
Balancing platform control and external
contribution in third-party development:
the boundary resources modelisj_406 1..20

Ahmad Ghazawneh* & Ola Henfridsson†

*Informatics Department, Jönköping International Business School, SE-551 11, Jönköping,
Sweden, email: ghah@ihh.hj.se, and †Department of Applied Information Technology,
Chalmers University of Technology, SE-412 96, Gothenburg, Sweden, email:
ola.henfridsson@chalmers.se

Abstract. Prior research documents the significance of using platform boundary
resources (e.g. application programming interfaces) for cultivating platform eco-
systems through third-party development. However, there are few, if any, theo-
retical accounts of this relationship. To this end, this paper proposes a theoretical
model that centres on two drivers behind boundary resources design and use –
resourcing and securing – and how these drivers interact in third-party develop-
ment. We apply the model to a detailed case study of Apple’s iPhone platform. Our
application of the model not only serves as an illustration of its plausibility but also
generates insights about the conflicting goals of third-party development: the
maintenance of platform control and the transfer of design capability to third-party
developers. We generate four specialised constructs for understanding the actions
taken by stakeholders in third-party development: self-resourcing, regulation-
based securing, diversity resourcing and sovereignty securing. Our research
extends and complements existing platform literature and contributes new knowl-
edge about an alternative form of system development.

Keywords: platform, third-party development, boundary resources model, applica-
tion programming interfaces (APIs), resourcing, securing

INTRODUCTION

The last few years have witnessed a significant increase in the frequency and magnitude of
third-party development (Yoo et al., 2010). The difficulty to make informed decisions about
which applications, systems or services to develop (Henfridsson & Lindgren, 2010), and how
they should be designed to work as effective responses to the information processing require-
ments of an accelerated and turbulent market (Mathiassen & Sørensen, 2008), make the
involvement of third-party application developers increasingly attractive for software platform

doi:10.1111/j.1365-2575.2012.00406.x

Info Systems J (2012) 1

© 2012 Blackwell Publishing Ltd

owners (Bosch, 2009; Boudreau & Lakhani, 2009). The prime example, serving as a role
model for many followers, is Apple’s iPhone platform (Kenney & Pon, 2011).

We define third-party development as a type of systems development where one actor, the
third-party developer, on behalf of someone else, the platform owner, develops applications,
services or systems (hereafter referred to as applications) for satisfying end-users of the
platform. Third-party development tends to be governed by arm’s-length, contractually oriented
relationships (Boudreau & Lakhani, 2009). The third-party application developer is seldom
directly compensated for the development work put in. Instead, the developer is offered a
marketplace for its applications with greater reach than otherwise would be available to the
single actor (West & Mace, 2010). The incentive for the platform owner is the possibility to
diversify its offer to customers through voluminous development across a range of application
areas (Boudreau, forthcoming). The platform owner taps into multiple networks of developers,
characterised by heterogeneous innovation capability and knowledge resources (Boland et al.,
2007; Yoo et al., 2010). In addition, if successful, the platform owner can set up a revenue
sharing business model where a specific portion of the revenue is withheld as a compensation
for the distribution and support of the applications (West & Mace, 2010).

To successfully build platform ecosystems (El Sawy et al., 2010; Selander et al., 2010), the
focus of the platform owner must shift from developing applications to providing resources that
support third-party developers in their development work (Prügl and Schreier, forthcoming).
We refer to such resources as platform boundary resources, i.e. the software tools and
regulations that serve as the interface for the arm’s-length relationship between the platform
owner and the application developer. Platform boundary resources are imperative to ‘transfer
design capability to users’ (von Hippel & Katz, 2002, p. 824), which, in turn, is intended to
generate complementary assets in the form of applications (cf. Teece, 1986). Still, we know
that boundary resources also are designed for controlling the platform and the ecosystem that
evolves from its use in application development and deployment (Ghazawneh & Henfridsson,
2010). In this regard, there is a delicate tension in boundary resource design between
maintaining platform control and, at the same time, stimulating third-party developers to join
forces with the platform owner by developing applications.

The research question addressed in this paper is: How can we understand the role of
boundary resources in platform owners’ efforts to cultivate third-party development? Prior
research documents the significance of using platform boundary resources such as application
programming interfaces (APIs) for cultivating platform ecosystems through third-party devel-
opment. However, there are few, if any, theoretical accounts of this relationship. For instance,
even though Ghazawneh & Henfridsson (2010) provide a process perspective of boundary
resources and third-party development, it lacks the coherence and analytical distinctiveness
expected in theory development based on case study research (cf. George & Bennett, 2005).
To this end, this paper proposes a theoretical model including clearly defined constructs with
significant implications for future research on third-party development and platform ecosys-
tems. We apply the model to a detailed case study (George & Bennett, 2005; Gerring, 2007)
of Apple’s iPhone platform to illustrate the model. We also generate four specific modes of
simultaneously addressing the needs of platform control and external contribution.

2 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

BOUNDARY RESOURCES IN THIRD-PARTY DEVELOPMENT

There is little doubt that software platforms lay at the heart of third-party development.
Following Tiwana et al. (2010, p. 676), we refer to software platforms as ‘the extensible
codebase of a software-based system that provides core functionality shared by the modules
that interoperate with it and the interfaces through which they operate’. In this regard, platforms
involve the development of common resources from which to generate derivative applications
and services (Robertson & Ulrich, 1998).

Previous platforms research pays little attention to external contributions in the development
of derivative applications (see e.g. Robertson & Ulrich, 1998). Originating in product develop-
ment research, platform design has been viewed as a strategy for combining scale economics
and product differentiation at the same time. For instance, consider the title of Meyer &
Lehnerd’s (1997) seminal book on the topic, which underlines corporate value building and
cost leadership as the main elements in explaining the power of platforms. In fact, the received
literature views platforms as the basis for product portfolios, serving different market needs but
still building on a common base of standardised components. Over the years, software product
line engineering has emerged along the same line of thinking (Bosch, 2009; Pohl et al., 2005).

