
CHAPTER

Platform Architecture 5
Each person making . . . four thousand eight hundred pins in a day. But if they had all wrought

separately and independently . . . not each of them have made twenty, perhaps not one

pin in a day.
Adam Smith in The Wealth of Nations (1776)

IN THIS CHAPTER

• How complexity paralyzes innovation in ecosystems

• How architectures reduce complexity

• Two functions of architecture: partitioning and reintegration

• Two facets of ecosystem architecture: platform architecture and app microarchitecture

• Four desirable properties of platform architectures

• Modularization

• Two mechanisms for modularizing architectures: decoupling and interface standardization

• Simple rules for what goes into the platform and what stays out

• Tradeoffs in architectural choices

5.1 HOW UNEMPLOYED HAIRDRESSERS BECAME FRANCE’S
MATHEMATICAL CHAMPIONS
The inspiration for solving an innovation problem too complex for anyone to grasp comes from an

unlikely source: unemployed hairdressers in 18th-century France. Gaspard de Prony (Figure 5.2)

was a civil engineer who the French revolutionary government charged with a most unenviable task

in 1790: create the largest, most precise set of trigonometric tables ever created (Langlois and

Garzarelli, 2008). Baffled by this seemingly impossible task, de Prony was absent-mindedly flipping

through Adam Smith’sWealth of Nations (Figure 5.1) in a bookstore when he was hit by an epiphany.
He could “manufacture” trigonometric tables like Adam Smith’s workers manufactured pins in a

pin factory, by division of labor. Except, it was going to be division of cognitive labor rather than

physical labor. So de Prony began in earnest. He first recruited four of the most eminent French

mathematicians—Legendre, Prieur, Cote d’Or, and Carnot—to devise formulae that could be numer-

ically calculated. He then passed along these formulae to about a dozen average mathematicians, who

☆“To view the full reference list for the book, click here or see page 283.”
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FIGURE 5.1

Adam Smith’s Wealth of Nations inspired de Prony’s creation of trigonometric tables in 1790.

74 CHAPTER 5 Platform Architecture



FIGURE 5.2

Gaspard de Prony (1755–1839).

Courtesy of the Smithsonian Institution Libraries, Washington, D.C. Reproduced with permission.
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turned them into simple algorithms and created templates of tables to be filled by hand. Filling these

tables required little knowledge of math beyond addition and subtraction. Each table could be filled

without any knowledge of the other tables. It was simple grunt work at this point.

France in the late 1700s was like the United States after 2008: excesses were frowned upon, a reces-

sion was in full swing, and austerity was expected in high society. This gave de Prony the perfect cadre

of workers to do the grunt work: about a hundred unemployed French hairdressers. There was no com-

munication from the hairdressers to the mathematicians, and no feedback from the mathematicians to

the hairdressers. In four years, this team of hairdressers was producing close to a thousand results a day.

de Prony took an innovation problem too complex for one person to wrap his head around and made

it solvable by partitioning it into smaller, independent problems that required little knowledge of

the other pieces. Doing this required little central coordination and little ongoing communication,

and the individual hairdressers’ output could be plugged back into the slowly forming book of tables.

de Prony’s ingeniousness was in how he partitioned the complex innovation problem into small, inde-

pendent problems. The magic was in how they could then be reassembled to form the whole. The same

approach can also work in organizing innovation in platform ecosystems. The key to this is platform

architecture, the focus of this chapter.

Platform architecture is the first gear in a platform ecosystem’s evolutionary motor (Figure 5.3).

A platform requires an “architecture of participation” to grow its ecosystem (Baldwin and Clark,

2006). Outside app developers must simultaneously be able to and be motivated to innovate around

it. Ability without motivation is as worthless as motivation without ability. Creating the ability is

the realm of platform architecture. Platform architecture determines the divisibility of innovation work

among app developers and the platform owner. It also influences its subsequent reintegration. Platform

architecture is the blueprint. Creating motivation is the realm of platform governance (Chapter 6).

Evolution of a platform’s ecosystem is therefore predicated in the interplay of its architecture with

how it is governed.

This chapter provides a foundation for understanding platform architectures. It begins by explaining

how complexity stymies innovation and leads to an unrealistic optimism bias in platform ecosystems. It

then describes how a platform’s architecture can make growing complexity manageable by serving two

functions: partitioning innovation tasks and facilitating reintegration of an ecosystem’s parts. It

explains how architecture is a platform’s DNA that preordains viable organizing logics and irreversibly

imprints its evolutionary trajectory. What appears to be a technical decision has huge strategic conse-

quences. A platform’s properties are inherited by apps in their own architectures, but imperfectly.

Governance
Architecture

FIGURE 5.3

Architecture is the first gear in a platform ecosystem’s evolutionary motor.
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We explain the connections between a platform’s architecture and the “microarchitecture” of apps

(a microscopic view) as well as ecosystem architecture (a telescopic view).

A good architecture must exhibit four simple properties that it shares with the architecture of mod-

ern cities: simplicity, resilience, maintainability, and evolvability.We also explain the twomechanisms

for modularizing architectures along with practical guidelines to implement them. We also revisit

Goldilocks, who cautions that you neither want too little nor too much modularity but something in

the middle. We explain this by putting ourselves in the shoes of a platform owner and an app developer,

and offer guidelines to help you figure out how much modularity is just right. Finally, we segue into
platform governance (the topic of the next chapter), which influences the degree to which the potential

advantages of thoughtful platform architecture are realized in practice.

5.2 COMPLEXITY: THE ACHILLES HEEL OF PLATFORMS
A platform ecosystem can be envisioned as a complex system. Broadly, a complex system is one com-

prised of a number of parts that have many unpredictable interactions (Simon, 1962). It is comprised of

smaller subsystems whose interactions and interdependencies are difficult to describe and manage

(de Weck et al., 2011, p. 186). An ecosystem’s complexity is a function of the number of unique sub-

systems present in it. The more numerous such subsystems, the greater its complexity. In a platform

ecosystem, these subsystems are the platform and the apps that interoperate with it. Complex systems

that were complex to begin with can become even more complex over time as they evolve.

Complexity is the Achilles heel—a potentially deadly weakness—of platforms. Complexity creates

two challenges that worsen over time: incomprehensibility and a gridlock. First, platform ecosystems

become increasingly difficult to be comprehensible in their entirety to one person (Baldwin and Clark,

2000, p. 5; de Weck et al., 2011, p. 27). They often stretch the ability of a human mind to grasp their

complexity. Platform architects therefore quickly become unable to comprehend the technology that

they invent. App developers face a similar challenge because they become increasingly unable to

comprehend the complexity of the ecosystem in which their apps must function. Second, it creates

a gridlock problem. Managing such complexity can become so daunting that it can paralyze any

one ecosystem participant’s ability to change a subsystem for which she is responsible. This is

because a slight change in one app or in the platform can have unpredictable ripple effects that can

potentially break the ecosystem. Like in a house of cards, moving one might do nothing bad or it might

bring the entire structure down. The solution to the challenges created by growing complexity is to

reduce it.

Remember the old fable of the elephant and the eight blind men (Figure 5.4A). Each was asked,

“What do you see here?” Each touched the elephant and drew different conclusions. One concluded

that it was a rope, another said it was a wall, another thought it was a fan and another concluded that it

was a spear. A platform ecosystem often faces the same problem: Each app developer sees a different

image of the ecosystem when looking at the whole from her own perspective. Now look at a different

picture (Figure 5.4B). Would the eight blind men be any closer in their interpretations of that object?

Likely. The bottom line is that more complex a man-made object gets, the harder it becomes to com-

prehend for any one individual. This incomprehensibility can become the showstopper in a

platform’s evolvability.
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5.2.1 Two types of complexity
Complexity can be of two types: structural complexity and behavioral complexity. An ecosystem can

be both structurally complex (interconnections between its parts are difficult to describe) and behav-

iorally complex (its aggregate behavior is difficult to predict or control) (de Weck et al., 2011, p. 185).

The two types of complexities are often (but not always) correlated: Systems that are structurally com-

plex are also often behaviorally complex. We believe that architecture is the lever to tackle structural

complexity and governance (Chapter 6) is the lever to tackle behavioral complexity. Architecture is

therefore a tool for simplifying and precisely describing the interconnections between parts of an eco-

system—potentially reducing structural complexity. It does this by reconfiguring the structure of

dependencies between the platform and its apps within an ecosystem.

5.2.1.1 How complexity amplifies innovation risk in platforms
Structural complexity matters for innovation in ecosystems because it magnifies what Ron

Adner (2012, p. 49) calls co-innovation risk. A useful way to think of dependencies is to compare

the difference between joint and independent probabilities (Adner, 2012, p. 48). Consider a simple

example in Figure 5.5 where two app developers and the platform owner must contribute to, say,

creating a novel smartphone app. If each has an 80% chance of being able to deliver their part,

the likelihood of successfully implementing the app is far lower than 80%. This is because realizing

an innovation with dependencies among the three parties is governed by joint, not independent,

probabilities. The likelihood that the app will succeed is a pitiful 51% (80%�80%�80%). This

means that although the three partners are fairly likely to be able to deliver on their promises,

the odds of success in their joint endeavor are about 50–50. It is easy for each partner to be confident

about the success of the project, when the reality is bleaker than any one of them might realize.

As the number of parties involved increases, so does co-innovation risk. But co-innovation risk

BA

It’s a
Fan!

It’s a
Spear!

It’s a
Wall!

It’s a
Tree!

It’s a
Snake!

It’s a
Rope!

FIGURE 5.4

What do you see in these pictures (A) and (B)?
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exists only if the work of one developer relies on the successful completion of the work of the

other two in Figure 5.5. A powerful way to reduce this risk is by lowering the dependencies between

the contributions of the three parties in this example. Reducing dependencies reduces interactions

among them, hence reducing the structural complexity of the system in Figure 5.5. Architecture is a

way to reduce such dependencies among subsystems that constitute a complex system. Thoughtful

architectures however are not a silver bullet: They cannot eliminate complexity but can make it

more manageable.

5.3 THE TWO FUNCTIONS OF ECOSYSTEM ARCHITECTURE
The biggest potential strength—and the biggest weakness—of platform ecosystems is their diversity,

both in apps that constitute them and the app developers that develop such apps. Architectural choices

by platform owners that quash the autonomy of app developers kill innovation potential. On the other

hand, the same architectural choices can also fail to leverage this diversity into a cohesive platform,

resulting in unfettered chaos. Platform ecosystems must therefore manage the delicate balance between

coordination and autonomy (Iansiti and Levien, 2004, p. 5). Architecture is a tool for balancing the need

for autonomy among app developers without compromising the capacity to integrate their work into a

cohesive ecosystem.

Architecture, however, lurks in the blind spot of most strategy thinking, largely because it is per-

ceived as the outcome of a technical decision-making process. Two types of costs directly stemming

from platform architecture and with strategic consequences enter the picture: (1) the costs incurred by

80%
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FIGURE 5.5

Co-innovation risk is magnified by complexity.
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app developers of doing business with platform owners (“transaction costs”)1 and (2) the costs incurred

by them to manage the dependencies between apps and the platform (“coordination costs”). If both

parties were part of the same organization as was historically the case in traditional software develop-

ment teams, these costs would have been lower. However, the moment app developers and platform

owners become standalone organizations, these costs can overwhelm any prospect of cost-effective

collaboration among them. (They tend to be higher across organizations than inside organizations.)

Transaction costs and coordination costs among a platform owner and app developers determine

whether a multi-organization ecosystem is even viable around a platform. A well-designed architecture

can minimize both types of costs (Baldwin and Woodard, 2009). Architecture in a platform ecosystem

ought to serve two overarching functions: partitioning and systems integration.

5.3.1 Partitioning
Partitioning refers to a decomposition of the ecosystem such that each subsystem in it is relatively auto-

nomous from others (Figure 5.6). The primary function of architecture is to provide a framework to

decompose a complex ecosystem into relatively independent subsystems. When designers envision

a complex system, they quickly hit human cognitive limits due to its complexity. One way to reduce

this complexity and make it cognitively manageable is to decompose the complex system into smaller

pieces—platform and apps—that can work together to deliver the desired functionality. So, a complex

system can be broken down into a collection of black boxes that do specific things. Such decomposition

can continue ad infinitum where a complex ecosystem is decomposed into smaller and smaller

subsystems. However, it is useful to stop this decomposition exercise when further decomposition

no longer aids comprehensibility or no longer enhances autonomy among contributors to a platform

ecosystem. When an element in a subsystem can no longer be decomposed meaningfully, it is said

to have reached an atomic level of decomposition.

