Pytorch: A quick Intro

Alexander Binder
University of Oslo (UiO)
January 22, 2022

$\mathrm{UiO}:$ Department of Informatics

University of Oslo
(1) PyTorch in General
(2) Broadcasting
(3) linear algebra basics
(4) Einsum the generalist
(5) Autograd

- easy to debug in native python
© currently popular in research ${ }^{1}$
© nowadays pytorch and tensorflow are very similar https://towardsdatascience.com/
pytorch-vs-tensorflow-in-2020-fe237862fae1
- automatic differentiation / autograd: computes derivatives of functions for you.
© for those who never heard of it: torchvision model zoo - many networks with pretrained weights ready to load

There cant be nothing else beside PyTorch : P

See e.g. JAX:
https://github.com/google/jax

Key content I

© pytorch tensors: numpy with GPU transfer option

- linear algebra similar to numpy
- data is stored in . data field
- pytorch broadcasting rules
- torch.einsum for general tensor multiplications with summing
\odot pytorch \rightarrow math: be able to write down mathematically what a certain pytorch operation does
\odot math \rightarrow pytorch: be able to decide how math formula can be realized by which pytorch operations

Key content II

- pytorch autograd:
- records graph of function computations
- capable of computing gradient of weighted sum of Jacobi matrix
© when one needs to use only data or handle gradients, tensor have .data and .grad.data fields
- Installation https://pytorch.org/get-started/locally/
© quick intro: https://pytorch.org/tutorials/beginner/ deep_learning_60min_blitz.html
© cheat sheet:
https://pytorch.org/tutorials/beginner/ptcheat.html

Package	Description
torch	The top-level PyTorch package and tensor library.
torch.nn	A subpackage that contains modules and extensible classes for building neural networks.
torch.autograd	A subpackage that supports all the differentiable Tensor operations in PyTorch.
torch.nn.functional	A functional interface that contains typical operations used for building neural networks like loss functions, activation functions, and convolution operations.
torch.optim	A subpackage that contains standard optimization operations like SGD and Adam.
torch.utils	A subpackage that contains utility classes like data sets and data loaders that make data preprocessing easier.
torchvision	A package that provides access to popular datasets, model architectures, and image transformations for computer vision.

Tensor mathematically:

- 1-tensor: a linear mapping $v_{1} \mapsto L\left(v_{1}\right)$, representable as $L\left(v_{1}\right)=u \cdot v_{1}$ by a vector $u=\left(u_{j}\right)$
© 2-tensor: a bilinear mapping $v_{1}, v_{2} \mapsto L\left(v_{1}, v_{2}\right)$, representable as $L\left(v_{1}, v_{2}\right)=v_{1}^{t} A v_{2}=\sum_{i j} v_{1, i} v_{2, j} A_{i j}$ by a matrix $A=\left(A_{i j}\right)$
- 3-tensor: a trilinear mapping $v_{1}, v_{2}, v_{3} \mapsto L\left(v_{1}, v_{2}, v_{3}\right)$, representable as $L\left(v_{1}, v_{2}, v_{3}\right)=\sum_{i j k} v_{1, i} v_{2, j} v_{3, k} A_{i j k}$ by a 3 -dim array $A=\left(A_{i j}\right)$
© n -tensor ... n -linear mapping ... representable by a n -dim array $A=\left(A_{i_{1} \ldots i_{n}}\right)$
\odot n-tensors \leftrightarrow n-dim arrays

Same as in physics lectures

- 1-tensor: object/array with 1-dimensional way to index it, vector
$a[i] \leftrightarrow a_{i}$
© 2-tensor: object/array with 2-dimensional way to index it, matrix
$a[i, k] \leftrightarrow a_{i, k}$
© 3-tensor: object/array with 3-dimensional way to index it $a[i, k, l] \leftrightarrow a_{i, k, l}$
- n-tensor: object/array with n-dimensional way to index it
- Tensor in pytorch:
a representation of an numpy-array-like structure $A_{i}, A_{i, j, k}, A_{i, j, k}$ or $A_{i_{1}, \ldots, i_{n}}$ with benefits (for storing computed gradients).
- with fixed values:

```
x= torch.zeros((5,1))
y= torch.ones((5))
z= torch.empty((3,2,3))
a = torch.empty((64,32,3,3)).fill_(32.) # initializes to some val
b= a.new_full((3,2),42.) # with same type and device as tensor a
c = torch.full((2, 3), 3.141592)
d = torch.randn((2, 3))
```

- from a saved tensor:
https://pytorch.org/docs/stable/generated/torch.save.html
https://pytorch.org/docs/stable/generated/torch.load.html
© from numpy:

```
a=np.random.normal(5,size=(2,3)).astype('float32')
x=torch.tensor(a) # this copies data
x2=torch.as_tensor(a) # this does NOT COPY data,
#and does nothing if its already a tensor with right type, etc.
x3=torch.from_numpy( a) # this does NOT COPY data
#when this can be inappropriate? not resizable tensor as limitati
```