More recent platforms research paints a somewhat different picture. It is increasingly
recognised that external application developers may play a significant role in platform innova-
tion (Messerschmitt & Szyperski, 2003; Evans et al., 2006; Bosch, 2009; Boudreau, forthcom-
ing) and serve as the basis for software leadership (Gawer & Cusumano, 2002). In this stream
of research, it is noted that the wealth of derivative applications needed to stay competitive is
difficult to accomplish in-house. In fact, dealing with the volatile information processing require-
ments of an accelerated and turbulent market (Mathiassen & Sørensen, 2008) requires an
approach encompassing lean interfaces between the platform and the applications generated
from its extensible codebase (Yoo et al., 2010). Given its arm’s-length, contractually oriented
relationships (Boudreau & Lakhani, 2009), third-party development offers a mode of systems
development that enables the leanness required for incorporating the ideas of developer
communities in cultivating digital ecosystems.

To enable third-party development, design capability needs to be shifted to external actors
(von Hippel & Katz, 2002; Prügl & Schreier, forthcoming) who are capable to serve end-users
through application development. We refer to applications as executable pieces of software
that are offered as applications, services or systems to end-users of the platform. At the
interface between the platform owner and third-party developers, platforms may offer
resources with which to facilitate the use of core platform functionality to build applications. As
noted in the introduction section, we refer to these resources as platform boundary resources,
i.e. the software tools and regulations that serve as the interface for the arm’s-length relation-
ship between the platform owner and the application developer. In software platform settings,
such resources typically consist of a software development kit (SDK) and a multitude of related
APIs. The power of such resources is that they give easy access to core modules of the
platform, stimulating generativity, i.e. ‘a capacity to produce unprompted change driven by
large, varied and uncoordinated audiences’ (Zittrain, 2006, p. 1980). For example, the release

Control and contribution in third-party development 3

© 2012 Blackwell Publishing Ltd, Information Systems Journal

of an API for facilitating the use of the global positioning functionality of a smartphone platform
would provide the capacity to produce location-based services across multiple and uncoordi-
nated third-party developers.

The boundary resources model

We propose a model of boundary resource design in third-party development. Even though the
role of platform boundary resources has been highlighted in previous research (Ghazawneh &
Henfridsson, 2010), little attention has so far been paid to developing a theoretical account that
provides a coherent basis for further research in the area. In this regard, this paper embraces
Yoo et al.’s (2010) call for more grounded research on the role of boundary resources in digital
innovation by looking closer at the special case of third-party development.

Figure 1 depicts the main constructs of the boundary resources model and their relation-
ships. Boundary resources design refers to the platform owner’s act of developing new, or
modified, boundary resources as a response to external contribution opportunities and control
concerns perceived by the software platform owner. Boundary resources design is typically
initiated when a platform owner recognises that existing boundary resources are insufficient
for developing the platform, including its applications, in a favourable way. First, boundary
resources may be designed to empower the community of third-party developers and their

CONSTRUCTS

Platform: “The extensible codebase of a software-
based system that provides core functionality shared
by the modules that interoperate with it and the

interfaces through which they operate” (Tiwana et al.
2010, p. 676)

Boundary Resources: The software tools and
regulations that serve as the interface for the arm's-

length relationship between the platform owner

and the application developer

Third-Party Applications: Executable pieces of
software that are offered as applications, services, or
systems to end-users of the platform

Boundary Resources Design: The platform owner’s

act of developing new, or modified, boundary
resources as a response to perceived external
contribution opportunities and control concerns

Boundary Resources Use: The third-party
developer’s act of developing end-user applications
drawing on boundary resources offered by the

software platform owner

Resourcing: The process by which the scope and
diversity of a platform is enhanced

Securing: The process by which the control of a

platform and its related services is increased

Figure 1. The boundary resources model.

4 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

possibility to extend the platform with applications. The recognition of such external contribu-
tion opportunities may be anticipated or triggered by feedback from third-party developers.
Second, boundary resources may also be (re)designed to address control concerns. Such
control concerns may emerge when third-party developers launch, or announce the intention
to launch, applications that represent potential threats to the platform.

We refer to boundary resources use as the third-party developer’s act of developing end-
user applications drawing on boundary resources offered by the software platform owner.
Third-party developers use boundary resources such as APIs for utilising the platform’s
capabilities in developing and deploying applications that serve end-users’ needs. Some
boundary resources may be mandatory to use. However, most boundary resources are
optional in the application development and their use depends on the third-party developers’
design choices in seeking to serve their customers, the end-users.

In cases where boundary resources are designed in response to external contribution
opportunities and third-party developers find them useful, the platform benefits from hetero-
geneity in knowledge resources (Yoo et al., 2010). Boundary resources then increase such
heterogeneity by providing access to new resources of the digital platform in question. We refer
to resourcing as the process by which the scope and diversity of a platform is enhanced. This
process builds on third-party developers’ generation of applications with new types of func-
tionality. For instance, the introduction of a new digital hardware feature makes it possible to
design a new boundary resource that provides access to that feature in the third-party
developer’s application development. Resourcing therefore typically helps expanding the
ecosystem of actors around the platform and therefore secures the supply of new resources,
knowledge and capabilities (Van de Ven, 2005).

The community of third-party developers typically involves multiple and heterogeneous
actors, each pursuing their interests (Van de Ven, 2005; Boland et al., 2007; Yoo et al., 2010).
While boundary resources are imperative in cultivating that heterogeneity, they are simulta-
neously used to address control concerns through a process that we refer to as securing.
Securing denotes the process by which the control of a platform and its related services is
increased. Typically, this process prevents the development of applications that risk infringing
the platform. For instance, cancelling or modifying existing developer agreements, and/or
issuing new ones may be ways to secure the platform. Securing typically helps establishing a
control level for the platform and its community of third-party developers. In this regard, control
levels can vary along a continuum ranging from the quite centralised control found in the
traditional industry sectors such as the automotive industry (Henfridsson et al., 2009), to the
relatively decentralised control that would be found in open source software settings.