A well-partitioned architecture describes how these little black boxes behave and talk to each other,

but not how they work. What happens inside a black box remains inside that black box. Once this col-

lection of black boxes is envisioned, each of them can be designed and implemented individually with

the hope that when they are all pieced together the much larger complex system will emerge. Unless the

App
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AppApp App

Platform

App

A B

App

FIGURE 5.6

A well-partitioned architecture decomposes the platform and apps into relatively autonomous subsystems

(A, not B).

1Transaction costs are simply the overhead costs of doing a trade in the open market between two parties that might not have

the same interests. They have a long tradition in the history of economics (see Baldwin, 2008;Williamson, 1987, 1991, 1999,

2010) and technology strategy (see Ang and Straub, 1998; Tiwana and Bush, 2007; Young-Ybarra and Wiersema, 1999).
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platform and apps can be readily separated, it is increasingly impossible for them to be developed by

independent parties. Partitioning of subsystems through architecture can therefore allow innovation

partitioning among organizations that develop them. A “good” architecture should respect this

black-boxing because it can pay off handsomely: Ideally, each black box can be implemented by

completely independent organizations, motivated by different things, driven by different expertise.

In theory, that’s the promise of platform thinking; instead of one company having to implement all the

black boxes, hundreds of thousands of different companies (as in the case of iOS and Android) can create

the black boxes. The power of the market then takes over—the valuable black boxes survive and the rest

fade away in a competitive marketplace for black boxes. In platform ecosystems, almost all these black

boxes are the apps developed by independent entrepreneurs, who take over the innovation role from the

platformowner and collectively expand it to a scale that the platformowner cannot even imagine replicating

inhouse. Architectures that effectively partition complexity allow these numerous outside organizations to

provide the pieces of a larger ecosystemwhile also ensuring that the parts coherently fit together. Software

architecture can therefore enable a divide-and-conquer approach in which a complex ecosystem is divvied

into manageable components—the platform and its many apps—that can be developed independently and

subsequently brought together. (This decomposition is what we subsequently call modularization.)
Partitioning affects the work of both the platform owner and app developers. For the platform

owner, effective partitioning has consequences for viable organizational structures around a platform.

Effective partitioning largely determines whether the development of complementary apps is best done

inhouse by the platform owner (as has traditionally been done for complex software) or by a distributed,

multiorganizational ecosystem. Platform architectures therefore mold viable business models (Meyer

and Selinger, 1998), both opening and constraining possibilities for platform owners. It also allows

outsiders to engage in parallel competing efforts to solve the same problems using a variety of different

approaches. Therefore partitioning created by a platform’s architecture permits variety in the apps that

can complement the platform. The greater the uncertainty a platform faces about end-users’ needs, the

more valuable is such diversity; a greater variety of competing attempts to meet end-users’ needs

increases the odds that some attempt will work. Partitioning also reduces complexity: If a complex

ecosystem can be divided into separate parts such as each part can be developed by different people,

the limitation of complexity disappears (Baldwin and Clark, 2000, p. 5).

Consider how partitioning affects the work of app developers. The architecture of a platform eco-

system specifies how the ecosystem is decomposed into the platform and apps that interoperate with it,

and how the two types of subsystems interoperate to provide the overall functionality of the platform

ecosystem. Their architecture therefore influences which parts of the ecosystem (e.g., the platform or

other apps) must be tweaked to implement a new version of an app, and in turn influences the costs

incurred by the app developer for changing the app. If the architecture of an app is less independent

of other subsystems in the ecosystem (Figure 5.6B), it is not possible to make changes to an app without

also having to make parallel changes in the platform and possibility in other apps. As a platform eco-

system’s complexity grows, interdependencies between the platform and apps can become so numer-

ous that integrated development efforts become impossible (Ethiraj and Levinthal, 2004b). Such a

platform can grow into an immensely complicated tangle of interconnections, with each part poten-

tially dependent on every other part. The app developer would need to know beforehand what these

dependencies are and which can be prohibitively difficult to understand and keep track of as a platform

gets more complex. Therefore, even small changes can have an unpredictable cascade of ripple effects

on other parts of the ecosystem. The greater the number of other subsystems that must be tweaked in
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order to successfully alter an app, the greater are the coordination costs faced by an app’s developer

(Adner and Kapoor, 2010). If apps are to be successfully produced by outsiders, these costs must be

contained.2 Architectural differences across platforms can therefore explain partly why the costs of

innovating can be starkly different even for the same app across comparable rival platforms. Architec-

tural differences can also explain not just the frequency of innovations feasible by app developers but

also the types of innovations that do and do not occur in an ecosystem.

Partitioning through architecture influences how much app developers need to understand the

insides of the platform and need to be aware of other apps that their own app might interact with.

A well-partitioned architecture can provide app developers the benefit of valuable ignorance: In doing
their own work, they need not know how a platform does what it does. Nor do they need to understand

the intricacies of the platform native functionalities on which their app draws. This form of ignorance is

valuable because it allows app developers to focus largely on their own work yet be able to subse-

quently integrate their completed app with the platform. It allows them to sharpen focus on their dis-

tinctive knowledge and capabilities for creating and implementing novel ideas that they can pursue

relatively autonomously. A well-partitioned architecture can therefore reduce the costs faced by both

app developers and platform owners to coordinate their work with each other. This is what economists

call transaction costs (Baldwin, 2008; Williamson and DeMeyer, 2012). Therefore, by simultaneously

enabling and constraining individual participants in a platform’s ecosystem, architectures influence

innovation generation both by the platform owner and app developers. Architectural differences

can therefore affect the intensity, quality, and type of app innovation that are critical determinants

of the vibrancy of the platform’s ecosystem.

5.3.2 Systems integration
The second function of architecture is to enable systems integration. Systems integration refers

to coordination of development activities among app developers and the platform owner. Systems

integration capability of a platform is a platform’s capacity to combine the different competencies

of app developers with those of the platform. Although partitioning of apps and platforms allows app

developers to pursue their development work building on their own strengths, these apps must even-

tually interoperate with the platform to deliver value to end-users. Apps mixed-and-matched by an

end-user must coherently work together in individual end-user instantiations of the ecosystem

(Boudreau, 2010). Integration between a platform and apps is therefore critical to realizing the poten-

tial of apps by app developers participating in a platform’s ecosystem. If apps seamlessly interoperate

with the platform and augment its own capabilities in creative ways, the ecosystem can become a

powerful mechanism for a platform to acquire a steady stream of new capabilities from its

ecosystem partners.

App developers face two broad types of costs in their ongoing work: (1) app innovation costs
and (2) systems integration costs. App innovation costs are an app developer’s costs of actually

designing and implementing the changes over the lifecycle of an app. For example, if Skype wants

to add new functionality to its iOS app, these are the costs of conceptualizing, designing, and

2Generally, costs of coordinating across interorganizational boundaries of different organizations are much greater than they

are among groups within the same organization (Rysman, 2009).
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implementing a revised app with that functionality. Systems integration costs are the effort required

by Skype developers to ensure that the revised Skype app will function as intended when installed on

an iOS device.

Systems integration costs then refer to the effort required to manage the dependencies among a

platform and apps in an ecosystem. The potential advantages of a large ecosystem can easily be wiped

out if systems integration costs are high. App developers directly face two types of systems integration

costs, illustrated in Figure 5.7: (1) those of integrating an app with the platform (application–platform

integration costs) and (2) those of integrating an app with other potentially interacting apps in the eco-

system (cross-application integration costs). The second type of systems integration costs can be

reduced by a platform’s architecture, but the first type is more challenging for two reasons. First,

different apps might evolve at different rates (Baldwin and Clark, 2000, p. 297). This means that

app integration with the platform is lumpy rather than predictable. Second, changes in the platform

itself can require an app to be changed to maintain its integrity and interoperability. Therefore, it is

more useful to think of system integration costs as ongoing rather than a one-shot integration activity.

Different platform architectures, however, impose different levels of system integration costs for apps,

and in turn can change the rate of investment by app developers in app innovation. Architecture influ-

ences the initial and subsequent releases’ systems integration costs faced by app developers by altering

modifiability of an app. This in turn affects app developers’ incentives to innovate rapidly and the

extent to which they will be willing to bear the risk of app innovation. High systems integration costs

faced by an app developer can therefore discourage innovation by app developers.

The common systems integration approach in the software industry is overt communication

between the parties. The two parties communicate, interact, and coordinate their own work to ensure

that their subsystems will work together. In platforms, such ongoing interaction between the platform

owner and an app developer is one mechanism for ensuring successful systems integration. This

approach, however, becomes increasingly infeasible in complex ecosystems involving thousands of

app developers, where different apps might also be evolving at a different pace.

An alternative solution is not to maximize communication among them but rather minimize the

need for it. Platform architecture can potentially reconfigure the structure of dependencies among a

platform and apps. It can provide the blueprint that stitches together apps and the platform on a scale

App

Platform

AppApp

Platform–Application Integration

Cross-Application Integration

FIGURE 5.7

The two types of systems integration costs faced by app developers.
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where communication-based coordination mechanisms of traditional organizations are simply infea-

sible. Architecture—by specifying dependencies and interactions between apps and the platform—

can then become an invisible coordination mechanism that can substitute for such overt

communication-based coordination in platforms ecosystems. Early architectural choices by a platform

owner—by influencing the costs of realizing innovations at every level—can therefore either catalyze

or discourage experimentation within a platform’s ecosystem.

5.4 ECOSYSTEM ARCHITECTURE
Platforms are purposefully designed complex systems with an underlying structure that influences how

they behave, function, and evolve over time. Like any other complex system, a platform ecosystem can

be envisioned as composed of many interacting subsystems. How these subsystems interact is deter-

mined by the platform ecosystem’s architecture. Two broad types of subsystems here are the platform

itself and the portfolio of apps that augment it. Just as the architecture of a building is different from the

building itself, the architecture of a platform ecosystem is at a higher level of abstraction than either the

platform or the apps. Architecture is to a platform ecosystem what a blueprint is to a building. Rather

than a working system, it is a description of the building blocks of an ecosystem and how they relate to

each other, what they do, and how they interact (van Schewick, 2012, p. 21). This high-level description

specifies the components of the ecosystem, the externally visible properties of these components, and

the relationships among them (van Schewick, 2012, p. 21). Ecosystem architecture ideally partitions

the ecosystem into two types of subsystems: (1) a highly reusable core platform that remains relatively

stable and (2) a set of complementary apps that are encouraged to vary (Baldwin and Woodard, 2009).

Architecture therefore describes the early design decisions about the decomposition of a platform eco-

system into a platform and apps. These choices have considerable evolutionary consequences because

they are largely unchangeable, as we describe in the next section.

Architecture is meaningful only in relation to other parts that together constitute the whole ecosys-

tem. Architecture is a hierarchal concept: Ecosystems can be decomposed into interrelated subsystems

such as apps, which also have architectures (Baldwin and Clark, 2000, p. 413). Ecosystem architecture

can be thought of as comprised of two levels: (1) the architecture of the platform itself (platform archi-
tecture) and (2) that of an app, which we refer to as that app’s microarchitecture. Platform architecture

is like viewing a platform ecosystem through a telescope and app microarchitecture is like viewing

architecture through a microscope. This distinction is illustrated in Figure 5.8. Platform architecture

includes the core platform and its interfaces. Recall that a platform is a set foundational functionality

and shared assets made available to apps through a set of interfaces. Platform architecture should tell

apps both what the platform does and how to use the platform (Parnas et al., 1985). The latter is a role

directly played by the platform’s interfaces, which therefore must be treated as an integral part of a

platform’s architecture.

