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Institute for Energy Technology
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Definitions — General

* Energy Systems
— Primary energy sources

. \;' H
— Energy carriers 7 i
— Energy conversion _
Photo_voltalcs,
— End use vinc &

Hydropower Fuel Cell

ENERGY

« Sustainable Energy Systems
— Renewable Energy (RE)
— Clean Energy (fossil fuels with CO,-capture)
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Definitions — Technical

* Energi (E) E=P-At
— Work over time (kilowatt hour, kWh)
* Power(P)
— Energy per time unit (kilowatt, kW)
— Power = Voltage X Current P=V-I
« Voltage(V)
— Potential to perform electrical work (Volt, V)
« Current (/)

— Movement of electrons (Ampere, A)
Reactive Power (Q)

— Max. Power absorbed (AC systems) Q

vrms ] Irms ] Sin (g)
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Classical Power Systems

Wind Farms Solar Farms

Biogas Power Plants

Color Key: / Substation
Black: Generafion Step Down
Blue:  Transmission Transformer
Green: Distnbuion Transmission lines n

165, 500, 345, 230, and 138 kV

} Primary Customer
; é m ﬁ""" 13kV and 4kV

5 ) Transmission Customer
Generating 138KV or 230kV

Step Up

Transformer

Generating Station

27

Hydro Electric o T
Building Integrated PV Power
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New RE-based Distributed Power Systems
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«Smart» Distributed Energy Systems — Smart Grids
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Energy Flow in Power Grids
Existing vs. Future Systems

Fundamental Principle of Supply and Demand

Supply and demand in a RES-based Electricity
in the existing Electricity System

System

Load

Load

Peak Load

Demand

Base Load

Time Time
» Supply follows demand » Supply cannot always follow demand
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Energy Flow in Power Grids

How to match Supply vs. Demand ?

Load Shedding

il

Reducing
electricity
demand

Energy intensive
industry processes
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Load Shifting

a) b)
a) Smoothing b) Demand
the load curve follows RES

feed-in

N

Additional
electricity
demand

Applications connected to

(heat or cold) storages

Source: TU Dresden
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Distributed Power Systems
Example: Power Controls in local Solar PV-based Grids

1. Power from transformer

| | | PV power — End User
s W G

Breaker |

. 2. Power to transformer
' PV power — Export
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Distributed Power Systems
Example: Voltage Controls in local PV-based Grids
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Solar PV & Batteries — Case Study

* Hourly measurements of power usage Commercial
— More efficient energy usage load

* Methods to reduce energy costs

o Increase local solar PV power production

I
o Use batteries for Load Leveling and Peak Power Shaving I
PV mmm Grid msm Charge mmmDischarge - - Load Energy Storage
200
150
2 100
x -
- )
50 [
0 -

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2023-02-02 Source: IFE b



UiO ¢ Department of Technology Systems

University of Oslo

Energy Systems & ICT

End Users Business & Industry
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Big Data Analytics & Cloud Services

bla b ¥

Cyber A A [ICT system A

* . A :

b ' |

Montoring & Controls

| vy

Physical Energy & Transport
Systems

e

2023-02-02

Energy Informatics

Smart Grid Services
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Future Electricity Systems
Flexibility is the key value
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Energy Storage
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Integrated Energy & Transport Systems
Electricity & Hydrogen
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Source: EASAC (2019)
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Energy Conversion

Electrical Efficiency for different RE-to-Vehicle Value Chains

2023-02-02

Battery-electric vehicles

Renewable power
100%

", Transmission (95%)

Battery use
86%

Electric motor (85%)
Mechanical (95%)

69%
Total

Fuel cell vehicles

Renewable power
100%

' Transmission (95%)
Electrolysis (70%)

Hydrogen
67%

' Compression/

transport (80%)
32% Fuel cell (60%)

" Electric motor (85%)
Mechanical (95%)

26%
Total

Internal combustion
engine vehicles

Renewable power
100%

' Transmission (95%)
Electrolysis (70%)

Hydrogen
67 %

' Power-to-liquid (70%)
Transport (95%)

44% Liquid fuel

‘ Internal combustion
engine (30%)

Mechanical (95%)
13%
Total

Source: EASAC (2019)
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Energy Storage

Volumetric versus Gravimetric Energy Density

energy content per unit weight

cooled liquid fighter than gasoling  lighter than light
* hvd but requires more space  gasoline and weight
compressed yarogen requires less
2N gas Space
compressed liguefied natural
naturalg*as[CNG} gasﬂiNG}

gasoline) diesel

1 L . L
heavier than gasoling COMpresses .
GQUIres More space * + propane EEvIer than
ethanol gasoline but
severalbatternvtypes methanol requires less space  Neavy
0.25 0.50 0.75 1.00 1.25
energy content per unit volume
requires maore storage space requiresless storage space

2023-02-02 Source: U.S. Department of Energy / EIA
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Energy Storage
Example of Storage Capacity & Charging

Batteries (Li-ion) Hydrogen (250 bar)

3 MWh 20 MWh

60 000 kg 12 000 kg

40’ container 460 battery modules 40’ container 4 X 12 m H,-tanks

f Fuel Cell (PEM) f
1-hour charging: 1w 1-hour charging:
1C—3MW 3600 kg 150 kg/h per H.-tank
10’ — 20 MW

2023-02-02
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Li-ion Batteries
Charging / Discharging Rates & Temperature affects Cycle Life!!!
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Vision — Hydrogen as an Energy Carrier

T Sto;age
Electrolysis Transport

P [ H,

7

Photovoltaics,
Wind &
Hydropower Fuel Cell
ENERGY
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Solar PV /| Hydrogen System — Stand Alone System

Photovoltaic cells

/ ~ N N\ Stand-alone
S A N N\, power supply

::|4—>_>“1ﬂ_>

Pb—Battery

Low Pressure Buffer High Pressure Storage

2023-02-02 Source: Ulleberg (2003)
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Solar PV / Hydrogen System — Specifications

Photovoltaic cells
(PV maximum: 30 KW)

84 m2 90 m2

Grid independent
power supply

230 VAC

15 kVA

260-400V | 114 kW, 12.2 kW, T
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DC-Busbar i l 200-260 V l l *
| DC/DC Down DC/DC Up

= -~ Converter
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Converter ™ |=
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H, 7080 (3 H, 268
Electrolyzer —r’ 2 25me

I
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1
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I
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Solar PV / Hydrogen System — Performance

30 T ] T ] T ] T ] T T T T T T T T T T T T T T T 1-0
L MPPT FC run time =561 h |

E 10 | allt m M 0_6 S,
5 T 2

40.4
% 10 1. | Hy ®
o ' Loz o
201 ELY run time = 1411 h | &

_30 ] | ) | ) | ) | ) | ) | ) | ) | ) | | | 00

0 1 2 3 4 5 6 7 8 9 10 11 12
Time [month]

2023-02-02 Source: Ulleberg (2004) .



UiO ¢ Department of Technology Systems

University of Oslo

Energy Storage Systems

Large Scale Options for the Future — Case Study on Germany

—+—stationary batteries —+—electrolysis ——methanization ——power-to-liquid -#-heat storage
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Summary & Conclusions

 Renewable Energy Systems
— Distributed Power Systems
— Energy & ICT — Energy Informatics & Smart Grids
— Integrated Energy Systems — Electrons «» Molecules

* Energy Storage
— Batteries: short-term energy storage, high efficiency
— Hydrogen: long-term energy storage, low efficiency
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