The boundary resources model provides an intellectual structure with which to understand
the role of platform boundary resources design and use in third-party development. The logical
formulation of the model follows that of process theory, which means that ‘causation consists
of necessary conditions in sequence’ (Markus & Robey, 1988, p. 590) and that the absence
of such necessary conditions will hinder the outcome from occurring. For instance, if a
platform owner would not develop boundary resources, third-party developers can not use
boundary resources to develop third-party applications. Contrary to variance theories,

Control and contribution in third-party development 5

© 2012 Blackwell Publishing Ltd, Information Systems Journal

however, causation is contingent, meaning that even with a necessary condition present,
the outcome may not occur. For example, even if a platform owner would design boundary
resources, there is no guarantee that third-party developers would use them for developing
applications. Concurring with well-known theories in information systems (IS) such as the
structurational model of technology (Orlikowski, 1992), the causality type of the boundary
resources model is bidirectional, i.e. it exhibits feedback mechanisms and mutual shaping
(cf. Langley, 1999). For instance, the emergence of new boundary resources can be initiated
both by the platform owner’s perception of external contribution opportunities and by third-party
developer’s use of boundary resources. Essentially, the platform owner’s design of boundary
resources can be both proactive and reactive.

METHODOLOGY

We conducted detailed case study research (George & Bennett, 2005; Gerring, 2007) of
Apple’s iPhone platform since its inception. Using multiple data sources, we adopted Romano
et al.’s (2003) methodology for analysing internet-based qualitative data to sensitise the
boundary resources model. Compared with social sciences such as economics and political
science, the use of secondary data in case study research is unusual in IS. It represents a
mode of research that differs from the traditional qualitative study where the bulk of data
typically is collected first-handedly by the researcher.

While a typical concern would be a perceived distance between the researcher and the
context in which the data originate, an important motivation for relying on secondary data
collection is the large volumes of data that would be impossible using data collection tech-
niques such as the qualitative interview (Romano et al., 2003). In addition, it provides a
perspective that covers key stakeholders, whose input often is necessary for sensitising why
particular initiatives were taken as a response to environmental changes (cf. Hargadon &
Douglas, 2001).

Case selection

The selection of Apple’s iPhone platform as the single case for our empirical investigation
reflects the use of an extreme case selection technique (Yin, 2009). Extreme cases typically
correspond ‘to a case that is considered to be prototypical or paradigmatic of some phenom-
enon of interest’ (Gerring, 2007, p. 101). As Gerring (2007) argues, such cases are useful for
theory generation because extremes or ideal types typically define theoretical concepts.
Compared with a representative case selection technique, our objective is to present ideal
types, ‘formed by the one-sided accentuation of one or more points of view’ (Weber, 1949,
p. 90). In this regard, the model offers conceptual constructs that manifest theorising
through idealisation (Lopreato & Alston, 1970) rather than theorising intended to be valid
across many cases.

6 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

There are at least two reasons why Apple’s iPhone platform is suitable for this type of
theorising. First, the platform’s short and so far successful history (see Appendix for data on
the tremendous growth of applications, developers and downloads) involves a number of
transitions in the strategy by boundary resources were established by Apple and used by
third-party developers. This allowed us to isolate specific episodes of third-party development
for tracing underlying patterns of each episode. This enabled so-called temporal decomposi-
tion, which is important to establish process variance in process studies (Langley, 1999).
Second, there exist substantial amounts of publicly available data on Apple’s platform, making
detailed study of its nature possible.

Data collection and analysis

As suggested above, our data collection reminds of historical studies where insights from
first-hand observation can not be obtained (Kieser, 1994; Hargadon & Douglas, 2001).
However, it should be noted that secondary data collection avoids possible biases introduced
in real-time case studies where different forms of impression management on behalf of the
stakeholders may distort collected data about ongoing events. As Silverman (2006) points out,
the data collected through the open-ended interview should preferably be seen as mutually
constructed by the researcher and the respondent, rather than as fact-gathering where respon-
dents’ views are treated as representations of reality. Similarly, our data collection and analysis
should be seen as a hermeneutic process involving iterations between the researchers’
emerging sensemaking and the data material collected from various sources (Klein & Myers,
1999).

Without the possibility to create new knowledge through focused interaction between
researcher and respondent (cf. Denzin, 1970), however, the historical researcher needs to
create a similar sense of the research setting by relying on the sensitising power of secondary
data. As in any qualitative study, the researcher relying on such data should avoid taking on
a journalist role, reporting about what is new but not necessarily providing rich insights that
build on an in-depth account (cf. Silverman, 2006). Secondary data collection is powerful for
building the extensive and longitudinal database needed for contextualisation of the historical
background and plot of the research setting. Such contextualisation is an important element in
interpreting data in interpretive research (Klein & Myers, 1999).

Data from six primary sources informed this research. The data sources included Apple
press releases, news and announcements; archival data; conference, workshop and special
events data; e-mails; interviews; and online articles. First, we collected all Apple’s press
releases, news and announcements related to the iPhone platform and third-party develop-
ment. One important objective of collecting this data was to establish a timeline of key events
that occurred over time and support the decomposing of the process into three episodes for
structuring the analysis (see Appendix for detailed timelines). Moreover, these data were
important for gathering Apple’s official data on the number of downloads, applications and
third-party developers at different points in time. Second, we collected most, if not all, publicly
available case documents for understanding the boundary resources and their change over

Control and contribution in third-party development 7

© 2012 Blackwell Publishing Ltd, Information Systems Journal

time. This data collection included different versions of the Registered iPhone Developer
agreement, iPhone human interface guidelines and SDK agreements. Furthermore, we col-
lected videos and transcriptions documenting keynotes, speeches and special events, mainly
including Apple officials. Since anyone who has seen Steve Jobs at Apple’s developers’
conference, Apple Worldwide Developers Conference (WWDC), will note that almost every-
thing has been carefully orchestrated,1 this data source mainly served as a documentation of
Apple initiatives and how the firm officially framed these initiatives.