Although the platform has a specific architecture that all apps see, the architecture of individual

apps within the same platform can vary from one app to another. Platform architecture imposes

constraints on all apps in a platform’s ecosystem; therefore many properties of app architectures

are correlated with the architecture of the platform. However, the two are rarely identical because

there can be considerable variance among apps developed for the same platform. Therefore, an app’s

“microarchitecture” will define how each individual app interacts, communicates, and interoperates
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with the platform. Even if the platform owner attempts to impose architectural guidelines on app devel-

opers, the extent of compliance by individual app developers with such guidelines can result in differ-

ent appmicroarchitectures. A useful way to think of the distinction is to distinguish between envisioned

versus realized architecture. Platform architecture is architecture for apps as envisioned by a platform

owner; app microarchitecture is the same architecture as realized in the implementation of an individ-

ual app by its developer. This inheritance of properties of platform architecture by apps gives them their

evolutionary properties.

Such decomposition can continue until the lowest atomistic level is reached. For example, an app

can be further divided into subsystems, and subsystems within those subsystems, ad infinitum. How-
ever, for practical purposes, it is meaningful to stop at the level after which further decomposition no

longer aids comprehension. Zooming out—the opposite of architectural decomposition—results in a

more aggregate view of a platform ecosystem. For example, individual ecosystems themselves might

be embedded within a larger architecture, which can be aggregated to the highest level of the Internet as

a whole. They also coexist, compete, and cooperate with rival ecosystems.

5.4.1 App microarchitecture
Each app can have its own internal structure that represents its internalmicroarchitecture. The internal

microarchitecture of the app influences its external architecture (i.e., how it connects to the platform).

5.4.1.1 The four functional elements inside an app
Any software app’s internal functionality can be decomposed into four functional elements shown in

Figure 5.9. These four pieces are:

1. Presentation logic. An app’s presentation logic is where almost all of the interaction with the

end-user occurs. It is the part of the application that handles receiving inputs from the end-user

and presenting the application’s output to the end-user.

2. Application logic. The second function is the core work performed by the application that is

distinctive to it. This encompasses the functionality of the app that makes it uniquely valuable to its

end-users. For example, a video conferencing app’s core application logic is the video streaming

between two client devices.

App
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AppApp

App Microarchitecture

Ecosystem
Architecture

Platform
Architecture

FIGURE 5.8

Ecosystem architecture is comprised of platform architecture and app microarchitecture.
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3. Data access logic. The third function is the processing required to access and retrieve data. This

often equates with database queries through which user-specified data is retrieved from data

storage. Examples of data access can include tag searches to retrieve emails, flight pricing data

used by a travel reservation app, retrieving a media file such as a music file, or specific images

from a larger database of images.3

4. Data storage. The last function is data storage. Most apps require data to be stored somewhere in

order to be retrieved. This can be a small text file written by a word-processing app, map data

in a navigation app, PDFs in an annotation app, images in a note-taking app, pictures in a camera

app, or messages in an email app.

These four functional elements constitute the entirety of the internalmicroarchitecture of any app. These

four elements can be placed on either the client side or the server side in several plausible arrangements.

An app’s internal microarchitecture (also known as its network architecture) is simply a description

of how these four functional elements are distributed between a client and a server connected by the

Internet. Note that the client and the server need not be actual computers but can be any device (e.g.,

smartphone, tablet, object, or appliance) that is connected to the Internet. The five common arrange-

ments that spread the four pieces across a network result in four different types of app microarchitec-

tures: (1) standalone, (2) cloud, (3) client-based, (4) client–server, and (5) peer-to-peer. These five app

microarchitectures apply to any networked application.

5.4.1.2 Unique properties of platform-based app functional partitioning
The unique aspect of these app architectures in platform settings, however, is that each individual

functional element can be flexibly partitioned between the app and the platform, as Figure 5.10 illus-

trates. An app developer can rely entirely on the platform itself to build each part of the app, or choose

to build part of the client-side and part of the server-side functionality itself and rely on the platform

for the remainder. (An app can also invoke third-party Web services using Web service APIs (appli-

cation programming interfaces) to implement some of its functionality.) The modularity of the connec-

tions—defined by decoupling and interface standards compliance—between the app and a platform in

such divvying-up of client- and server-side functionality then represents its externalmicroarchitecture.

For example, 50% of the presentation logic of an app might be implemented within the app and the

other 50% might be implemented in the platform. The app then invokes the capabilities of the

platform to execute its own presentation logic. The choice of how much of each functional element

1 Presentation Logic
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Application Logic

Data Access Logic

Data Storage

FIGURE 5.9

The four pieces of an app’s internal functionality.

3The accessed data can be either user-owned or provided by a third-party supplier.
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is app-based and how much of it is platform-based is largely a decision made by app developers. The

connections between the two big blocks in Figure 5.9 that are split between an app and a platform

defines its external microarchitecture.

An app’s designer has considerable freedom in choosing howmuch of an app’s functionality to pull

from the platform and how much to build herself (Figure 5.10). The division of functionality between

the app and the platform in app microarchitecture is therefore not a given but rather a choice. This

choice influences how much of the app development work is done by the app developer and to what

extent the app leverages and invokes the capabilities of a platform in order to function. This results in

different app microarchitectures for similar apps even within the same platform. This choice also has

nonobvious consequences that can enable and constrain the future evolution of the app in nuanced

ways. As the next section of this book explains, such choices have considerable consequences on

the evolutionary trajectories open to and closed to individual apps. This type of partitioning of each

functional element between the app and platform allows the app developer to avoid duplication of

the core functionality of the platform and instead focus on building capabilities unique to the app.

In platform-based apps, some part of the functionality for one or more of the functional elements will

always reside on the platform than in the app. This is the premise of platform-centric models and also

the reason for the importance of platform governance (the focus of the next chapter).

5.4.1.3 Standalone microarchitecture
The first app microarchitecture is standalone architecture (Figure 5.11). Here all four functional ele-

ments are on the client side and nothing resides on the server side. Internet connectivity is therefore

unnecessary for the app to function. This is the model for applications that dominated in the era that

preceded Internet-enabled computing beginning in the 1990s. However, these four functional elements

themselves can be divvied up between the platform and the app, with varying proportions of each

implemented in the app and invoked by the app from the platform. Examples of such apps include

a PDF reader or a flashlight app.

5.4.1.4 Cloud microarchitecture
The second app microarchitecture is cloud architecture (Figure 5.12). All four functional elements

reside on the server side. The client device then simply becomes a “dumb” terminal that serves only

to accept user inputs and display outputs. Although some of the presentation or data storage

0% 50% 100%

App-based Platform-based

FIGURE 5.10

Each of the four functional elements of an app can be flexibly partitioned between an app and the platform.
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functionality might also reside on the client side, most of it is on the server side. This model mirrors

host-based computing architectures from the mainframe era and contemporary “thin client” architec-

tures. Examples of apps using such architectures are most search engines, where almost all of the work

of the search application is done on the server side and the client is usually a browser that serves little

purpose other than accepting user inputs and displaying outputs. Other examples include Web-based

email apps such as Gmail.

Cloud microarchitectures have three advantages. The key advantage of this arrangement is econ-

omies of scale: All of the functionality of the app is managed in one centralized location. A second

advantage is that rolling out new features and functionality is easier because little or no upgrades

are required on the client side. Instead, rolling them out simply requires changes on the server side.

This benefit holds only in theory. In practice, however, the server-side functionality that is

platform-based is not under the direct control of the app developer. This makes it challenging to roll

Internet
Client
(Dumb Terminal) Server

Cloud (Host-based) Architecture

1 Presentation Logic

2 Application Logic

3 Data Access Logic

4 Data Storage

FIGURE 5.12

All four functional elements reside on the client device in the cloud app microarchitecture.

1 Presentation Logic
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4 Data Storage

Internet
Client
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Standalone

FIGURE 5.11

All four functional elements reside on the client device in the standalone app microarchitecture.
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out new functionality to the app’s users as readily as it might appear on paper. Third, cloud microarch-

itectures are potentially more secure because all of the app’s functionality is centralized on the server

side. There is only one major point of vulnerability relative to other microarchitectures: the server.

Such architectures are particularly attractive in platform apps where the device on the client side does

not have much processing power. This is often the case with networked objects that are used as part of

the emerging Internet of Things.

This microarchitecture has two big downsides. First, all of the work of the app must be done on the

server side. As user demand and usage intensity grows, the server side can become overloaded and slow

to respond to requests from the client side. This can potentially result in sluggish response times. Put

another way, the app has greater network usage intensity. Second, capacity upgrades on the server side

cannot be incremental. Instead, they are large and potentially expensive. In other words, cloud-based

architectures are not cost-effectively scalable. And the more the app leverages the platform, the more

dependent the app developer becomes on the platform.

5.4.1.5 Client-based microarchitecture
The third app microarchitecture is client-based architecture (Figure 5.13). This arrangement is similar

to standalone architectures with the exception that the data storage function is placed on the server side.

The key driver of the advent of these architectures is an increase in the processing power of client

devices (such as smartphones and tablets) and the advent of high-speed ubiquitous connectivity. This

allows the majority of the functionality of the app to reside on the client device. This microarchitecture

makes sense if storage capacity is a constraint on the client device. The upside of this arrangement is

that the data resides in a centralized location, which makes it easier to secure. The key downside of this

architecture is network congestion: All data must travel over the Internet from the server to the client

each time the application is used. This includes data that might not be needed by the user, which cannot

be separated from the data the user actually needs because the data access logic is on the client side.

This can result in larger than necessary bandwidth consumption and can result in sluggish application

performance. If the app is data intensive, this microarchitecture also suffers from lack of cost-effective

scalability since part of the app’s functionality is derived from servers (usually run by the app developer

or run by the platform owner but paid for by the app developer). Scaling up can therefore be costly.

InternetClient
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Client-based Architecture
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FIGURE 5.13

Only data storage resides on the server side in client-based app microarchitecture.
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5.4.1.6 Client–server microarchitecture
The fourth widely used app microarchitecture is client–server architecture (Figure 5.14). This arrange-

ment evenly splits the four functional elements of an app between clients and servers. While data access

logic and data storage reside on the server side, presentation and application logic reside on the client

side. In practice, the application logic is often split between the client and server, although it predom-

inantly resides on the client. This design balances processing demands on the server by having the cli-

ent do the bulk of application logic and presentation. It also reduces the network intensity of an app by

limiting the data flowing over the Internet to only that which is needed by the user. Placing the data

access logic on the server side accomplishes this; the queries from the client are initiated from the client

but executed by the server, which only sends back the results of those queries rather than the entire raw

data as client-based microarchitectures do. The downside of client–server app microarchitectures is

that different types of client devices must be designed to invoke the data access logic on the server

side in compatible ways. Depending on how the server-side functionality is split between an app

and the platform, this arrangement can potentially free up app developers’ attention to focus their atten-

tion on developing the core functionality of the app (where most end-user value is generated) and fret

less about the data management aspects of the app.

5.4.1.7 Peer-to-peer microarchitecture
The final app microarchitecture is peer-to-peer architecture (Figure 5.15). The same device acts as a

client and as a server in this arrangement, with significant elements of each of the four functions of the

app present on it. Because each device serves simultaneously as a client and a server, the consolidated

device is often referred to as a servlet. In its pure form, there is no separate server or centralized point of

control. This means that every client also simultaneously acts as a server. Therefore all devices con-

nected to peer-to-peer architecture can simultaneously initiate requests and fulfill requests from each

other. The key advantage of this approach is immense scalability: The addition of every new client

simultaneously adds server capacity to the network. Scaling the capacity of any other architecture usu-

ally requires additional capacity on the server side, the need for which is eliminated by the use of peer-

to-peer microarchitectures. Skype is an example of such architecture; it allows tens of millions of users

to simultaneously use the service and can readily and automatically scale to meet rising demand. The

incremental cost of adding another use is therefore pennies, and adding more users improves app per-

formance unlike all other app microarchitectures where adding more users degrades performance.
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FIGURE 5.14

Client–server app microarchitectures evenly split application functionality among clients and servers.

90 CHAPTER 5 Platform Architecture



However, this microarchitecture has two caveats. First, there is little or no control that the app devel-

oper has over the users of such apps. This limits the utility of this arrangement to only a few types of

applications where central coordination and control are not needed and need for scalability is extremely

high. Second, this architecture rarely exists in its purely decentralized form. Some centralized control is

often needed and accomplished by retaining some of the server-side functionality on a separate server.

