
Smart Contracts
IN5420 Distributed Blockchain Technologies

Michael Eikeland

April 2018

Nick Szabo describes his idea of smart contracts in the paper ”Formalizing
and Securing Relationships on Public Networks”. He argues that contracts in
their current state are an artifact of the past, the paper era, and needs to be
readjusted to the digital era. This paper sets the stage for just that. He points
out some crucial principles of contract requirements:

• Observability: The ability for the principals to observe performance of
the contract.

• Verifiability: The ability for a principal to prove to an adjudicator that
the terms of a contract has either been breached or performed.

• Privity: Encapsulation and protection from third parties

It is suggested that the protocols that smart contracts run upon may be
categorized as either self-enforcing, mediated or adjudicated. Further on he
looks at research in order to find a way to meet the requirements. Central to
all implementations seem cryptographic protocols.

In ”Blockchains and Smart Contracts for the Internet of Things” the authors
put Szabo’s idea in the context of public blockchains. The contract is stored
on the blockchain, and has it’s own account containing the contract state. A
contract is invoked by a user calling it by announcing a transaction (a signed
message) to the network. Any participant can verify the outcome of the invoca-
tion by running it locally in a virtual machine. This does however require that
the contract is deterministic in order for the network to reach consensus.

The authors of ”Step by Step Towards Creating a Safe Smart Contract:
Lessons and Insights from a Cryptocurrency Lab” held a course for developing
smart contracts. The course specifically used Ethereum and its Serpent script-
ing language, but the errors made could to a large extent be generalized for
all smart contract platforms. They found that smart contract development and
software development have different requirements. Smart contracts deployed on
cryptocurrency blockchains require incentive compatibility in order to prevent
selfish behaviour and attacks. It is also dependent on using cryptographic prim-
itives for secrets as any participant deterministically can see the outcome of an
invocation.

1



The security of smart contracts is also pointed out as a weak point in ”Mak-
ing Smart Contracts Smarter” through analysis of smart contracts deployed on
the Ethereum blockchain. More specifically, they argue that smart contract de-
velopers make wrong assumptions about the contracts distributed semantics. In
Ethereum, the state of a contract depends on the ordering of transactions. Two
invocations of the same contract, can lead to different outcomes. An adversary
can use this information to attempt an attack for profit. Another example is
when contracts are timestamp dependent. In the scenario where the smart con-
tract uses the block hash to determine if someone gets a reward, a miner can
manipulate other parts (i.e. the timestamp) of the block (which will lead to a
different hash) in order to influence the outcome of the contract. In Ethereum
contracts can call other contracts, but contracts also have a call-stack limit
which means that an attacker can create a contract that will utilize this in or-
der to only partly execute another contract, potentially achieving profits for the
attacker.

The authors of this paper developed an analysis tool for Ethereum contracts.
Out of the 19366 publicly deployed smart contracts, 8833 were flagged with
security issues.

2