Fourth, the e-mail data source included more than 15 messages between Apple and
developers, as well as developers and the public. As these messages were typically published
by developers on their website, they often made a point that not necessarily was in Apple’s
interests. Typically, they provided a counterview to Apple’s official line. Fifth, our case data-
base included four interviews of Apple executives, conducted by respected journalists at, e.g.
Time magazine and Business Week, and one interview of a notable iPhone developer. Lastly,
more than 480 online articles were collected. These data generated a comprehensive under-
standing of the case and was particularly useful for providing multiple interpretations of
single events.

We adopted Romano et al.’s (2003) data analysis method for making sense of the collected
data material. This method provides a structured approach to analysing the rich, interesting
and dynamic data existing on Apple’s platform. Our data analysis was conducted as a
three-step process: elicitation, reduction and visualisation (see Table 1). First, we used the six
data sources to elicit relevant data to be included in our case database. Covering January 2007
to April 2010, our initial searches included keywords such as iPhone, AppStore and iPhone
platform. Then, we engaged in intensive and carefully review of all collected data sources,
where the initial coding (Charmaz, 2006) resulted in numerous concepts relating to categories
such as third-party developers, SDK, API, platform governance, developers’ community and
iPhone ecosystem. The second step of our data analysis involved using the boundary
resources model’s constructs to reduce and focus the massive material collected. We also
time-stamped data to help us trace the historical process and secure a correct timeline of

1We thank the Associate Editor for pointing this out.

Table 1. Data analysis

Steps Tasks Outputs

Elicitation Elicited data from the six data sources Research database

Initial coding Numerous concepts

Reduction Used the boundary resources model to reduce

and code the massive data material

Timeline of events

Identified a sequence of events

repeated over timeTraced the historical process

Visualisation Identified and visualised three case episodes Three case episodes

Used the boundary resources model to analyse

the case findings

The boundary resources model

Four specialised constructs

8 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

events. Finally, we visualised the findings as a process decomposed into three episodes,
which served as the backbone for structuring our illustration of the boundary resources model.
The application of the model to each of the episodes generated four specialised concepts for
understanding the actions taken by stakeholders in third-party development.

THE IPHONE PLATFORM CASE

The launch of the iPhone in June 2007 proved to be a professionally orchestrated event, where
several months of marketing and storytelling had built significant interest in Apple’s attempt to
enter the handset market. Even before anyone officially had seen the device, the iPhone was
considered a groundbreaking handset in its attempt to bring a new form of user experience
to the mobile internet. Yet, already from the outset, Apple realised that the device alone would
not be sufficient to excel outside the most devoted enthusiasts. Apple needed a strategy for
enabling third-party applications and contents on the iPhone.

Early on, Apple decided to use the Safari web browser as a boundary resource for setting
up a ‘lean’ interface between the consumer electronics firm and its anticipated third-party
developers. Our data show that one of Apple’s main motivations for using the Safari web
browser was the huge installed base of existing applications and competent developers.
This installed base represented a major external contribution opportunity, as little new learn-
ing would be required before developers would be able to contribute to the iPhone com-
munity. In addition, the Safari web browser was fully controlled by Apple. In this regard, the
decision resonated well with Apple’s history of preferring proprietary and tightly integrated
solutions.

In parallel with Apple’s sanctioned Safari strategy (triggering applications from firms such
as Google, Flicker, New York Times, YouTube, Twitter and Facebook), however, third-party
developers started to self-resource the platform by designing their own boundary resources
such as new frameworks and sample codes. In the absence of third-party developers’ native
applications, some developers ‘jailbreaked’ the iPhone. This practice made it possible to install
third-party native applications via unofficial installers. As an example, the ‘iPhone Dev Team’
became a well-known group of software engineers, launching their first jailbreak method
‘JailbreakMe 1.0’ for the iPhone firmware in 10 October 2007. In less than a year, more than
1.6 million jailbreaked devices were reported. These devices used the most known application
installer ‘Cydia’, which also later offered an application store for jailbreaked devices.

The Safari web browser strategy stimulated the development of around 1000 iPhone
applications. However, the strategy illustrated some of the difficulties of balancing external
contribution and platform control. It is somewhat ironic that the control concerns, motivating
the Safari web browser in the first place, generated new control concerns. These concerns
included so-called ‘jail-breaking’ and unsanctioned application installers and stores, all
intended to bypass Apple’s sanctioned boundary resource. We refer to this unsanctioned
resourcing as self-resourcing, i.e. third-party developers’ act of developing new boundary
resources as a response to perceived limitations in existing boundary resources.

Control and contribution in third-party development 9

© 2012 Blackwell Publishing Ltd, Information Systems Journal

Episode I: addressing self-resourcing through an SDK (March 2008–March 2009)

In view of the self-resourcing related to the Safari web browser strategy, Apple decided to
rebalance the relationship between resourcing and securing in the hope that it would take away
the incentives to infringe the platform. Apple responded to third-party developers’ unantici-
pated self-resourcing by rethinking their boundary resources and introducing the ‘iPhone
Software Roadmap’ as a new strategy for stimulating third-party contributions (as a powerful
complement to the Safari web browser). Steve Jobs announced the release of the iPhone SDK
on Apple’s website:

Let me just say it: We want native third party applications on the iPhone, and we plan to have
an SDK in developers’ hands in February [2008]. We are excited about creating a vibrant
third party developer community around the iPhone and enabling hundreds of new applica-
tions for our users.

Platform resourcing

The iPhone Software Roadmap included a set of entirely new boundary resources including
SDK, APIs and a distribution channel. First, the new SDK provided a development environ-
ment, a graphical user interface builder, a comprehensive analysis tool for the assessment of
application performance and an iPhone simulator tool that facilitated application testing. The
provided components and features were intended to serve as a robust environment for the
integration of APIs. Second, Apple also provided a set of APIs for core services such as
collections, address book, networking, file access, core location, net services, threading and
URL utilities. Finally, in July 2008, Apple introduced an application distribution channel called
the ‘App Store’, which provided users with functionality for search, browse, purchase and
download. Steve Jobs explained the App Store idea:

This is an application we’ve written to deliver apps to the iPhone. And we are gonna put it
in every single iPhone with the next release of the software. And so our developers are
gonna be able to reach every iPhone user through the App Store.