This hybrid form of peer-to-peer architecture infuses some elements of the other microarchitectures

(e.g., adding a central server) into the completely decentralized pure-form peer-to-peer arrangement.

Client–server and cloud-based architectures dominate contemporary platforms. Hybrid microarch-

itectures that mix-and-match properties of these five are increasingly in use; nevertheless, one

architectural approach dominates even in such hybrids. For example, Skype has a predominantly

peer-to-peer architecture, with some elements of the client–server model incorporated into it (e.g.,

monitoring user availability and initiating calls).

5.4.1.8 Tiering in app microarchitectures
The preceding app microarchitectures split the functional elements of an app between two devices: a

client and a server. They are therefore called two-tier architectures. This logic can be extended to split-

ting this functionality among one client but more than one server. As this splitting is done using three

devices, it becomes a three-tier architecture (see Figure 5.16); more than three devices makes it an
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FIGURE 5.15

Peer-to-peer app microarchitecture.
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n-tier architecture. In any such multi-tiered architectures, there is always only one client. (Tiering is

conceptually distinct from layering.4)

The upside of tiering is that it increases scalability of the app. Separating the functional elements of

an app intomore than two tiers allows just one device associatedwith specific functionality to be replaced

or upgraded. If the demand for, say, application logic increases, just the servers hosting that functional ele-

ment need to be replaced or upgraded. In platform-based apps, three-tier architectures are often usedwhen

anappdrawsondifferent servers forpartof its functionality.Tieringalsoprovidesappdevelopers the future

flexibility tomoreeasilymoveone tierof the app frombeingappdeveloper-owned tobeingplatform-based

or vice versa. This phenomenonwaswidely observedwhenApple introduced its cloud-based data storage

service in its iOSplatform,whichmany app developers deployed for the data storage tier. The downside of

tiering is that because the data now must travel along more paths, the network bandwidth intensity and

the risk of sluggish performance both increase with tiering. The remainder of this book will use a two-tier

architecture for simplicity; the logic can readily be extrapolated to multi-tier architectures.

An ongoing evolution in app microarchitectures is that the networks connecting various devices

have increasingly migrated to Internet protocol (IP). Independent of the type of network (Wifi, 3G,

LTE), the common language spoken by them is IP. This protocol delivers just about any type of infor-

mation (e.g., voice, video, text) formatted as small IP packets—of fixed-size blocks of data—with a

standardized structure between any two devices designed to speak the language, and it does so robustly,

error-free, inexpensively, and over long distances using the Internet. This allows increasingly hetero-

geneous devices and networked “things”—including ones that do not yet exist—to interoperate with

each other from the client and server side.
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Tiering.

4Layering is a special extension of modular design that constrains permissible interactions among modules. A subsystem

assigned to a specific layer can use only the subsystems in the lower layers or in the same layer, but not in the layers above it.
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5.4.1.9 Strategic and evolutionary consequences of app microarchitectures
An important question for app developers is therefore how to partition an application across the Internet

(internal microarchitecture) and across the app and the platform (external microarchitecture). These

choices are made early in their lifecycle and are almost impossible to subsequently reverse. Several

properties of an app are affected by the microarchitectural choices made by their developers during

their initial implementation. Some of these qualities are immediately visible in the short term: speed,

security, reliability, scalability, testability, and usability. Performance of an app depends on the com-

plexity of interaction and the amount of communication between the app and the platform ecosystem

(including other apps). The amount of communication in turn depends on how the four pieces of func-

tionality are distributed between an app and the platform by its developer’s architectural choices.

However, other evolvability-related qualities are visible only in the longer term: maintainability,

extensibility, evolvability, and the capacity to mutate and envelop adjacent app market segments.

(For example, changes to an app can be made faster and more cost-effectively if few systems outside

of the app require tweaking when the internal functionality of an app is changed.) App microarchitec-

ture also enables versioning of apps, as described in Chapter 11. App microarchitecture also has direct

strategic consequences for same-side and cross-side network effects, and for how inextricably an app

can get locked into one platform. Therefore, evolvability of an app is preordained by its microarchi-

tecture. Unfortunately, architectural choices always involve tradeoffs; maximizing one attribute

usually requires compromising on another. The consequences for the app’s visible performance are

immediate, but the more profound evolvability consequences surface much later. App designers must

be cognizant of these tradeoffs so they can make them consciously rather than recognizing them after

the fact. (Chapter 11 tackles these issues in detail.)

5.5 FOUR DESIRABLE PROPERTIES OF PLATFORM ARCHITECTURES
Platform architecture is an enduring—often irreversible—choice with profound evolutionary and stra-

tegic consequences. Good platform architecture has four desirable properties. These architectural prop-

erties always invoke tradeoffs such that dramatically increasing one property will reduce another. It is

therefore impossible for any architecture to simultaneously have high levels of all of these properties.

On the other hand, some of these properties are correlated; increasing one can help nudge another prop-

erty upward. A platform architect should aspire for “satisficing” (a mix of satisfactory and sufficient)

levels of a mix of these properties. We focus primarily on the architectural properties of the platform

rather than of apps. Apps can potentially inherit a platform’s architectural strengths, but this usually

requires that the platform first have them! Performance is visibly missing on this list, largely because an

acceptable level of performance is taken to be a precondition for a platform to be viable in the imme-

diate future. By taking performance off the list, we focus on the core properties of architecture that

influence the evolution of a platform. The four desirable properties are:

1. Simple. The architecture of a platform should be simple enough to be comprehensible at

least at a high level of abstraction. This means that the platform should be conceptually

decomposable into its major subsystems, the platform’s functionality reused by many apps should

be identifiable, and interactions between the platform and apps should be well defined and

explicit. In short, simplicity pays off.
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2. Resilient. One defective app should not cause the entire ecosystem to malfunction. The key to

such resilience is to ensure that apps are weakly coupled with the platform through interfaces

that do not change over time. This approach of keeping platform–app dependencies to a minimum

also makes the entire ecosystem more stable in its performance.

3. Maintainable. It should be possible to cost-effectively make any changes within the platform

without inadvertently “breaking” apps that depend on it. Conversely, changes in an app should not

require parallel tweaking in the platform. This is accomplished through partitioning it into

standalone subsystems (described elsewhere in this chapter) and then linking them using

standardized interfaces. Designing for maintainability also increases a platform’s composability

(i.e., capacity to integrate with new apps).

4. Evolvable. Evolvability means the capacity to do things in the future that it was never originally

designed to do. For this, the architecture—particularly the interfaces—of a platform must

endure over time. This property allows a platform to be extensible in the near term and exhibit

emergent behavior in the longer term. The key to evolvability is stable yet versatile platform

interfaces that ensure autonomy between the platform and apps, make the architecture rich in “real

options” (Chapter 8), and permit its mutation into derivative platforms (see Chapters 7 and 9).

5.5.1 Architectural lessons from cities
The architecture of platform ecosystems has several interesting parallels with the architecture of

modern cities with long histories such as Atlanta or Paris (Table 5.1). Although this chapter focuses

primarily on similarities in their structure, we revisit the parallels in their governance and evolution in

subsequent chapters.

Table 5.1 Parallels Between the Architecture of Modern Cities and Platform Ecosystems

City Platform Ecosystem

Structure

Mix of preserved old buildings and new buildings Mix of stable platform and new apps

Variety of buildings Variety of apps

Stable roads and utilities (e.g., water, electricity,
and sewage)

Stable interface infrastructure

Shared public facilities and infrastructure Shared platform services and functionality reused by
many apps

Discrete neighborhoods with unique character
and purpose (e.g., residential vs. commercial)

Partitioning of functions with commonality and reusability
into the platform, and unique functionality with low
reusability into apps

Multiple stakeholders (businesses, residents) Multisidedness (app developers, end-users)

Long lifespan of streets Long lifespan of platform interfaces

Varied building designs Varied app microarchitectures
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5.6 MODULARITY OF ARCHITECTURES
Modularity is the general property of any complex system. Any complex system can be decomposed

into smaller subsystems that are always going to be interdependent to some extent and independent to

some extent (Simon, 1962). Modularization then refers to the extent to which the interdependence

among these subsystems is intentionally reduced by design (Parnas, 1972; Parnas et al., 1985). Reduced

interdependence simply means that changes in one subsystem do not create a ripple effect on the rest of

the complex system. When viewed as a complex system, the two distinct types of subsystems in a plat-

form ecosystem are the platform and apps. An ecosystem exhibits modularity if the platform and apps

can be designed independently but will work together to constitute the ecosystem (Sanchez and

Mahoney, 1996). Modular designs are therefore more Lego-like. An ecosystem can be intentionally

designed to be more modular, although a less modular design can accomplish the same function.

We therefore distinguish the process of modularization from the property of modularity. Modulariza-

tion is the deliberate activity of increasing modularity of a system whereas modularity is a system’s

descriptive property of being more modular.

Consider a simple illustration of two different designs of a screwdriver in Figure 5.17. The first design

(A) is a non-modular (“monolithic”) design and the second design (B) is a modular design. Both designs

provide the same functionality. However, the more modular design can be produced differently vis-à-vis

the monolithic design. The monolithic design has to be produced as a single unit by one organization.

(The smallest subsystem is the whole screwdriver.) The modular design has four parts (the four subsys-

tems that constitute the whole screwdriver), each of which can be produced by four independent

Table 5.1 Parallels Between the Architecture of Modern Cities and Platform Ecosystems—cont’d

City Platform Ecosystem

Governance

City ordinances Platform design rules

City taxes Pricing policies and revenue-splitting arrangements
between platform owner and app developers

Citizens’ right to vote Shared governance (decision-rights partitioning)

Law enforcement by the city Interface standards enforcement by the platform owner

Autonomy of citizens within the constraints
of city laws

Autonomy of app developers, with the constraints of the
platform’s rules

Evolution

Retirement of old assets Retirement of legacy functionality

Expansion into outskirts Expansion with new interfaces and APIs

Gentrification of neighborhoods Widespread adoption of once-unique services and
functionality by many apps

Renovation of historic buildings Expansion of platform core functionality over time

Capacity to absorb new migrants Capacity to scale

Modernization while preserving its character Emergent properties of the platform

955.6 Modularity of Architectures



organizations. The only information that each of these organizations needs to know is the size and shape

of interface for the part for which they are responsible. As long as each of them complies with the spec-

ification for their part, fit between the four parts is guaranteed without the need for any additional coor-

dination among them. A modular architecture of the screwdriver (B) therefore allows its production to be

distributed amongmultiple organizations. Put another way, modularization of the screwdriver’s architec-

ture makes viable a different organizational design for producing it. The design philosophy is minimizing

dependence across the four parts but maximizing it within them. These organizations need not know any

internal details of other parts or how they are constructed, just how to connect to them. They can work in

blissful ignorance of the other three parts of the screwdriver and focus exclusively on the one part for

which they are responsible. The only requirement for compatibility is compliance with the appropriate

physical dimensions of the interfaces. This allows each organization to specialize more deeply in improv-

ing its own part, engendering a laser-like focus on honing its core competence. If the same set of orga-

nizations attempted to jointly produce the monolithic design, they would require intense supervision,

iteration, and coordination to produce it. A potential tradeoff is that the monolithic design might initially

outperform the modular design. However, the modular design offers one advantage: Any new shape or

size for a screwdriver tip can readily be added to the modular design in the future, even if it was not

foreseeable by its original designer. This property is what we described in Chapter 2 as emergence.

