 pages on what you did. Aim is so that others
would be able to reproduce your results - it should contain what is needed
to recode and reproduce your results (including seeds). Note down loss
function, learning rate schemes, training procedures, all relevant hyper-
parameters used in evaluation and the finally chosen hyperpa-
rameters and so on. Show train and test loss and train and test mAP
scores per epoch.

It does not need to be lengthy, just be self-containing. Short sentences
are okay, prettyness of language does not matter. It is not an English
language essay contest.

1.3 Deliverables

• training phase: code for training on the dataset with transfer learning

• a pretrained model

• validation phase: code which uses the pretrained model to predict on the
validation images and saves those predictions, and which computes the
mean average precision over all 17 classes.

• a reproduction routine: the scores from the pretrained model
computed on the fly when we run your code should be compared
against the scores which you saved when you ran your code

• a brief pdf-report containing the following:

– your name and your matriculation number

– setting you used to define the last layer

– what loss you used - in math formulas and the code you used for it. If
you use latex, the package minted may help you for showing python
code.

– describes the experimental parameters of the training (learning rate
batch size, seed values and anything else necessary to reproduce the
training)

– shows train test curves for the setting which you used to save the
model,

4



– the report for Tailacc(t), and top-10 and bottom-10 ranked images
(see above)

– novels longer than 10 pages will not be entertained. Brevity over
pamphlets.

• put everything: codes, saved model, saved predictions, the pdf and every-
thing else you want to add into one single zip file.

1.4 Coding Guidelines

• path portability: all paths (dataset, pretrained model, saved predictions)
must be relative to the root path of the main .py-file

• no absolute paths

• reproducibility: set all involved seeds to fixed values (python, numpy,
torch )

• a python file for the code or several files

• it should run using the following steps:

– unpacking the zip files

– set one single path for the root of the rainforest dataset. This must
be documented. Nothing else should be needed to set it up

• code should run without typing tons/dozens/piles of parameters on the
command line!! python blafile.py

5



• python scripts. What about jupyter notebooks?

Do you think that whoever will check your code, would like to follow up errors
in a notebook ??

+ Repeat this then for 50 students?
Do you think you can write prototype code in jupyter notebooks for any

projects which are beyond the very smallest ones?

1.5 Additional caveats:

• We do one thing wrong here!

A proper training would need to estimate the best epoch to stop using
cross-validation, and other hyperparameters. We do something not proper,
namely deciding on the best epoch on ones test data. The validation data
serves actually as test data here. Therefore we overfit on test data. The
right thing would be to perform n-fold cross-validation on the training set.
This would result in n classifiers. Then one would score on the test set
using an average of those. Reason: keep the time of GPU usages low.

1.6 GPU resources

you have two options: use your own GPU, or use the university provided re-
sources

• ml6.hpc.uio.no

• ml7.hpc.uio.no

How to use them ?

• log in using ssh and your ifi username:

ssh proffarnsworth@ml6.hpc.uio.no

ssh nibbler@ml7.hpc.uio.no

On windows the builtin Powershell, PuTTY or MobaXterm may help you.
On mac you can use ssh as is. I do use windows, but for games :D.

6



• each of these nodes has 8 GPUs, each with 11 Gbyte GPU Ram. The
critical resource will be GPU ram. if you go over the limit, your script
will die with a mem allocation error.

• keep the scripts at a training batchsize of 16 with using a resnet18
- in order to keep mem usage below 2Gbyte. This does not apply
if you use your own GPU, but then keep it below 5Gbyte (in case i got
to check your code on my home GPU, alternatively i will reduce your
batchsize manually).

• use nvidia-smi to see which on which GPUs scripts are running and how
much memory is used on each GPU. Choose a GPU such which has still
2 Gbyte RAM unused.

• to start a script on a specific GPU with numerical number x ∈ {0, . . . , 7}
use the following command below. However this will stop when you log
out of ssh. Thus this makes sense only to debug your code.

CUDA_VISIBLE_DEVICES=x python yourscript.py

• to start a script which does not hang up on logout (on a specific GPU
with numerical number x ∈ {0, . . . , 7}), please use

CUDA_VISIBLE_DEVICES=x nohup python yourscript.py > out1.log 2> error1.log &

What does this do?

• nohup starts the command without hangup

• > out1.log redirects normal output onto out1.log

• 2 > error1.log redirects error messages onto error1.log

• & places the job in the background

• do not start a script when there are already 5 jobs running on it or when
it is foreseaable that your 2Gbyte wont fit into this GPU RAM.

• how to kill your own process?

ps -u proffarnsworth

↑ shows only the processes of the user proffarnsworth https://en.

wikipedia.org/wiki/Professor_Farnsworth

ps -u proffarnsworth | grep -i python

↑ shows only the processes of user proffarnsworth which are python.
The -i makes a case sensitive grep search. If you see nothing, then
you may have mistyped your command, or you are not using python,
or your process has already finished.

– both of these will show you process ids (PID)s

kill -9 PID

↑ kills your process with pid PID

7

https://en.wikipedia.org/wiki/Professor_Farnsworth
https://en.wikipedia.org/wiki/Professor_Farnsworth

	The mandatory exercise 1
	What to consider before starting to train
	an overview over tasks
	Deliverables
	Coding Guidelines
	Additional caveats:
	GPU resources