Platform securing

In view of the new boundary resources, Apple developed an application review process to
secure the platform. This review process entailed an assessment of every App Store applica-
tion by an Apple review team. The assessment involved securing an application’s compatibility
with Apple’s regulations, guidelines and rules. For instance, restricted application and content
types included porn, bandwidth hogs and malicious ones. The outcome of the assessment
determined if an application would be made available for user download, or if it would be
rejected and returned to third-party developers for redesign. Demonstrating that Apple was
serious about its new form of governance, the review team rejected several applications and
even withdrew originally accepted applications. Not surprisingly, the application review

10 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

process was criticised by a notable number of third-party developers. It was seen as irrational
and too single-handedly focused on Apple’s business interests.

In sum, Apple’s balance act of both resourcing and securing the platform was successful in
terms of ecosystem growth. In early 2009, there were 25 000 applications, 50 000 registered
developers and 800 million user downloads. Even though self-resourcing did not stop during
the episode, the release of the SDK and related boundary resources made it a marginal aspect
of the ecosystem compared with Apple-controlled resourcing. In terms of securing, the intro-
duction of the SDK initiated an application review process, manifesting regulation-based rather
than technology-based securing. We refer to regulation-based securing as a platform owners’
act of exercising control over the platform and its related services through administrative
legislation.

Episode II: resourcing for diversity (March 2009–January 2010)

The introduction of the SDK as a response to self-resourcing proved successful for Apple and
its community of developers. However, even with the space of possible resourcing enabled by
the SDK and related APIs, the pressure to satisfy a growing and increasingly heterogeneous
third-party community was increasing. Third-party developers still voiced criticism over the
perceived unwillingness of Apple to open up the platform.

Given this criticism, the launch of the new iPhone device (iPhone 3GS) and the radically
updated SDK including a multitude of APIs were important components in Apple’s efforts to
resource the new device capabilities and stimulating the increasing diversity of its third-party
developers.

Platform resourcing

The new SDK provided more than 100 new features and 1000 new APIs, where some of them
clearly addressed third-party developers’ concerns about the narrow scope of the original
boundary resources. By providing support for push notifications, map APIs, serial I/O and
payment APIs, Apple diversified the iPhone scope into new application areas such as navi-
gation and e-business. For instance, announced in June 2009, the awaited In-App Purchase
API provided functionality for selling, e.g. subscriptions and content within third-party applica-
tions. After its update in October 2009, third-party developers were able to sell expansion
packs and additional contents after first hooking up users with free applications. This was not
least important for media companies such as newspapers.

Platform securing

Apple regularly revisited their application review policies. During this episode, the company
introduced new restrictions on submitted applications. As an example, Apple regulated the use
of the In-App Purchase API heavily, determining the type of content, functionality, services and

Control and contribution in third-party development 11

© 2012 Blackwell Publishing Ltd, Information Systems Journal

subscriptions that would be available through such applications. Another example concerned
location-aware ads. As Apple’s development centre declared:

If you build your application with features based on a user’s location, make sure these
features provide beneficial information. If your app uses location-based information primarily
to enable mobile advertisers to deliver targeted ads based on a user’s location, your app will
be returned to you by the App Store Review Team for modification before it can be posted
to the App Store.

In sum, during this episode, the 25 000 developed applications in March 2009 had more than
doubled by July the same year (65 000). In a similar way, the number of registered developers
doubled from 50 000 to 100 000 during the same four months. These figures suggest that
Apple’s diversification strategy, intended to expand the scope of the ecosystem was success-
ful. We refer to this type of resourcing as diversity resourcing, i.e. deliberate action taken by a
platform owner to diversify the platform in a way that stimulates new application areas.

Episode III: securing platform sovereignty (January 2010–April 2010)

As indicated above, diversity resourcing was a successful strategy. This strategy was rein-
forced in January 2010, as Apple announced the iPad, which was a tablet computer compatible
with the iPhone platform. Offering a new type of device, still using the same platform, promised
to expand the platform into new application areas.

Platform resourcing

The tight coupling between the iPad and the iPhone platform enabled the company to build on
iPhone’s installed base consisting of 140 000 developed applications, a huge number of users
and an SDK including many APIs and development practices. In April 2010, Apple released
SDK 4.0 for iPhone and iPad devices. This release enabled third-party developers to use
multiple enhanced APIs and features. The most significant features of this release were:
multitasking, folders, enhanced mail, iBooks, enterprise features, game centre and iAd (a
mobile advertising platform developed by Apple Inc).

Platform securing

Once these new features for further increasing diversity were in place, Apple’s attention shifted
to the perceived problem of meta/cross platforms injected between the iPhone platform and
third-party developers. The company did not want to facilitate simultaneous development for
competitors’ platforms. Such development would reduce Apple’s control over the iPhone
ecosystem. Consequently, as Apple introduced their SDK and APIs, the company also
hindered meta-platforms to interoperate with them.

As a response, Adobe announced a ‘Packager for iPhone’ application intended for its
next Flash developer tool version, the Creative Suite 5 (CS5). The CS5 simply turned Flash

12 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

applications into iPhone applications automatically. This move made Apple release a new
developer license agreement with major implications for third-party developers. Section 3.3.1
in the iPhone SDK agreement read:

Applications may only use Documented APIs in the manner prescribed by Apple and must
not use or call any private APIs. Applications must be originally written in Objective-C, C,
C++, or JavaScript as executed by the iPhone OS WebKit engine, and only code written in
C, C++, and Objective-C may compile and directly link against the Documented APIs (e.g.
Applications that link to Documented APIs through an intermediary translation or compat-
ibility layer or tool are prohibited).

Arguably, the revised developer license agreement directly targeted Adobe’s new features.
It also effectively addressed other actors’ potential attempts to use meta-platforms for bypass-
ing Apple’s SDK and APIs.