Changes in the architecture of the product can therefore open up new possibilities for who can participate

in producing it and whether partitioned production can be accomplished cost-effectively. The process of

converting a monolithic design into a more modular design is called modularization.
We can draw five useful lessons about design modularization from this example. Modularization of

the screwdriver’s architecture:

1. Makes its production divisible among many organizations (partitioning)

2. Restricts their interdependence to its connection points (interfaces)

FIGURE 5.17

Monolithic (A) versus modular (B) design of a screwdriver.
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3. Relies solely on compliance with interface specifications to integrate the four organizations’

outputs (systems integration)

4. Sacrifices some performance for future flexibility (the so-called modularity tax)

5. Allows unforeseeable capabilities to be added in the future (emergent properties)

5.6.1 Software modularity
The same logic applies to the design of software-based platform ecosystems. Modularity of a platform

ecosystem refers to the degree to which the platform and apps can be designed, implemented, operated,

and altered independent of each other (de Weck et al., 2011, p. 188). Modularity in software systems is

a property that can reside anywhere along a continuum ranging from perfectly monolithic to perfectly

modular. A perfectly monolithic system is one where every app is highly interdependent with the plat-

form. An example of a monolithic architecture is one where a platform and an app are integrated into a

single system (e.g., the Mail app in iOS). A complex system like this can achieve high levels of inte-

gration across the subsystems that constitute it, and can exhibit high levels of performance and an

assemblage of components that fit each other like a glove. The iPad would be an example of a mono-

lithic hardware system. The other extreme would be a highly modular complex system such as a desk-

top PC. Each component connects to others using highly standardized interfaces, and can be replaced

with a different component that adheres to the same interface specifications. This sort of plug-and-play

architecture is an example of a modular system. Most complex systems fall in between these two

extremes of monolithic and modular architectures.

Although the merits of either approach have been debated for years, industry battles have been

fought over the philosophies (e.g., the PC vs. Mac dynamics in the 1990s); we will refrain from even

attempting to settle that debate in this book. Instead, the important point to remember is that the degree
of modularization of platform architectures has strategic and evolutionary consequences. Depending

on a platform’s strategy, different types of architectural choices will lead a platform ecosystem down

different forks in the evolutionary road. Some architectures are more conducive to fostering the inven-

tions of these “black boxes” than others. Therefore architectural choices by platform owners, and also

by app developers, have decisive consequences for whether one ecosystem out-innovates another. But

understanding these dynamics requires first understanding various elements of architecture with a

degree of nuance that is not yet common practice among software developers and managers.

5.6.2 Platform architecture: an ecosystem’s DNA
Architecture is to a platform ecosystem what your DNA is to you: You cannot change it after the fact.

Even though it is possible to change it in theory, it is almost impossible to change it in practice. It puts

you on a future trajectory that you cannot completely escape. Likewise, platform architecture preor-

dains the realm of what a platform can and cannot evolve into. Platform architecture—like DNA—

imprints future evolvability of its ecosystem. But much like your and my DNA did not guarantee good

outcomes in life without our own effort, a platform ecosystem’s evolution must be guided, prodded, and

nudged. Architecture therefore creates the potential trajectories for a platform’s evolution, but much

more is needed to realize its evolutionary potential.

Modularity in the platform’s design (1) allows disaggregation of its production rather than having

one organization produce it and (2) provides future flexibility to extend the platform’s native
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capabilities in ways that cannot be anticipated at the outset by its original designers. These two advan-

tages are much more powerful together than the sum of their parts: Many outsiders can extend the plat-

form’s capabilities far beyond what it started out with. This gives a platform emergent properties.

Emergence is a property where new capabilities unforeseen by the platform’s original designers are

added to a platform by an app (Dougherty, 1992). By making apps more self-contained and autono-

mous, modularization gives them the freedom to evolve and grow. It therefore infuses self-organizing

properties into a platform’s ecosystem.

Modular architectures rely on stable, well-defined interfaces to ensure interoperability between a

platform and apps, minimize unnecessary interdependencies, and ensure that the remaining interdepen-

dencies are well understood by the app developer. Platform interfaces are an important leverage

point—places in a platform’s ecosystemwhere a small change produces a disproportionately large evo-

lutionary influence—and represent loci of power to nudge its evolution. Modularization entails min-

imizing dependence between the platform and apps, but maximizing it within each of them (Ethiraj and

Levinthal, 2004a). Modularity, however, is not an absolute property of a platform ecosystem. A plat-

form can intentionally be designed to be more or less modular. Platform modularization is a necessary

but insufficient precondition for app modularization. If a platform is modular in its design, apps pro-

duced for it have the potential to be modular as well. Even if the platform is highly modular, it does not

automatically follow that apps in its ecosystem will also be highly modular. Different apps for the same

platform can have different levels of modularity, depending largely on the microarchitectural design

choices made by the app developer. If an app is modular in its design, it can be designed and produced

independently of the platform and other apps in the ecosystem. It is therefore important to distinguish

between architectures at the platform level and at the app level; these two aggregate to describe the

modularity of an ecosystem’s overall architecture.

Modularity in platform ecosystems is achieved by (1) decoupling the platform from apps (i.e., min-

imizing their interdependencies) and (2) codifying the interface specifications for how an app interacts

with the platform (Tiwana, 2008a,b; Tiwana et al., 2010). Modularization enables the two core func-

tions of architecture in platform ecosystems: partitioning and systems integration. It facilitates parti-

tioning by reducing design dependencies between the platform and apps, and in turn reduces

dependencies in their development tasks. Changes in one app become independent of those in others.

Modularization is therefore an antidote—and a vaccine—against growing complexity.

5.6.3 Design precedes production
A platform ecosystem’s architecture determines how its production can be organized (Baldwin and

Clark, 2000, p. 30). Recall the mirroring principle from Chapter 2. A modular architecture allows a

multitude of app developers to participate whereas a monolithic architecture would have required a

single integrated organization to do all the development work. The development of the platform

and apps can then proceed independently and concurrently in different organizations without much

need for day-to-day interactions among them. In economists’ lingo, modularity thus reduces “transac-

tion costs” between platform owners and app developers (Baldwin and Clark, 2000, p. 354;

Williamson, 2010). Concurrent development of various apps not only means faster development

but also potentially translates into market competition among multiple possible solutions to the same

user needs by rival app developers. It also lowers the need for the platform owner to constantly monitor

and watch app developers, whose alignment with the platform’s goals can be guaranteed by self-interest
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through proper platform governance. The more profound benefits of such partitioning are in the evolva-

bility of the platform, where modularization makes growing complexity tenable and embeds powerful

“real options” in the design (Baldwin and Clark, 2000, p. 90; Gamba and Fusari, 2009). (These benefits

are described in Part III of this book.)

Modularization also facilitates systems integration by reducing the need for explicit coordination

and communication among the platform owner and the app developers to accomplish integration of

apps with a platform (Baldwin and Clark, 2000, pp. 77, 216; Tiwana, 2008a,b). By reducing the depen-

dencies between the platform and app to just their interfaces, compliance to interface specification is all

that is needed to ensure that they will seamlessly interoperate. In economist’s lingo, modularity thus

reduces “coordination costs” among platform owners and app developers (Gulati and Singh, 1998).

Systems integration costs are ongoing costs potentially faced by app developers every time they make

changes to an app. By dramatically reducing them, modularization reduces their disincentives to

rapidly innovate.

Keeping transaction costs and coordination costs in control is usually why organizations organize

innovation work inhouse rather than outsourcing it. But modularity can wipe out these advantages of

traditional organizations and make ecosystem-based models just as viable. It therefore enables parti-

tioning and dispersion of innovation work across multiple organizations where it was not possible

before (Baldwin and Clark, 2000, p. 354). This can accelerate the evolution of the entire ecosystem,

generating fierce Red Queen competition for rival platforms. Faster evolution, however, leads to sur-

vival only under some conditions, which Part IV of this book explains. Modularization can therefore be

a powerful organizing strategy that enables decentralized innovation to become viable while preserving

ecosystem-wide coordination.

5.6.4 Design modularity enables production modularity
Modularization of platform architectures matters also because it determines whether development

around a platform can feasibly be organized as an ecosystem or whether it must be done within the

boundaries of a single organization. Different architectures impose different constraints on those

who interact with it or are exposed to it (van Schewick, 2012, p. 4). The preceding discussion focuses

primarily on modularity in design, overlooking another kind of modularity—modularity in production

(Gamba and Fusari, 2009), which refers to modularity in the logic used to organize production of a

design. A traditionally integrated organization represents a monolithic organizing logic whereas a dis-

tributed ecosystem composed on many independent app developers represents a modular organizing

logic used for producing the design. Modularity of production is a platform governance decision (the

focus of the next chapter), but one whose feasibility is determined by modularity of the platform’s

design. Lack of design modularity, in contrast, makes production modularity infeasible (Langlois,

2002; Sanchez and Mahoney, 1996). Architectural choices therefore preordain the realm of execution

possibilities. This is the essence of the mirroring principle. Design modularity and production modu-

larity are therefore fundamentally isomorphic (i.e., design modularity enables production modularity)

(Baldwin and Clark, 2000, p. 12; Hoetker, 2006). A platform’s architecture is therefore particularly

decisive in the evolution of its ecosystem because it is closely intertwined with the organization of

the ecosystem: who chooses to participate, how much they are willing and able to invest in creating

complementary innovations around a platform, and their incentives to innovate.
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5.7 GOLDILOCKS STRIKES AGAIN
On the surface, it might appear that modularity is then a desirable architectural property at every level

of a platform’s ecosystem. However, modularity introduces tradeoffs that might not be worth its cost in

some circumstances. The key tradeoff between modular and monolithic architectures is that between

immediate performance and future evolvability (Figure 5.18).

Monolithic architectures usually can outperform modular ones in the short run but lead to rigidity

because they are hard to change in small increments. Modular architectures, in contrast, makes a plat-

form ecosystem more evolvable even though short-term performance will usually be poorer than

monolithic architectures. Therefore monolithic architectures optimize immediate performance but

offer lower evolvability, and modular architectures compromise immediate performance but offer

higher evolvability. An optimal, just-right level of modularity is somewhere between the two extremes

that strikes a balance between this performance–evolvability tradeoff. Modular architectures should

therefore be favored over monolithic architectures when rapid innovation is more important than over-

all performance (Ethiraj and Levinthal, 2004b). Let us put ourselves in the shoes of a platform owner

and app developer to examine the upsides and downsides of modularization from their perspectives.

5.7.1 Upsides of modularization
Modular architectures have four advantages for platform owners and app developers, as summarized in

Table 5.2.

Immediate
Performance

Future
Evolvability

Modular ArchitectureMonolithic Architecture

Intermediate

High

Low

FIGURE 5.18

Tradeoffs between modular and monolithic platform architectures.

Table 5.2 Upsides of Modularizing a Platform for Platform Owners and App Developers

Platform Owner App Developer

Massively distributed innovation Less reinvention, more specialization

Increased variety of apps Valuable ignorance

Greater volume of incremental innovation Greater app evolvability

Control via architecture rather than ownership Multihoming in rival platforms more feasible
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The upsides of platform modularization for platforms owners are:

1. Massively distributed innovation. Modularization, like the de Prony trigonometric tables project,

allows a platform owner to massively distribute innovation around a platform among thousands

of independent app developers. A modular architecture wipes out the informational and

coordination cost advantages of integrated organizations and makes mass collaboration across

many organizations viable. Modularization enables a platform owner to leverage the distinctive

capabilities of loosely coupled, independent, hungry app developers. Thus a modular architecture

shifts the locus of innovation and risk-taking from the platform owner to more numerous app

developers. This is particularly valuable when outsider app developers understand end-user needs

and have diverse skills and capabilities that the platform owner does not possess inhouse

(and cannot readily ramp up). Modularization also increases the future flexibility of the platform’s

trajectory (“option value” in Part III), which is most valuable when end-user preferences are

diverse and unpredictable (Adner and Levinthal, 2001).

2. Increased variety of apps. By minimizing platform–app dependencies, app developers do not have

to coordinate their own work with the platform owner yet are assured of subsequent systems

integration. In other words, decreasing transaction costs between them reduces the costs of using

the market to produce apps relative to developing them inhouse. With this come high-powered

incentives that attract app developers, potentially increasing the variety of platform-specific apps.

(Recall that outsiders usually have higher-powered incentives to perform well than inside

employees.) This increases a platform’s appeal to end-users and gives it a leg up in Red Queen

competition with rival platforms.

3. Greater volume of incremental and app-level innovation. Innovation at the ecosystem can broadly

be classified into four distinct modes—incremental, modular, architectural, or radical—as

shown in Figure 5.19 (Henderson and Clark, 1990). It can involve refinement (incremental
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The four modes of innovation.
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innovation) or replacement (modular innovation) of apps but leaving the linkages between the

platform and apps unchanged. It can also involve changing the linkages between the platform and

all its apps but leaving the apps largely stable (architectural innovation), or completely changing

both the platform–app linkages and replacing the apps simultaneously (radical innovation).

