
IN5400 2022 UiO – exercise tasks

exercise mentors: Ghadi (in person), James (in person),
Alex (Fridays zoom chatbot)

Week 02: Pytorch for a start

1 Task0

If you need a recap on numpy-indexing, then do the tasks in the files indexing.ipynb
and math operations.ipynb.

2 Task1

The goal is to let you see the power of broadcasting for speeding up computa-
tions. Also to see that you can use pytorch with GPU to speed up any other
computations than vanilla deep learning. All it needs is that they can be ex-
pressed by linear algebra.

You may have seen in a machine learning lecture from your past the RBF kernel
which is a matrix

φ(xi, tj) = exp(−‖X[i, :]− T [j, :]‖2

γ
)

Inside is a squared `2-distance matrix between X[i, :] and T [j, :].

X.size() = (N,D)

T.size() = (P,D)

X are features with dimensionality D and sample size N . T are prototypes with
dimensionality D and sample size P . Use pytorch to compute the distance

‖X[i, :]− T [j, :]‖2

which is underlying the RBF kernel.

1



Problem today: write code to compute a matrix dij := ‖X(i, :) − T (j, :)‖2 in
pytorch - without for loops, using broadcasting. You will start with numpy and
for loops, then implement the same in pytorch without for loops.
Approach:

� decompose above formula into a sequence of computations

� how to reshape X, T such that you can use broadcasting to get dij =
‖X(i, :) − T (j, :)‖2 ? There is more than one way, and these ways can
differ in execution speed and mem usage.

� find pytorch operations to compute that ...

Compare time measurements:

� two for-loops over i, j (for xi, tj)

� numpy broadcasting

� pytorch cpu

� optional: pytorch on a gpu (a cheap notebook gpu with 2Gbyte is good
enough ) for N,P,D nicely large

Validate that pytorch cpu gives you the same numerical result as one of the two:
for loops or numpy broadcasting.

3 Task2 – Broadcasting

Which of these shapes are compatible under broadcasting for a simple binary
operator like addition or multiplication? If they are, what is the resulting shape

� (3, 1, 3), (2, 3, 3)

� (4, 1), (3, 1, 1, 5)

� (3), (3, 1, 1, 5)

� (1, 4), (7, 1)

� (6, 3, 1, 7), (2, 7)

� (6, 3, 1, 7), (2, 1, 7)

� (1, 2, 3, 1, 6), (8, 1, 3, 2, 6)

� (2, 5, 1, 7), (9, 2, 3, 2, 1)

2



4 Task3 (coding Bonus)

Now take what you got before from Task1 to create your own pytorch k-means
algorithm.
How does k-means work?

� : given data X[i, :] (create in 2-dimensions say 5 blobs by drawing data
from 5 gaussians with different means and sufficiently small variance), and
a desired number of clusters P (for above dataset play with P = 2, 5, 8),
and a max number of iterations M . Do something like 50 datapoints per
blob.

� initialize cluster centers T [j, :] – for simplicity select your 5 cluster centers
from X[i, :] as fixed indices. A real k-means code would draw them ran-
domly from the dataset, however the TA will need to be able to reproduce
your code, so thats why we fix them.

� then iterate in a for loop for at most Mtimes:

– compute the distance matrix ‖X[i, :]− T [j, :]‖2 as per task1

– for each sampleX[i, :] find the index j of the cluster rep T [j, :] which is
nearest. pytorch has a function for that. Think over what dimension
of the distance tensor the minimum needs to be taken!

– Let Ind(j) = {i : ∀r 6= j : ‖X[i, :] − T [j, : ‖2 ≤ ‖X[i, :] − T [r, :]‖2}
be the set of all those indices i such that cluster rep T [j, :] is their
nearest one. Now recompute T [j, :] as the mean of all those X[i, :]
for which i ∈ Ind(j). do this for every cluster index j.

– terminate if either the number of iterations reaches M , or if the
distance between old T [j, :] and recomputed T [j, :] is for all j below
a threshold.

Visualize the data and the initial and the converged cluster centers by matplotlib
(can be in 2 separate plots).

Note1: k-means is a non-convex algorithm. if you run it with random, not fixed
initializations, then you will get not always the same clustering as result!

3