In sum, the episode, which started as Apple launched the iPad, involved both diversity
resourcing and regulation-based securing. Even though the resourcing strategy was success-
ful (from 140 000 applications to 185 000 between January 2010 and March 2010), the
securing actions dominated as the company made every attempt to counteract attempts to
introduce meta/cross platforms. We label this type of securing as sovereignty securing, i.e.
actions taken by a platform owner to achieve or maintain single control over the platform’s
evolution.

DISCUSSION

This paper has explored a set of issues that challenge the way we think about third-party
development as an alternative form of systems development. In particular, it has highlighted
the role of platform boundary resources as an interface between the platform owner and
third-party developers. Boundary resources have typically been underestimated as elements in
the cultivation of third-party development around a platform. This is unfortunate because
boundary resources play a crucial role in the platform owner’s balancing act of stimulating
external contributions and maintaining platform control. A more comprehensive understanding
of the role of boundary resources in third-party development is therefore vital.

This paper proposes the boundary resources model as a framework with which to make
sense of third-party development and the processes by which the actions of a platform owner
and developers are mediated by boundary resources. The model depicts two drivers of
boundary resources design. Resourcing is the process by which the scope and diversity of a
platform is enhanced. Securing is the process by which the control of the platform is increased.
The model suggests that attention to both these drivers is important to cultivate a platform
ecosystem. One-sided attention to one of these two drivers is a dead end, because it would
jeopardise the performance on the other aspect of cultivating the platform and its ecosystem.
In this regard, third-party development is a balance act.

Control and contribution in third-party development 13

© 2012 Blackwell Publishing Ltd, Information Systems Journal

We argue that the boundary resources model is useful for understanding this balance act,
because it provides a coherent model with well-defined constructs for examining the actions of
stakeholders involved in third-party development. We applied our model to a detailed analysis
of three episodes of third-party development in the case of the iPhone platform. This applica-
tion yielded four insights related to resourcing and securing, manifesting how variants of each
of these actions can be manifested in particular stages of the evolution of an ecosystem.
We refer to these variants as self-resourcing, regulated securing, diversity resourcing and
sovereignty securing. They exemplify actions relevant in attempts to make the cooperation, yet
competition, in third-party development play out in the way of mutual benefit form the involved
stakeholders.

Self-resourcing, defined as third-party developers’ act of developing new boundary
resources as a response to perceived limitations in existing boundary resources, offers a
construct to analyse third-party developers’ own initiatives to resource the platform in ways
that benefit their application development. This is a construct that may be useful for
investigating cases where the governance of a popular platform leans too much in a secur-
ing direction. Regulation-based securing, defined as a platform owners’ act of exercising
control over the platform and its related services through administrative legislation, captures
control actions that rely on regulative measures rather than technical restrictions to resourc-
ing. This is a construct useful for understanding application review procedures in third-party
development.

Diversity resourcing denotes deliberate action taken by a platform owner to diversify the
platform in a way that stimulates new application areas. This type of resourcing stretches
the product boundary (cf. Yoo et al., 2010), enabling new meaning-making (Yoo, 2010). This
construct is useful for exploring how third-party development can enable a platform owner to
transform its enterprise beyond its traditional industrial settings. Lastly, sovereignty securing
refers to actions taken by a platform owner to maintain control of the platform’s evolution and
avoid becoming a substitute platform for application developers. This construct is useful for
investigating the responses of platform owners when other platform owner’s attempts to scale
their own platform and ecosystems.

The insights derived from the boundary resources model enhance previous research on
platforms and third-party development. First, it enhances the platform literature by providing a
focused theoretical account of the interfaces between the platform and components developed
by external parties. Traditional platform literature tends to examine the generation of derivative
applications as an in-house process where reuse of existing components is the main emphasis
(Meyer & Lehnerd, 1997; Robertson & Ulrich, 1998). While the design of interfaces usually is
considered to be at the heart of scaling a platform (Katz & Shapiro, 1994; Baldwin & Clark,
2000), it is typically seen as a standardisation process in which interfaces serve as ‘specifi-
cations and design rules that describe how the platform and modules interact and exchange
information’ (Tiwana et al., 2010, p. 676). In third-party development, we argue for conceptu-
alising the interfaces between the platform and its developers as boundary resources. The
notion of boundary resources, as it is framed in the boundary resources model, provides a
means to more closely study the actions taken by stakeholders in third-party development. It

14 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

enables analysis that is geared towards appreciating boundary resources design as strategis-
ing rather than understanding interfaces as standards.

Second, as demonstrated in our case analysis, the boundary resources model can be
specialised for examining specific aspects of third-party development that emerges in the wake
of careful data analysis. Viewing, for instance, resourcing as a generic construct that can be
situated to specific problems enables the application of an analytical lens for emerging
research challenges in platform-centric systems development. This is an important aspect of
our work, because the platform literature originates from economics and technology manage-
ment (Baldwin & Clark, 2000), where the research emphasis is on aggregated phenomena
rather than micro-level actions taken by stakeholders.

Third, platforms research typically shows little interest for opposing logics (cf. Robey &
Boudreau, 1999), where seemingly contradicting forces coexist in innovation processes. Our
model recognises such forces. It provides a basis with which tensions between resourcing and
securing can be studied, perhaps by incorporating some form of dialectical model of organi-
sational change (Van de Ven & Poole, 1995).

Finally, we contribute to the continued investigation of digital innovation (Henfridsson et al.,
2009; Svahn et al., 2009; Kallinikos et al., 2010; Tilson et al., 2010; Yoo et al., 2010; Eaton
et al., 2011) by zooming in on boundary resources as digital technology with the capacity to
trigger innovation driven by multiple and uncoordinated third-party developers. Our research
addresses Yoo et al.’s (2010) call for more research on the strategic roles of boundary
resources as, e.g. API design choices can have a tremendous impact on the evolution of a
software ecosystem and therefore also the fate of the platform owner.