- to numpy:
nparr = a.data.numpy() \# a.numpy() works only if it has no grad f
$\mathrm{x}=$ torch.empty $((2,3))$ \#empty tensor

A tensor has three important properties:
© its .size() or .shape

- the dtype: its type of numerical elements (most nns use torch.float32)
- device it is placed on (e.g. cpu, cuda:0, cuda:1)
\odot getting its size: output is a torch.Size() object.
print(x.size())
print(x.shape) \# This is a \{\tt torch.Size\} class instance.
Use tuple or list to convert it:
xsize=tuple(x.size())
get its dtype:
print(x.dtype)
get its device placement
print(x.device) \#is a \{\tt torch.device\} class instance
if you need strings, use .__repr_().
Test for equality with
x.device==torch.device('cuda:0')
x.dtype==torch.float \#rhs is a torch.dtype object
x.dtype.__repr__()=='torch.float32'

Important: you can print these anywhere in your execution code. no ugly fixed graph surprises.
https://pytorch.org/docs/stable/tensors.html

```
>>> a.to('blabladevice')
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
RuntimeError: Expected one of cpu, cuda, xpu, mkldnn, opengl, opencl, ideep, hip
, ve, ort, mlc, xla, lazy, vulkan, meta, hpu device type at start of device stri
ng: blabladevice
```

https://pytorch.org/cppdocs/api/
enum_namespacec10_1a815bc73d9ef8591e4a92a70311b71697.html

- ROCm for AMD
- XLA-compiler driven TPUs
https://pytorch.org/xla/release/1.9/index.html (yup, 1.10 is the current PyTorch version). Can try those in google Colab: https://colab.research.google.com/notebooks/intro.ipynb
© Vulkan for Android devices

```
print(a.dtype)
\(\mathrm{b}=\mathrm{a} . \mathrm{to}(\) torch.float64) \# see also the legacy method .type()
c= a.type(torch.DoubleTensor)
```

```
print(a.device)
b= a.to('cuda:0')
```

Important knowledge: on multi-GPU clusters (and vanilla jobs) restrict yourself to one device, dont grab all GPUs!

CUDA_VISIBLE_DEVICES=2 python3 blablascript.py

This uses GPU 2 from the output of nvidia_smi

```
x=torch.ones((10))
y=x.view ((2,5))
z=x.view((-1,5)) #-1 joker
```

Be careful: Which elements ends up where in this case?
$\mathrm{x}=$ torch .ones $((4,2,3))$ $y=x \cdot \operatorname{view}((-1,12))$

(1) PyTorch in General

(2) Broadcasting
(3) linear algebra basics
(4) Einsum the generalist
(5) Autograd

Exercise will be on broadcasting. Its important for coding.

```
a= torch.full((2,3),3.)
b= torch.full((5,1,3),3.)
c= a+b
```

What will c.shape be ?
https://pytorch.org/docs/stable/notes/broadcasting.html
same holds for many binary operators like $+-* /$

$$
\begin{align*}
& a=\text { torch.ones((4)) } \\
& b=\text { torch.ones }((1,4)) \\
& \text { torch.add (} a, b \text {) } \tag{1,4}\\
& a=\text { torch.ones((4)) } \\
& b=\text { torch.ones }((4,1)) \\
& \text { torch.add(} a, b \text {) } \tag{4,4}\\
& a=\text { torch.ones ((3)) } \\
& b=\text { torch.ones }((4,1)) \\
& \text { torch.add (a, b) } \\
& a=\text { torch.ones((3)) } \\
& b=\text { torch.ones ((1, 4)) } \\
& \text { torch.add (} a, b \text {) } \\
& \rightarrow(4,3) \\
& \rightarrow E R R
\end{align*}
$$

© smaller tensor gets filled from the left with singleton dimensions until he has same dimensionality as larger tensor, as if . unsqueeze(0) would be applied again and again

1- the smaller tensor gets filled from the left with singleton dimensions until he has same dimensionality as larger tensor, as if .unsqueeze (0) would be applied again and again

2- then check whether they are compatible - they are incompatible if in one dimension both tensors have sizes >1 which are not equal. if they are incompatible, you will get an error.