Modularization accelerates the quantity of innovation in the lower two cells. The reduced

dependence of apps on the platform’s innards allows the platform owner to make changes freely

inside the core platform. Therefore, the threshold for modular innovation is much lower in

modularized platforms. This potentially accelerates incremental innovation within the platform.

(Modular innovation can be thought of as apps-driven innovation.) As a platform’s architecture

increases in its modularity, the innovation mode emerging around it shifts its evolutionary

trajectory from being incremental tweaking (as in single-organization platforms) toward being

modular innovation-oriented. Modularization of the platform architecture simplifies coordination

with app developers, which is now achieved through design parameters and interface

specifications rather than direct communication. Partitioning of apps also reduces the scope of

troubleshooting and testing, reducing app development/revision timeframes (Parnas, 1972).

Together, these changes speed up how fast app developers can introduce new apps and refine

existing apps. New apps can rapidly extend the platform’s own capabilities, and a rapid pace of

introduction of new and revised apps continues to augment the usefulness of the platform. In

contrast, the threshold for nonincremental innovation is much higher in monolithic platforms.

Overall, this drives up the speed of app-level innovation around the platform. Therefore, modular

platform architectures provide the advantage of variety today and evolvability tomorrow (Baldwin

and Woodard, 2009).

4. Control via architecture rather than ownership. Finally, modularization of platform architecture

potentially allows the platform owner to maintain some control and substantial influence over

the ecosystem’s evolutionary trajectory. Ordinarily, this level of control would require

ownership of the entire ecosystem and the commensurate risk associated with developing apps to

complement the platform. Maintaining sufficient control without compromising app developers’

autonomy is a central aspect of governance of modularized platforms that we explore further

in the next chapter.

The upsides of platform modularization for app developers are:

1. Less reinvention, more specialization. Platform modularization allows app developers to use the

platform’s services and reusable functionality as the starting point for their own work. The

cognitive bandwidth freed from not having to reinvent the wheel allows them to invest more effort

on functionality that differentiates their app in the marketplace. Put another way, it fosters

specialization among app developers and reduces innovation costs.

2. Valuable ignorance. Apps in modularized platforms can be written with little knowledge of

the code in the platform. This effectively reduces the conceptual design space that individual app

developers must grasp.

3. Greater app evolvability. App developers can independently upgrade their apps without having to
worry about interdependence or ripple effects elsewhere in the ecosystem. Each app is therefore

free to evolve independent of the rest of the ecosystem, within the constraints imposed by the

platform’s interfaces (Gamba and Fusari, 2009). This increases evolvability of apps relative to

monolithic platforms.
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4. Multihoming in rival platforms becomes more feasible. Rival platforms are likely to share some

common functionality, which app developers are less likely to reinvent if a platform is

modularized. Therefore, more modular platform architectures increase app developers’

incentives to join a platform and to remain engaged in developing around it (Baldwin and Clark,

2006). Furthermore, the cognitive bandwidth freed up by modularization and greater

specialization in their app domain’s functionality makes it more feasible for app developers to

develop their app on multiple rival platforms, lowering their risk of being straddled with a

losing platform.

5.7.2 Downsides of modularization
Modular architectures have four disadvantages, respectively, for platform owners and app developers,

as summarized in Table 5.3.

The downsides of platform modularization for platform owners are:

1. Modularity is not free. Modularization is not free for platform owners. A platform owner must

incur substantial upfront costs of modularizing a platform and establishing its interfaces. These

upfront costs are usually much higher than those for more monolithic platform architectures.

2. Technical performance takes a hit. Modular architectures pay a modularization performance tax.

The modular decomposition of a platform’s ecosystem might split functionality that should have

belonged in a single system instead of being split across many subsystems. The increased need for

communication among these subsystems can decrease the overall technical performance of the

ecosystem. It is usually not possible to fine-tune a modular system as precisely as a monolithic one

(Langlois and Garzarelli, 2008). Therefore the technical performance of a modularized

architecture is often worse than a comparable monolithic architecture for the same platform. Thus

the assumption in modular systems thinking is that the benefits of decreased complexity

and greater modification flexibility in apps and platforms offset the loss of overall

system-wide performance.

3. Modularization forecloses architectural innovation. The choice of a platform’s architecture puts it

on a different trajectory in terms of the dominant mode of innovation (see Figure 5.20). More

modular architectures are more conducive to incremental and modular innovation but often

become hindrances to architectural and radical innovation (Figure 5.19). Recall that freezing a

platform’s interfaces is a precondition for modularization of its architecture. Platform interfaces,

once widely adopted by app developers, lock in the platform for a substantial period of time even

when a viable superior alternative subsequently becomes available (Langlois and Garzarelli, 2008).

Table 5.3 Downsides of Modularizing a Platform for Platform Owners and App Developers

Platform Owner App Developer

Modularity is not free Modularity imposes additional costs

Technical performance takes a hit App performance takes a hit

Modularization forecloses architectural innovation Modularity constrains experimentation

Increased risk of imitation by rivals Leveraging the platform risks getting locked into it
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(Think ofApple’s 30-pin i-device connector replaced by a 9-pin Lightning connector 10 years later in

2012, the QWERTY keyboard, USB, and the 30-year-old VGA connector. Although technologically

superior alternatives became available—e.g., the Dvorak layout for keyboards and a plethora of

potential successors for VGA interface standards—the legacy interfaces continue to widely persist.)

The costs of poor architectural choices can therefore be high in the long run. Over time,

modularization also reduces the platform owner’s capacity for architectural innovation because

balkanized expertise of the platform owner (from deepening its focus on the platform and away from

apps) leads to a myopic understanding of the entire ecosystem. This focus serves it well, until the

arrival of a different dominant design that offers sufficient improvements over the existing one

surfaces. The platform owner’s core competencies can then become its weaknesses. There are

numerous examples of organizations that were unable to adapt to changes in their industry’s

dominant design. However, as Part IV describes, major innovations at the platform level are not

impossible even with modular designs.

4. Increased risk of imitation by rivals. Monolithic designs usually take more time for rivals to

understand and copy. Platform modularization therefore can increase the risk of imitation

(Ethiraj et al., 2008; Pil and Cohen, 2006). A nearly modular design that retains some monolithic

properties strikes an optimal balance between reducing ecosystem-wide coordination costs and risk

of imitation by rivals (Figure 5.21). Therefore, intermediate levels of modularity are preferable.

Platform modularization has four downsides for app developers:

1. Modularity imposes additional costs on app developers. Developing for a modularized platform

imposes costs of compliance with its design rules and interface specifications on app developers.

These costs are often offset by the reduction in systems integration costs and gains in

app evolvability.
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Platform architecture determines the dominant modes of ecosystem-wide innovation.
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2. App performance takes a hit. Apps built around modular architectures often trade off technical

performance (e.g., speed) by relying on a platform for some functionality. Such performance

is likely to be higher in standalone, monolithic apps that are entirely developed by an app

developer. Thoughtful app microarchitectures can compensate for this performance hit to

some degree.

3. Modularity constrains experimentation. Complex modularized platform interfaces and their

restrictions can constrain experimentation and flexibility of app developers as they attempt to

develop new versions of their apps. Ingeniousness by app developers in app microarchitectures

and their degree of tiering can sometimes help overcome such constraints, as we

subsequently explain.

4. Leveraging the platform increases app developers’ vulnerability. Modular platforms give platform

owners an increased capacity to innovate within a platform. As a platform itself gains new or

innovative platform-specific functionality and software services, app developers can leverage it in

their own apps. (This is called increasing the synergistic specificity between a platform and an app

(Schilling, 2000).) But this can be a double-edged sword if the leveraged functionality is unique to

a platform because it makes an app more deeply dependent on and integrated with that platform.

This increases the risk that an app developer will be locked-in with the platform and less able to

multihome that app among rival platforms.

Overall, modularization is worth its downsides when a platform’s markets are heterogeneous, riddled

with uncertainty about technology trajectories and end-user preferences, and require deep pockets of

specialized complementary knowledge that the platform owner does not have inhouse.

5.7.2.1 Why modular enough is good enough
Designing a perfectly modular platform architecture is almost impossible because it requires recogniz-

ing, anticipating, and resolving all app–platform dependencies in advance (Baldwin and Clark, 2000,

p. 6). This is commonly problematic in practice because a platform’s designers quickly run into the very

human limits of bounded rationality. But the good news is that modular enough is good enough. Perfect
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FIGURE 5.21

Modularization must balance the reduction in coordination costs against increased risk of imitation.
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modularity is still a useful ideal to aspire toward because even imperfect modularity reduces costs of

software evolution and experimentation. Recent research has indeed shown that intermediate levels of

modularity produce the most useful innovations (Ethiraj and Levinthal, 2004b). Architects aspiring to

modularize platform architectures will likely end up somewhere short of perfect modularity and away

from a monolithic design, which is a perfect place to be, as shown in Figure 5.18.

5.8 TWO MECHANISMS FOR MODULARIZATION
Modularization requires a mix of openness and secrecy. The logic behind modular architectures is to

share information about the interfaces but keep the proprietary innards of individual apps and the plat-

form secret. The secrecy in modular architectures comes from its first mechanism: decoupling. The

openness in modular architectures comes from its second mechanism: standardization of interfaces.

Decoupling facilitates decomposition of the ecosystem into relatively independent apps and the plat-

form; interface standardization facilitates their reintegration after they are independently developed.

This ability to separate and integrate subsystems is what software engineers call composability
(Messerschmitt and Szyperski, 2003, p. 89).

5.8.1 Decoupling
Decoupling (or loose coupling) refers to the degree to which the components of an ecosystem are

designed to be independent of each other such that changes within one component do not affect others

in the ecosystem. At the heart of modular architectures is the idea of creating a “block-independent”

structure, where the blocks represent the subsystems in an ecosystem (Baldwin and Clark, 2000, p. 61).

The premise is that if details of a particular block of code are consciously hidden from other blocks,

changes to one block can be made without having to change the other blocks (Parnas, 1972). Readers

with programming expertise will immediately recognize this as the foundation of object-oriented pro-

gramming languages, which are based on the idea proposed originally by David Parnas. In practice, this

means that the platform and app should be designed to minimize interdependencies between them.

Changes inside an app should not have an unpredictable ripple effect on the platform or on other apps.

Conversely, changes inside the platform or in other apps should not adversely affect the functioning of

that app.

Perfectly decoupled designs exist in theory but rarely in practice. Therefore, it is useful to think of

decoupling as a slider scale with perfectly decoupled and tightly coupled on either ends of the scale.

Decoupling lowers dependencies between the platform and an app, minimizing the need for coordina-

tion between the app developer and the platform owner when either the app or the platform is tweaked.

Changes internal to one do not have a ripple effect on the other. A decoupled architecture can therefore

potentially simplify interactions among app developers and the platform owner. This also means that

coupling within an app and within the platform can be high such that subsystems within each can have

strong dependencies. Therefore, decoupling means weak coupling between a platform and an app but

strong coupling within a platform and within an app (Figure 5.22). Put another way, apps and platforms

can be as monolithic internally as needed yet be a part of a highly modular ecosystem.

Decoupling is accomplished through a design process known as encapsulation (Baldwin and Clark,
2000, p. 63; Zweben et al., 1995). Any subsystem such as the platform involves two types of

106 CHAPTER 5 Platform Architecture



information: visible information and hidden information (Figure 5.23). Information about what’s inside

a platform is its architecture’s hidden information. It is information that is visible only to its developer.

A well-decoupled platform should minimize the need for app developers in its ecosystem to have to

know any hidden information. Internal details of its implementation should be invisible and untouch-

able by an outsider. The external view of the platform should display only its essential properties and

hide unnecessary details of its internals. It must reveal as little as possible about its inner workings

(Parnas, 1972). This property of information hiding is known as encapsulation of that subsystem.

The external view is the platform’s visible information, accessible to outsiders through its interfaces.
The platform’s interfaces are therefore the entirety of its visible information (Baldwin and Clark, 2000,

p. 89). This means that only the interfaces of a platform are visible to app developers. The same logic

can be applied to individual apps to encapsulate them by separating hidden information from

visible information.