Future studies could address limitations in our work. First, this paper draws on an extreme
case study, where Apple’s iPhone platform was chosen as an ideal case for theory generation.
However, in increasing generality rather than plausibility, it would be useful to conduct studies
using a representative case selection technique. Indeed, the boundary resources model
should be tested for generality across empirical settings. Second, future studies could adopt a
variance perspective that would develop a causal model for testing different boundary resource
strategies and their influence on growth of applications, applications developers and knowl-
edge heterogeneity. Finally, another direction for future work would be to investigate the role
of boundary resources from the perspective of third-party developers.

CONCLUSION

In this paper, we contribute a model specifying relationships between constructs useful for
analysing the role of boundary resources in third-party development. The model pinpoints two
key drivers behind the design and use of boundary resources in third-party development:
resourcing and securing. Resourcing happens when: (a) platform owners design boundary
resources for extending the scope and diversity of the platform; and (b) third-party developers
use these resources in their application development. Securing occurs when a platform owner
designs boundary resources for controlling the platform. As there is an inherent tension

Control and contribution in third-party development 15

© 2012 Blackwell Publishing Ltd, Information Systems Journal

between resourcing and securing, the boundary resources model can be seen as a useful lens
with which to understand this balancing act.

Our application of the model also contributes four specialised constructs for understanding
the actions taken by stakeholders in third-party development: self-resourcing, regulation-based
securing, diversity resourcing and sovereignty securing. Each of these constructs can be used
as a starting-point for adapting the boundary resources model to specific research problems in
third-party development.

On a final note, it can be observed that platforms have received recent attention in the field
of IS. We believe this growing interest is useful, not least for understanding new modes of
systems development. In this vein, our work suggests one path for future research on systems
development.

ACKNOWLEDGEMENTS

The Swedish Research School of Management and Information Technology (MIT) and the
Sustainable Transport Initiative partially funded this work. We are also deeply indebted to the
special issue editors, Karl-Heinz Kautz and Peter Axel Nielsen, and two anonymous reviewers
for their useful comments on our research.

REFERENCES

Baldwin, C.Y. & Clark, K.B. (2000) Design Rules – The

Power of Modularity. MIT Press, Cambridge, MA, USA.

Boland, R.J., Lyytinen, K. & Yoo, Y. (2007) Wakes of

innovation in project networks: the case of digital 3-D

representations in architecture, engineering, and con-

struction. Organization Science, 18, 631–647.

Bosch, J. (2009) From software product lines to software

ecosystems. The 13th International Software Product

Line Conference (SPLC 2009), San Francisco, CA,

USA.

Boudreau, K.J. (forthcoming) Let a thousand flowers

bloom? An early look at large numbers of software ‘apps’

developers and patterns of innovation. Organization

Science, doi:10.1287/orsc.1110.0678.

Boudreau, K.J. & Lakhani, K.R. (2009) How to manage

outside innovation. Sloan Management Review, 50,

69–76.

Charmaz, K. (2006) Constructing Grounded Theory: A

Practical Guide through Qualitative Analysis. SAGE

Publications, Thousands Oaks, CA, USA.

Denzin, N.K. (1970) The Research Act: A Theoretical Intro-

duction to Sociological Methods. Aldine, Chicago, IL,

USA.

Eaton, B., Elaluf-Calderwood, S., Sørensen, C. & Yoo, Y.

(2011) Dynamic structures of control and generativity in

digital ecosystem service innovation: the cases of the

Apple and Google mobile app stores. LSE Working

Paper.

El Sawy, O.A., Malhotra, A., Park, Y. & Pavlou, P.A. (2010)

Seeking the configurations of digital ecodynamics: it

takes three to tango. Information Systems Research, 21,

835–848.

Evans, D.S., Hagiu, A. & Schmalensee, R. (2006) Invisible

Engines: How Software Platforms Drive Innovation and

Transform Industries. MIT Press, Cambridge, MA, USA.

Gawer, A. & Cusumano, M. (2002) Platform Leadership:

How Intel, Microsoft and Cisco Drive Industry Innova-

tion. Harvard Business School Press, Boston, MA, USA.

George, A.L. & Bennett, A. (2005) Case studies and theory

development in the social sciences. MIT Press, Cam-

bridge, MA, USA.

Gerring, J. (2007) Case Study Research: Principles

and Practices. Cambridge University Press, Cambridge,

UK.

Ghazawneh, A. & Henfridsson, O. (2010) Governing

third-party development through platform boundary

16 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

resources. International Conference on Information

Systems (ICIS), St. Louis, MO, USA.

Hargadon, A.B. & Douglas, Y. (2001) When innovations

meet institutions: Edison and the design of the electric

light. Administrative Science Quarterly, 46, 476–501.

Henfridsson, O. & Lindgren, R. (2010) User involvement

in developing mobile and temporarily interconnected

systems. Information Systems Journal, 20, 119–135.

Henfridsson, O., Yoo, Y. & Svahn, F. (2009) Path creation

in digital innovation: a multi-layered dialectics perspec-

tive. Sprouts: Working Papers on Information Systems,

9, 1–26. [WWW document]. URL http://sprouts.aisnet.

org/9-20/.

von Hippel, E. & Katz, R. (2002) Shifting innovation to

users via toolkits. Management Science, 48, 821–834.

Kallinikos, J., Aaltonen, A. & Marton, A. (2010) A theory of

digital objects. First Monday, 15, [WWW document].

URL http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.

php/fm/article/viewArticle/3033/2564.

Katz, M. & Shapiro, C. (1994) Systems competition and

network effects. Journal of Economic Perspectives, 8,

93–115.

Kenney, M. & Pon, B. (2011) Structuring the smart-

phone industry: is the mobile internet OS platform the

key? Journal of Industry Competition and Trade, 11,

239–261.

Kieser, A. (1994) Why organization theory needs historical

analyses – and how this should be performed. Organi-

zation Science, 5, 608–620.

Klein, H.K. & Myers, M.D. (1999) A set of principles for

conducting and evaluating interpretive field studies in

information systems. MIS Quarterly, 23, 67–93.

