

Renewable Energy Systems

Øystein Ulleberg

Chief Scientist, Department for Hydrogen Technology, IFE Associate Professor, Department of Technology System, UiO Director, MoZEES Research Center

Contents

- Energy Systems
 - Centralized
 - Distributed
 - Stand-Alone

- Energy Carriers
 - Electrical (Batteries)
 - Hydro carbons
 - Hydrogen

Smart Grids

Energy Storage

3

2023-02-02

Institute for Energy Technology

IFE has contributed to the development of Norway as an energy nation for more than 70 years!

Strategic Research Areas

IFE – Advanced Infrastructure & Laboratories

Battery Laboratory

3-phase Flow Laboratory

Solar Energy Laboratory

Sensor Laboratory

Hydrogen Laboratory

VR Laboratory

Tracer Tech Laboratory

Human Behavior Laboratory

IFE Digital Systems

Contents

- Energy Systems
 - Centralized
 - Distributed
 - Stand-Alone
- Energy Carriers
 - Electrical (Batteries)
 - Hydrocarbons
 - Hydrogen

Smart Grids

Energy Storage

2023-02-02

Definitions – General

- Energy Systems
 - Primary energy sources
 - Energy carriers
 - Energy conversion
 - End use

- Sustainable Energy Systems
 - Renewable Energy (RE)
 - Clean Energy (fossil fuels with CO₂-capture)

2023-02-02

UiO * Department of Technology Systems

University of Oslo

Definitions – Technical

- Energi (*E*)
 - Work over time (kilowatt hour, kWh)
- Power(*P*)
 - Energy per time unit (kilowatt, kW)
 - Power = Voltage × Current
- Voltage(V)
 - Potential to perform electrical work (Volt, V)
- Current (1)
 - Movement of electrons (Ampere, A)
- Reactive Power (Q)
 - Max. Power absorbed (AC systems)

$$E = P \cdot \Delta t$$

$$P = V \cdot I$$

$$Q = V_{rms} \cdot I_{rms} \cdot \sin(\emptyset)$$

Classical Power Systems

New RE-based Distributed Power Systems

«Smart» Distributed Energy Systems – Smart Grids

Energy Flow in Power Grids

Existing vs. Future Systems

Fundamental Principle of Supply and Demand in the existing Electricity System

Supply follows demand

Supply and demand in a RES-based Electricity System

Supply cannot always follow demand

Energy Flow in Power Grids

How to match Supply vs. Demand?

Load Shedding Reducing electricity demand Energy intensive industry processes

2023-02-02 Source: TU Dresden

Distributed Power Systems

Example: Power Controls in local Solar PV-based Grids

Power from transformer
 PV power → End User

Power to transformer
PV power → Export

Distributed Power Systems

Example: Voltage Controls in local PV-based Grids

- High power production from PV → High voltage
- High power consumptition by End Users → Low voltage

Solar PV & Batteries – Case Study

- Hourly measurements of power usage
 - → More efficient energy usage
- Methods to reduce energy costs
 - Increase local solar PV power production
 - Use batteries for Load Leveling and Peak Power Shaving

Energy Informatics

Energy Systems & ICT

2023-02-02

Future Electricity Systems

Flexibility is the key value

Contents

- Energy Systems
 - Centralized
 - Distributed
 - Stand-Alone

Smart Grids

- Energy Carriers
 - Electrical (Batteries)
 - Hydrocarbons
 - Hydrogen

Energy Storage

2023-02-02

Integrated Energy & Transport Systems

Electricity & Hydrogen

Energy Conversion

Electrical Efficiency for different RE-to-Vehicle Value Chains

2023-02-02 Source: EASAC (2019) 24

Energy Storage

Volumetric versus Gravimetric Energy Density

Energy Storage

Example of Storage Capacity & Charging

Batteries (Li-ion)

3 MWh

60 000 kg

40' container

460 battery modules

1-hour charging: $1 C \rightarrow 3 MW$

Hydrogen (250 bar)

20 MWh

12 000 kg

40' container

 $4 \times 12 \text{ m H}_2\text{-tanks}$

Fuel Cell (PEM)

1 MW

3 600 kg 10' 1-hour charging: 150 kg/h per H_2 -tank \rightarrow **20 MW**

Li-ion Batteries

Charging / Discharging Rates & Temperature affects Cycle Life!!!

Vision – Hydrogen as an Energy Carrier

Solar PV / Hydrogen System – Stand Alone System

Solar PV / Hydrogen System – Specifications

2023-02-02 Source: Ulleberg (2003)

Solar PV / Hydrogen System – Performance

Energy Storage Systems

Large Scale Options for the Future – Case Study on Germany

Summary & Conclusions

- Renewable Energy Systems
 - Distributed Power Systems
 - Energy & ICT Energy Informatics & Smart Grids
 - Integrated Energy Systems Electrons ↔ Molecules
- Energy Storage
 - Batteries: short-term energy storage, high efficiency
 - Hydrogen: long-term energy storage, low efficiency

2023-02-02

Thank you for your attention!

Øystein Ulleberg, PhD

Chief Scientist IFE | Associate Professor UiO | Director MoZEES Mail: oysteinu@ife.no | Phone: +47 995 864 53

www.ife.no | Facebook | Twitter | LinkedIn | Instagram | www.mozees.no