Interacting with the platform should require nothing more than access to its interfaces (i.e., the vis-

ible information) specified in its architecture. App developers can access the platform’s functionality

and services through its interfaces without having to knowwhat goes on inside. The platform becomes a

black box to app developers. It is much like driving a car: All you need to be able to drive is know how

to use the car’s controls; knowing how it works under the hood is not necessary. This allows app devel-

opers in a platform ecosystem to focus exclusively on their own app development work and have con-

fidence that compliance with the platform’s interface specifications will guarantee interoperability

with the platform. Encapsulation of the platform therefore hides complexity (Ethiraj and Levinthal,

2004b). The same logic applies to encapsulation of individual apps. Encapsulating complexities and

implementation details within subsystems not only preserves secrets about the functioning of the plat-

form and individual apps, it also alters the competitive dynamics with rival platforms, as the next sec-

tion of this book elaborates.
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The distinction between visible versus hidden information in a subsystem.
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Weak coupling between a platform and an app and strong coupling within either.
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Decoupling requires creating and maintaining rigorous partitions of design information into hidden

and visible subsets (Baldwin and Clark, 2000, p. 413). Decoupling can be accomplished in two ways:

(1) splitting the ecosystem into high and low reusability subsystems and (2) specifying permissible

assumptions.

5.8.1.1 Decomposition by reusability and variability – the five magic rules
The first way to decouple subsystems in a platform ecosystem is to partition it into stable and variable

blocks, and high- and low-reusability blocks of functionality (Baldwin and Woodard, 2009). This

requires evaluating each major element of functionality that is a candidate for consideration for inclu-

sion in or exclusion from the platform core. Two premises of platform-based development can help

guide this assessment:

• Economies of scale across the ecosystem.A platform achieves economies of scale in facilitating the

development of complementary apps primarily by incorporating functionality that is reused by

many apps.

• Reduced costs of developing apps for the platform. When including a function reduces app

developers’ costs of developing around the platform, it should be included in the platform.

Using these two guiding principles provides the following five heuristics—the magic rules—for decid-

ing what functionality to include from a platform core.

1. High-reusability functionality goes in the platform. The subsystems with high reusability (i.e.,

shared by many apps) should go into the platform and those with low reusability (i.e., unique to a

few apps) should be implemented as apps. Keeping the high-reusability functions within the

platform allows that functionality to be improved much more rapidly because the subsystems

used to implement them are colocated within the platform and can be tightly integrated. The

platform itself can therefore be highly monolithic internally even though it is externally modular

(i.e., when viewed by an app developer). Even the platform core of a modular platform can

change over time; only the platform’s interfaces need to remain stable. As long as the interfaces

described in the next section remain untouched, internal functionality enhancement within the

platform can be leveraged by all apps in the ecosystem without the need for much coordination

between the platform owner and app developers.

2. Generic functionality goes in the platform. Functionality that is generic enough to be useful to

many apps should go in the platform. These are the common components and functionality shared

by many app implementations (Boudreau, 2010). This includes investments by a platform

owner in foundational infrastructure, and shared assets and services that all app developers can

potentially leverage. The exception to including only general functionality that can be used by all

apps is functionality that a platform owner would want to completely control for strategic

reasons (e.g., phone calls in iOS). However, nongeneric functionality that is idiosyncratic to a

few apps should be implemented as apps but kept out of the platform.

3. Any interfaces to the platform are an integral part of the platform. Both the core codebase of the

platform and its interfaces should be treated as inseparable parts of the platform because they

have relatively long life spans and meet the criterion of high reusability.

4. Stable functionality goes in the platform. Stable functionality should go in the platform but immature,

changing, evolving functionality should ideally be implemented as apps. Today’s immature
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functionality might become tomorrow’s stable functionality; strategies for absorbing it into the

platform without compromising architectural decoupling are discussed in Part IV of this book.

5. Functionality with the highest uncertainty remains outside the platform. The value of diverse

experimentation is the highest for unproven functionality, where multiple solutions are viable and

it is unclear upfront which solution or approach the market will prefer. Such functionality should

be kept out of the platform and instead left to app developers. Including it in the platform

risks premature commitment to what might turn out to be an inferior solution. Leaving it out of the

platform can attract many diverse solutions from competing app developers aiming to meet

the demand for it. The market will determine the winner out of the diverse experiments, provided

appropriate incentives are in place. (It might be tempting for a platform owner to eventually

subsume the winning solution into the platform, but this breach of trust with app developers can

be a slippery slope, as we subsequently discuss.)

There are two exceptions to the fifth rule. First, a platform owner should integrate functionality that it

deems critical to the attractiveness of the platform to end-users. If the platform owner also tweaks plat-

form governance to match, it can foster strong healthy competition among app developers to improve

the inhouse, native functionality. An example of this in mobile computing platforms is the inclusion of

an email app and a Web browser in the iOS, Android, Microsoft Mobile, and Blackberry platforms,

both of which were then also opened to app developers attempting fiercely to improve on them. Second,

a platform owner should include functionality in the platform that it deems critical in terms of end-user

expectations and norms set by rival platforms.

In summary, as shown in Figure 5.24, the platform should emphasize low-variety, high-reusability

functions and relegate high-variety, low-reusability functions to apps.

5.8.1.2 Decoupling by specifying allowable assumptions
The second way to decouple subsystems is how a platform owner can explicitly specify assumptions

that an app can make about the platform, and assumptions a platform can make about apps. Explicitly

specifying allowable assumptions weakens dependencies among them. Neither apps nor the platform
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are allowed to make any assumptions about each other beyond their visible information. Therefore

access to a platform’s functionality is restricted to its interface. This rule keeps the developers of

the platform and the apps from relying on each other’s hidden information as they do their own work

and keeps them reliant on only the explicit, visible information provided by their architecture. Since the

design of any app does not rely on the platform’s hidden information, neither app developers nor the

platform owner are affected by changes in the other’s internals as long as the visible information

remains frozen.

More decoupled apps are easier to comprehend, easier to change, and easier to test. If an app is

weakly coupled to the platform, its interdependencies are completely contained in its interface to

the platform. The app can therefore be implemented with limited knowledge of the platform’s innards,

relying largely on the interface specifications provided by the platform owner. In contrast, tightly

coupled apps are designed to work closely with the platform and cannot be modified in isolation from

the platform. This requires the app developer to understand the platform and the app as a whole, and

possibly also the dependencies and interactions that the app might have with other apps in the platform

ecosystem. Internal changes in the app can then cause errors in the platform’s operations and changes in

the platform can cause the app to malfunction. This creates a time-consuming coordination overhead

that can slow down the app’s evolution. Therefore decoupling decreases the likelihood of app mal-

functions and speeds up its evolvability. The decreased need for an app developer to coordinate with

the platform owner and to understand the inner workings of the platform allows the app to be changed

more frequently and at a lower cost to the app developer. Similarly, changes within the platform are less

likely to break the app as long as the platform owner remains faithfully compliant with the frozen inter-

face specifications to the platform, as described in the next section.

5.8.2 Interface standardization
Interfaces are like a treaty between a platform and apps in a platform’s ecosystem (Baldwin and Clark,

2000, p. 73). They are the platform’s visible information. They specify the basic set of rules to ensure

the technical interoperability of apps with the platform (Baldwin and Woodard, 2009; Boudreau,

2010).5 A platform’s interface standards are therefore sometimes referred to as the platform’s design

rules. Interface standardization refers to the degree to which an app communicates, interoperates, and

exchanges data with the platform using predefined, well-specified interfaces, protocols, and rules that

are not allowed to change. Interface standardization therefore means that all information about how any

app must communicate and interact with the platform is explicitly documented in writing by the plat-

form’s owner and then frozen.

From an app developer’s perspective, a platform’s interfaces are the only visible embodiment of a

platform seen and experienced by them. Apps are forbidden from communicating with the platform

outside of its interfaces. The entirety of the interaction between a platform and apps occurs through

the platform’s interfaces. For all intents and purposes, from an app developer’s perspective the inter-

faces are the platform. The platform’s interfaces describe to all apps what they need to know to invoke

and access the services and capabilities of the platform. The interface also specifies protocols, which

5Interfaces within the platform and within individual apps are their intrasystem interfaces. We concern ourselves with not

intrasystem interfaces but rather solely with intersystem interfaces—ones that connect an app to the platform, and both to

external systems outside the ecosystem boundary—throughout this book.
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describe how any back-and-forth sequence of interactions between an app and the platform should

occur. A platform’s interfaces therefore not only enable communication among the apps and platform,

but also govern and discipline it (Langlois and Garzarelli, 2008).

Interface standardization does not require compliance with any public standards (such as CORBA)

or joint development, just with the platform’s own interface standards. In general, compatibility with

rival platforms is undesirable for strategic reasons. Incompatibility among rival platforms’ interface

standards is a powerful strategic tool that subsequent chapters discuss in detail. Agreeing to common

standards and interlinking rival platforms is likely to be profitable for all platforms only if no platform

has a technological edge (Farrell and Saloner, 1985, 1992; Rohfls, 2003, p. 197).

Standardized platform interfaces are the key to opening up a platform’s architecture. Openness of a

platform architecture simply refers to whether outsiders need permission from the platform owner to

build on it (Evans et al., 2006, p. 12).6 If a platform is open, it means that outsiders can access its visible

information using its interfaces to build complementary apps that augment the platform. A recent study

of major platforms that thrived between 1990 and 2004 found that opening up platforms to outside

developers increased the rate of innovation around that platform by 500% (Boudreau, 2010). Platforms

can be open or closed to varying degrees, with most platforms neither completely open nor completely

closed (Boudreau, 2010). For example, Apple’s iOS platform is more closed than Google’s Android

platform because app developers need approval from Apple to distribute apps for the iOS platform.

However, platform openness is as much a platform governance choice (Chapter 6) as it is a technical

or architectural choice. But a platform’s interfaces must be open to outsiders for an ecosystem to

emerge. An interface is open standards-based when it is well documented, available publicly, nonpro-

prietary, and not subject to intellectual property restrictions. Interfaces to a platform need not be open

standards-based to foster vibrant ecosystems around them; they can be proprietary and open. Interface

standardization therefore allows an app developer to treat the platform as a black box and focus her

attention only on her own app. If the platform owner clearly and explicitly communicates how outsiders

can build on the platform’s capabilities in their own work, it can potentially become the basis for large-

scale innovation around the platform (Meyer and Selinger, 1998). Such interface standardization must

be ecosystem-wide but need not be applicable outside an ecosystem. Standards for the interface

between a platform and app have three desirable properties to make them an effective coordination

tool: precision, stability, and versatility.

5.8.2.1 Precisely documented
Interfaces of the platform are the glue that binds apps with a platform. Interface standards to a platform

must be clearly specified, unambiguous, well documented, and stable to be useful to app developers.

Ideally, the platform’s visible information and interfaces are comprehensively and precisely documen-

ted, leaving no room for misinterpretation by app developers. They must also clearly lay out the design

rules that describe how an app and the platform communicate, interact, exchange information, and

interoperate. Information that is of relevance to more than one app must be nearly completely specified

in the architecture design phase of the platform. As long as an app complies with the interface standards

6Openness of architecture should not be confused with open-source and closed-source architectures. Open source refers to

platforms that make their source code freely available for others to use, augment, and build on. Google’s Android platform is

an example of an open-source platform.
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prespecified by a platform owner, it should be able to interoperate with the platform independent of the

app’s internal implementation. A simple example of a standardized interface is a USB port. As long as a

device (e.g., a printer, scanner, or camera) complies with the documented USB standards in how it

communicates with a PC, it is able to communicate with it independent of the internal design of

the device. Design rules provided by interface standards are particularly important after the initial plat-

form architecture is chosen because they guide the implementation of the architectural decisions (such

as decoupling). Their precision can substantially reduce the platform-wide inconsistencies between

envisioned architecture and realized architecture, discussed earlier.

In platforms, such interface standards are often proprietary to individual platforms. But they

must be documented in sufficient detail to provide app developers all the information they need

to ensure interoperability with the platform. By isolating the interdependencies of the app from

the rest of the ecosystem, platform interface standardization increases the flexibility of what an

app developer can do and gives her more freedom to design and implement the functionality of

the app. The utility of interface standards is that they allow app developers and a platform owner

to leverage each other’s strengths without sacrificing autonomy to innovate in their own work. Pre-

cisely documented interfaces between a platform and apps therefore help both app developers and

platform owners innovate more effectively around the platform, guide interoperability at the app

level, and provide an implicit coordination mechanism between the platform owner and app devel-

opers (Dougherty and Dunne, 2011; Sanchez andMahoney, 1996). Thousands of app developers can

then simultaneously work on their own apps in blissful ignorance of the technical details of the rest

of the platform ecosystem.