Langley, A. (1999) Strategies for theorizing from process

data. Academy of Management Review, 24, 691–710.

Lopreato, J. & Alston, L. (1970) Ideal types and the ideali-

zation strategy. American Sociological Review, 35,

88–96.

Markus, M.L. & Robey, D. (1988) Information techno-

logy and organizational change: causal structure in

theory and research. Management Science, 34, 583–

598.

Mathiassen, L. & Sørensen, C. (2008) Towards a theory of

organizational information services. Journal of Informa-

tion Technology, 23, 313–329.

Messerschmitt, D.G. & Szyperski, C. (2003) Software

Ecosystem: Understanding an Indispensable Technol-

ogy and Industry. MIT Press, Cambridge, MA, USA.

Meyer, M.H. & Lehnerd, A.P. (1997) The Power of Plat-

forms: Building Value and Cost Leadership. The Free

Press, New York, NY, USA.

Orlikowski, W.J. (1992) The duality of technology:

rethinking the concept of technology in organizations.

Organization Science, 3, 398–427.

Pohl, K., Böckle, G. & van der Linden, F. (2005) Software

Product Line Engineering: Foundations, Principles, and

Techniques. Springer, Berlin, Germany.

Prügl, R. & Schreier, M. (forthcoming) Learning from

leading-edge customers at the Sims: opening up the

innovation process using toolkits. R&D Management,

36, 237–250.

Robertson, D. & Ulrich, K. (1998) Planning for product

platforms. Sloan Management Review, 39, 19–31.

Robey, D. & Boudreau, M.C. (1999) Accounting for the

contradictory organizational consequences of informa-

tion technology: theoretical directions and methodolo-

gical implications. Information Systems Research, 10,

167–185.

Romano, N.C., Donovan, C., Chen, H. & Nunamaker, J.F.

(2003) A methodology for analyzing web-based qualita-

tive data. Journal of Management Information Systems,

19, 213–246.

Selander, L., Henfridsson, O. & Svahn, F. (2010) Trans-

forming ecosystem relationships in digital innovation.

International Conference on Information Systems (ICIS),

St. Louis, MO, USA.

Silverman, D. (2006) Interpreting Qualitative Data:

Methods for Analyzing Talk, Text, and Interaction, 3rd

edn. SAGE, Los Angeles, CA, USA.

Svahn, F., Henfridsson, O. & Yoo, Y. (2009) A threesome

dance of agency: mangling the sociomateriality of tech-

nological regimes in digital innovation. International

Conference on Information Systems (ICIS), Phoenix,

AZ, USA.

Teece, D.J. (1986) Profiting from technological inno-

vation: implications for integration, collaboration,

licensing and public policy. Research Policy, 15, 285–

305.

Tilson, D., Lyytinen, K. & Sørensen, C. (2010) Digital infra-

structures: the missing is research agenda. Information

Systems Research, 21, 748–759.

Tiwana, A., Konsynski, B. & Bush, A. (2010) Platform

evolution: coevolution of platform architecture, gover-

nance, and environmental dynamics. Information

Systems Research, 21, 685–687.

Van de Ven, A.H. (2005) Running in packs to develop

knowledge-intensive technologies. MIS Quarterly, 29,

365–378.

Van de Ven, A.H. & Poole, M.S. (1995) Explaining

development and change in organizations. Academy of

Management Review, 20, 510–540.

Control and contribution in third-party development 17

© 2012 Blackwell Publishing Ltd, Information Systems Journal

Weber, M. (1949) The Methodology of the Social Sci-

ences. Free Press, Glencoe, IL, USA.

West, J. & Mace, M. (2010) Browsing as the Killerapp:

explaining the rapid success of Apple’s iPhone. Tele-

communications Policy, 34, 270–286.

Yin, R.K. (2009) Case Study Research: Design and

Methods, 4th edn. SAGE Publications, Thousand Oaks,

CA, USA.

Yoo, Y. (2010) Computing in everyday life: a call for

research on experiential computing. MIS Quarterly, 34,

213–231.

Yoo, Y., Henfridsson, O. & Lyytinen, K. (2010) The new

organizing logic of digital innovation: an agenda for

information systems research. Information Systems

Research, 21, 724–735.

Zittrain, J.L. (2006) The generative internet. Harvard Law

Review, 119, 1974–2040.

Biographies

Ahmad Ghazawneh is a PhD Candidate at the Informatics

Department, Jönköping International Business School,

Jönköping University, Sweden. He is also a member of

the Swedish Research School MIT and the Centre for

Information Technology and Information Systems. His

research interests include digital and open innovation,

software platforms and ecosystems, digital and social net-

works as well as IS development. His research has been

published in international journals in the IS discipline, such

as International Journal of Networking and Virtual Organi-

sations, and conferences, such as International Confer-

ence on Information Systems, European Conference on

Information Systems and Hawaii International Conference

on System Sciences.

Ola Henfridsson is a Professor of Applied Informa-

tion Technology at Chalmers University of Technology,

Sweden, and an Adjunct Professor at Department of Infor-

matics, University of Oslo, Norway. His research interests

include digital innovation, technology management,

organisational adaptation of information technology as well

as process- and design-oriented research. The outcome of

this research has been published in MIS Quarterly, Infor-

mation Systems Research, Information and Organization,

Information Systems Journal, Information Technology and

People, Journal of Strategic Information Systems and

other journals in the IS discipline. He is a Senior Editor

Emeritus of the MIS Quarterly and serves on the editorial

boards of Information Technology and People and Journal

of the Association for Information Systems

18 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

APPENDIX

Figure A1. Timeline of pre-SDK episode.

Figure A2. Timeline of episode I.

Control and contribution in third-party development 19

© 2012 Blackwell Publishing Ltd, Information Systems Journal

Figure A4. Timeline of episode III.

Figure A3. Timeline of episode II.

20 A Ghazawneh & O Henfridsson

© 2012 Blackwell Publishing Ltd, Information Systems Journal