3- whenever a dimension with size 1 meets a dimension with a size $k>1$, then the smaller vector is replicated/copied $k-1$ times in this dimension until he reaches in this dimension size k and your actual operation is applied

Example:

start	after insert	after copying
$(4,1)$	$(4,1)$	$(4,4)$
(4)	$(1,4)$	$(4,4)$

More examples:
start after insert after copying

$(1,3)$	$(1,3)$	$(1,3)$
(3)	$(1,3)$	$(1,3)$
start	after insert	after copying
$(2,3)$	$(1,2,3)$	$(5,2,3)$
$(5,1,3)$	$(5,1,3)$	$(5,2,3)$

start after insert after copying

$(1,7)$	$(1,1,1,7)$	$(5,2,3,7)$
$(5,2,3,7)$	$(5,2,3,7)$	$(5,2,3,7)$
start	after insert	after copying
$(4,1)$	$(1,4,1)$	ERR
$(2,3,7)$	$(2,3,7)$	ERR

if broadcasting is too ... , then apply . unsqueeze (dim) on your tensor, until both tensors have the same number of dimension axes. The only thing what is done then, is copying along $\operatorname{dim}=1$ axes.

(1) PyTorch in General

(2) Broadcasting
(3) linear algebra basics
(4) Einsum the generalist
(5) Autograd
torch.mm(a,b) dot product, not broadcasting. a, b must be 1-tensors

$$
\begin{aligned}
\operatorname{a.size}() & =(d), b \cdot \operatorname{size}()=(d) \\
\operatorname{torch} \cdot \operatorname{dot}(a, b) & =\sum_{d^{\prime}} a_{d^{\prime}} b_{d^{\prime}}=\sum_{d^{\prime}} a\left[d^{\prime}\right] b\left[d^{\prime}\right] \\
& \rightarrow \operatorname{torch} \cdot \operatorname{dot}(a, b) \cdot \operatorname{size}()=()
\end{aligned}
$$

torch.mm(A,B) matrix multiplication, not broadcasting. A, B must be 2-tensors

$$
\begin{aligned}
A . \operatorname{size}() & =(i, k), B \cdot \operatorname{size}()=(k, I) \\
\operatorname{torch.mm}(A, B)[i, I] & =\sum_{k^{\prime}} A_{i, k^{\prime}} B_{k^{\prime}, l}=\sum_{k} A\left[i, k^{\prime}\right] B\left[k^{\prime}, l\right] \\
& \rightarrow \operatorname{torch} \cdot m m(A, B) \cdot \operatorname{size}()=(i, I)
\end{aligned}
$$

torch. bmm (A, B) batched matrix multiplication, not broadcasting. A, B must be 3 -tensors. multiplication along last dim of A and second dim of B.

$$
\begin{aligned}
A \cdot \operatorname{size}() & =(b, i, k), B \cdot \operatorname{size}()=(b, k, l) \\
\operatorname{torch.bmm}(A, B)[b, i, I] & =\sum_{k^{\prime}} A_{b, i, k^{\prime}} B_{b, k^{\prime}, l}=\sum_{k} A\left[b, i, k^{\prime}\right] B\left[b, k^{\prime}, l\right] \\
& \rightarrow \operatorname{torch} \cdot b m m(A, B) \cdot \operatorname{size}()=(b, i, I)
\end{aligned}
$$

torch. bmm (A,B) performs for every index k a matrix multiplication between $A[k,:,:]$ and $B[k,:,:]$

- its a for loop over k of torch.mm(A[k,:,:], B[k,:,:])

Think: torch.bmm (A, B) given a known shape of A puts what restrictions on B ??
example: want to compute matrix vector product by mm(.) $(v A)_{l}=\sum_{k}^{K} v_{k} A_{k, l}$, v.shape $=(K)$.
v is 1-tensor, cannot use torch.mm (v, A). add a dim in v :
torch.mm(v.unsqueeze(0), A)
$(1, K) \cdot(K, L) \rightarrow(1, L)$
torch.mm(v.unsqueeze $(0), A)$.squeeze $(0) \quad(1, K) \cdot(K, L) \rightarrow(1, L) \rightarrow(L)$
torch.squeeze (A, dim=2) - remove singleton dim $(a, b, 1, c) \rightarrow(a, b, c)$
torch.unsqueeze(A, dim=1) - insert singleton dim $(a, b, c) \rightarrow(a, 1, b, c)$
torch.unsqueeze(A, dim=0) - insert singleton dim $(a, b, c) \rightarrow(1, a, b, c)$
torch.transpose(A, dim1, dim2) swaps two dimensions torch.Tensor.permute(*dims) permutes a set of dimensions rather than just swapping two

I have to implement:

$$
T_{i, n, r, s}=\sum_{k, m, o} A_{i, k, m, n, o} B_{m, o, r} C_{k, m, r, s}
$$

(1) PyTorch in General
(2) Broadcasting
(3) linear algebra basics
(4) Einsum the generalist
(5) Autograd
a general way to do all kinds of batched and non-batched tensor multiplications: torch.einsum
https://rockt.github.io/2018/04/30/einsum
rule:

- left of $->$: all tensors separated by, which are to be multiplied and summed.
© indices that have same name in multiple tensors, will get multiplied together
- right of $->$ the result tensor with remaining indices.
- All indices missing right of $->$ are summed out so that they vanish in the result.
(1) PyTorch in General
(2) Broadcasting
(3) linear algebra basics
(4) Einsum the generalist
(5) Autograd

A directed-graph representation of computations done.