A dominant way to provide such “hooks” for apps to interface with a platform are APIs. An API is

simply a standardized interface designed to accept a broad class of apps (or add-ons/extensions/

modules). APIs allow app developers to use the platform’s capabilities without having to concern

themselves with how those capabilities are implemented within the platform. App developers know

how the platform behaves but do not need to know how it works. APIs play a central role in mini-

mizing duplication of effort by app developers (Evans et al., 2006, p. viii). An API can include spec-

ifications for variables, routines, data structures, protocols, and object classes and behaviors. These

APIs provide app developers well-defined means to access the platform’s shared libraries, protocols,

functions, and specific capabilities that they can use as a starting point for implementing their apps.

An API specification can be compliant with a public open standard or protocol, or be platform-

specific in the form of a platform software framework, libraries of a programming language (e.g.,

the Java API), or commands to invoke a Web service. Examples of widely used public API technol-

ogies include Pragmatic REST, JSON, and OAuth (for authentication without password propagation

across the Internet). An open API allows an outside app developer to build on and extend the plat-

form’s native functionality by tapping into the platform’s generic portfolio of services through a

documented interface. An API or interface standards of a platform need not be completely open

to all app developers. Openness of an API is a matter of degree; it can reside along a continuum rang-

ing from completely open to completely closed. An API therefore enables a one-to-many relationship

between the platform and apps. The advantage of APIs is that they allow extensions to the platform

that could not even have been envisioned at the time the platform was created. They are also rich in

embedded real options (see Chapter 8).

An API can become an industry standard in a platform’s market, but can still be under the complete

control of a single platform owner. (Maintaining such control, however, requires careful attention to
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platform governance.) An industry standard is a detailed specification that is agreed on by multiple

players in the industry. Such standards can be formal de jure standards such as HMTL 5 or arise

de facto through mass adoption (e.g., PDF format). While de jure standards are often created by indus-
try consortia or regulatory bodies (such as IEEE or W3C), de facto standards often begin as a propri-

etary interface, protocol, or API that subsequently gains critical mass. Platform owners who maintain

control over a de facto platform interface standard can enjoy considerable market power for long

periods without getting under the skin of antitrust regulators.

Another way to implement interface standardization is through protocols. A protocol is a defined

system of rules and semantics for exchanging messages between a platform and apps. These protocols

may be platform-specific or based on public standards (such as HTML 5).

5.8.2.2 Frozen
Interfaces provided by the modularly architected platform must also be stable and unchanging

(Baldwin and Clark, 2000, p. 76). Interface standardization provides an implicit coordinative func-

tion between the platform owner and app developers by documenting dependencies between a plat-

form and apps. It specifies what assumptions app developers are allowed to make about the platform

and what assumptions the platform owner can make about individual apps. These assumptions should

not be allowed to change during the implementation of individual apps. Changes in the platform’s

interface standards can violate such assumptions, and in turn break apps. Even when they don’t vio-

late any previous assumptions that app developers were allowed to make, the added overhead for

constantly verifying the safety of making an assumption about the platform can impose considerable

unnecessary overhead on app developers while accomplishing little. Interface standards usually have

long lifecycles and are loaded with legacy baggage. Think of standards that have persisted for

decades: the VGA connector, 30-pin iPhone connector, QWERTY keyboard, and ASCII text. The

widespread use of an interface standard by its adopters makes it difficult to dislodge even if a

new replacement standard is technically superior.

An app must be able to assume that information about how it will interface with the platform will

remain unchangeable. As long as a new version of an app (or new apps) complies with the interface

specifications provided by the platform owner, any changes within the app cannot compromise its abil-

ity to interoperate with the platform. It is therefore important that any possible interdependencies

between a platform and apps be captured in the interface specifications.

Paradoxically, this inflexibility in a platform’s interface specifications dramatically increases flex-

ibility in what app developers can do within their apps. New functionality that is added to a platform

should therefore avoid touching existing interface specifications because stable APIs lead to predict-

ability (Iansiti and Levien, 2004, p. 53). Instead, adding new functionality to a platform usually requires

adding new APIs. This is why Apple’s iOS had almost 15,000 APIs by 2013. Therefore, stability of

interfaces used by the platform is critical to minimizing the interdependence between the platform

and apps. They also must remain consistent across successive generations of a platform (Iansiti and

Levien, 2004, p. 88).

5.8.2.3 Versatile
However, to support the ecosystem’s evolution and the evolution of apps, such interfaces should also be

versatile. Versatility means that the interfaces to the platform should be able to incorporate linkages in

the future and permit future apps unforeseeable by the platform’s original designers (Baldwin and
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Woodard, 2009). Although stable interface specifications minimize the need for app developers to

coordinate their app design decisions with the platform owner, they can severely constrain all subse-

quent designs to be bounded by those specifications. The more precise a platform’s interface specifi-

cations, the more inflexible is this constraint. The more general a standard (HTML 5 vs. Flash), the

greater its versatility.

To prevent the inflexibility of interface specifications from stymieing the evolution of the platform,

good platform architecture should bundle together the functionalities that can most benefit from sub-

sequent improvement in the platform itself. So functionalities that are likely to change together and are

used by multiple apps should belong in the platform codebase itself. Monolithic-ness within the plat-

form is therefore generally desirable. Put another way, the partitioning of the initial architecture of the

ecosystem should be done in a way that places the functionality potentially shared by many apps into

the platform core that is intended to be stable and the rest into a set of complementary apps that are

encouraged to vary (Baldwin and Woodard, 2009). Versatility of a platform’s interfaces is therefore

inseparable from decoupling in its initial design.

5.8.2.4 Compliance with interface standards
Interface standards are like traffic lights; they simplify coordination only as long as everyone follows

the same rules. Each driver must both know and follow the rules. To be effective coordination devices,

interface standards must be binding on both the platform owner and app developers; app developers

must obey them and also expect others to obey them (Baldwin and Clark, 2006; Ostrovsky and

Schwarz, 2005). The degree to which an app actually complies with interface specifications encapsu-

lates its behavior in practice. This in turn can generate variability in compliance among different app

developers, with some app developers closely complying with the standards prescribed by the platform

owner and others doing it half-heartedly. This variance in interface standards compliance among apps

coupled with differences in app microarchitectures often creates variability in the architectural prop-

erties of different comparable apps even within the same platform. However, such compliance cannot

readily be enforced, is rarely contractible, and is costly to verify (Ostrovsky and Schwarz, 2005).

Compliance with a platform’s interface standards requires a carrot—demonstrable value and ben-

efit to app developers—rather than a stick. What’s in it for an app developer? Interface standards com-

pliance decreases the complexity that an app developer must cope with, and the depth of knowledge

about the platform that she needs to possess in doing her own work. This rationale, however, works

better for established interfaces that have already been adopted by other app developers in a platform

than it does for new interface standards. Early adoption of a new standard or API by an app developer

can be particularly risky, especially one that develops the app onmultiple rival platforms (i.e., produces

a multihoming app). The platform owner must therefore credibly assure app developers against the risk

of being stranded with high dependence on a platform interface standard that could be abandoned at

will and also communicate precisely how it can enhance the app developer’s own work. The platform

owner must make it easier and less costly for app developers to adhere to the platform’s interface stan-

dards and specifications. This requires investments by the platform owner in creating good app testing

mechanisms that app developers can use themselves, and also in tools to help the platform owner deter-

mine whether an app complies with the critical interface specifications. Thoughtful platform gover-

nance—especially control mechanisms, described in the next chapter—can further alleviate this

compliance problem. Enforcing a platform’s design rules and interface specification is therefore an

important role of governance (Baldwin and Clark, 2000, p. 13).
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Different architectures can be used to implement the same functional requirements in a platform,

and platform designers and app developers have relatively few constraints that keep them from freely

picking one set of architectural choices over others at the outset. But these early choices can have strik-

ingly different evolutionary consequences. Architectural decisions by platform owners and app devel-

opers therefore influence the evolution of platforms, apps, and entire ecosystems. Table 5.4 provides a

preview of which of the key evolutionary principles are affected by their architectural choices. Parts III

and IV of this book explain these ideas in depth.

CHAPTER SUMMARY

• Complexity stymies innovation. Platform ecosystems are complex to begin with and, as their

complexity grows, interdependence among their many parts becomes paralyzing. Co-innovation is

not additive but multiplicative, which stymies the prospects of even capable participants producing

joint innovations. Architecture can reduce ecosystems’ structural complexity but not their

behavioral complexity.

• Architecture is a platform’s DNA that imprints evolvability. Architectural choices irreversibly
preordain the evolutionary trajectories open and closed to a platform’s ecosystem. Platform

ecosystems are intentionally designed complex systems composed of many interacting parts.

Platform architecture specifies what these parts are, how they connect, and what they can and

cannot do. These properties are inherited by apps in their own microarchitectures as well, but

imperfectly so. Envisioning ecosystem architecture requires adopting a telescopic view of platform

architecture; envisioning app microarchitectures requires adopting a microscopic view of

platform architecture.

• Architecture precedes organization. Platform architecture determines whether transaction and

coordination costs can be reduced sufficiently to make an ecosystem viable. It shapes the ability of

outside app developers to join a platform and provides incentives to join.

Table 5.4 Guiding Principles Influenced by Platform Architecture Decisions

Principle Affected Platform Architecture App Microarchitecture

Red Queen effect l l

Chicken-or-egg problem

Penguin problem

Emergence l l

Seesaw problem l

Humpty Dumpty problem l

Mirroring hypothesis l

Coevolution l

Goldilocks rule l l
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• Architecture partitions and reintegrates a complex system. Architecture must serve two purposes:

(1) it must partition a complex ecosystem so it can be decomposed into relatively autonomous

apps and the platform and (2) it must facilitate ongoing systems integration among them so they can

be put back together as a cohesive ecosystem.

• Apps have internal and external microarchitectures. Their internal microarchitecture is defined by

how their four functional elements are split across the Internet. Their external microarchitecture

is defined by how these functional elements are divvied up between the app and the platform.

• Platform architectures have four desirable properties. They should be simple, resilient,

maintainable, and evolvable. The structure, governance, and evolution of modern cities offer useful

lessons for designing vibrant platform ecosystems.

• Modularization endows these desirable properties to architectures.Modularization of architectures

refers to how they can be designed so that changes within the platform or an app do not have a ripple

effect on the rest of the ecosystem. Modularization is accomplished by decoupling the platform

from apps and then freezing well-documented specifications for how they connect.

• Decoupling in architecture uses two simple rules. First, partition the ecosystem into low-variety,

high-reusability functions that go into the platform core and high-variety, low-reusability

functions that must remain outside it. Second, specify assumptions that apps can make about

the platform and vice versa.

• A platform’s interfaces follow three criteria. They must be precise, frozen, and versatile. Getting

app developers to comply with them requires a carrot rather than a stick.

• A platform’s interface standards are like traffic lights. They are useful as a coordination device only
when everyone follows the same rules. Enforcing compliance is an important role of platform

governance. A platform owner can invest in tools (such as developer toolkits, reference models,

simulators, and module testers) that make it less costly for app developers to comply with them.

• Goldilocks should not be forgotten. Modularization has upsides and downsides both for app

developers and platform owners. Modularization is usually worth it when a platform’s markets are

heterogeneous, riddled with technology and market unpredictability, and require eclectic

knowledge that the platform owner does not have inhouse. The optimal level of modularity is

just enoughmodularity. We discussed how to determine what is just the right level of modularity for

a platform and for an app.

Even the most thoughtful platform architecture cannot nurture a vibrant ecosystem unless it is governed

effectively. We turn our attention to platform governance in the next chapter. It provides a three-

dimensional framework for platform governance that encompasses who decides what, mechanisms

of control, and pricing. It also describes precisely how platform governance can be aligned with its

architecture to help realize its strategic potential.
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