What is a computational graph?

$$
f(\vec{x})=x_{1} * x_{2}+x_{3} * x_{4} \quad f(\vec{x})=z_{1}+z_{2}
$$

Forward pass: the actual computation

Forward propagation

Backward pass: computing derivates

Backward propagation

What if we want to get the derivative of f with respect to the $x 1$?

$$
f(\vec{x})=x_{1} * x_{2}+x_{3} * x_{4} \quad f(\vec{x})=z_{1}+z_{2} \quad \frac{\partial f(\vec{x})}{\partial x_{1}}=\frac{\partial f}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{1}}=x_{2}
$$

What ? Automatic differentiation with respect to variables used in computations.
You can define a sequence of computations, then call .backward() or torch.autograd.grad(...). see autograf2.py, print_computationalgraph.py

When ?
(-) If tensors are leaf tensors and have the requires_grad=True flag set, then they are marked for tracking operations along the computation sequence for later gradient computation.

- leaf tensor: not created as the result of an operation but defined by you as an input.
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial. html\#sphx-glr-beginner-blitz-autograd-tutorial-py
if e is a tensor with 1 element, then e.backward() computes the gradient of e with respect to all its inputs that were involved in computing e.
see print_computationalgraph.py: the whole backward graph
if e is a tensor of $n \geq 2$ elements, then the gradient of e is a matrix, the Jacobi-matrix. Example for 3 elements:

$$
\begin{aligned}
e= & \left(e_{1}, e_{2}, e_{3}\right) \\
d e / d x= & \left(\begin{array}{ccc}
\frac{d e_{1}}{d x_{1}} & \frac{d e_{2}}{d x_{1}} & \frac{d e_{3}}{d x_{1}} \\
\frac{d e_{1}}{d x_{2}} & \frac{d e_{2}}{d x_{2}} & \frac{d e_{3}}{d x_{2}} \\
\vdots & \vdots & \vdots \\
\frac{d e_{1}}{d x_{8}} & \frac{d e_{2}}{d x_{8}} & \frac{d e_{3}}{d x_{8}} \\
\vdots & \vdots & \vdots \\
\frac{d e_{1}}{d x_{D}} & \frac{d e_{2}}{d x_{D}} & \frac{d e_{3}}{d x_{D}}
\end{array}\right)
\end{aligned}
$$

if e is a tensor of $n \geq 2$ elements, then the gradient of e is a matrix, the Jacobi-matrix.
In this case: (for an example where e has 3 elements)
e.backward(torch.tensor([-5, 2, 6])) computes the D-dim weighted gradient vector

$$
\begin{gathered}
\frac{d e_{1}}{d x} *(-5)+\frac{d e_{2}}{d x} * 2+\frac{d e_{3}}{d x} * 6 \\
=\left(\begin{array}{c}
\frac{d e_{1}}{d x_{1}} *(-5)+\frac{d e_{2}}{d x_{1}} * 2+\frac{d e_{3}}{d x_{1}} * 6 \\
\frac{d e_{1}}{d x_{2}} *(-5)+\frac{d e_{2}}{d x_{2}} * 2+\frac{d e_{3}}{d x_{2}} * 6 \\
\vdots \\
\frac{d e_{1}}{d x_{8}} *(-5)+\frac{d e_{2}}{d x_{8}} * 2+\frac{d e_{3}}{d x_{8}} * 6 \\
\vdots \\
\frac{d e_{1}}{d x_{D}} *(-5)+\frac{d e_{2}}{d x_{D}} * 2+\frac{d e_{3}}{d x_{D}} * 6
\end{array}\right)
\end{gathered}
$$

This is an inner product between the jacobi matrix and a vector that has as many elements as e in the forward pass.

Autograd

- Autograd tracks the graph of computations
- Tracked computations will be used to compute a gradient automatically
© use with torch.no_grad(): environment to not record computations for gradient calculations for some larger block of code that is reused - use case: everything outside of handling training data, e.g. computing validation or test scores. ${ }^{a}$
- outlook / out of class: for GAN-training sometensor.detach() prevents the gradient flowing from sometensor to all those parts used to compute sometensor.
${ }^{a}$ Why you dont want to track gradient computations in this case?

Note: If you have a tensor with attached gradient, then the . data stores the tensor values, and .grad.data the gradient values

```
vals=x.data.numpy() #exports function values to numpy
g_vals=x.grad.data.numpy() #exports gradient values to numpy
```

useful stuff: standard operations like mean or max, torch.random, torch.nn.functional
Things behaving unexplainably weird? check your version: print(torch.__version__)

The end

Questions?!

