
CHAPTER
Platform Governance
 6

☆“To view th
Details create the big picture.

Sanford Weill
IN THIS CHAPTER

• Platform governance and its functions

• Three facets of platform governance: Decision rights, control, and pricing policies

• Who decides what (decision rights)

• The two functions of control

• The role of platform pricing policies

• Aligning governance with platform architecture, business models, and lifecycle stages

• Aligning decision rights, control portfolios, and pricing policies
6.1 PLATFORM GOVERNANCE AS THE BLUEPRINT FOR ECOSYSTEM
ORCHESTRATION
If the metaphor for traditional organizations is an army, the metaphor for platform ecosystems is a sym-

phony. The platform owner is like the conductor and the app developers are like the musicians. Each

musician contributes a unique part of the overall musical score. The conductor helps the diverse musi-

cians synchronize their own contributions to help ensure overall coherence in their collective perfor-

mance. The conductor does not direct but rather orchestrates. The individual musicians choose to

follow the lead of the conductor, who has limited direct authority or the depth of specialized musical

talent of all of the musicians contributing to the performance. A good performance results from each

musician being able to independently play her part but in synchrony with the others.

Like in a symphony, orchestration rather than control should be the focus of governance in platform

ecosystems. Command-and-control structures work well in traditional organizations because legiti-

mate hierarchical authority of managers over employees is accepted by both sides as a condition

for employment. However, no such direct authority exists in a platform ecosystem. App developers

are not employees of a platform owner; rather they often are free agents who typically specialize in

niche domains outside those of the platform owner’s. Performance-based rewards rather than punitive

penalties are needed. The goal of good governance by a platform owner must therefore be to shape and
influence its ecosystem, not to direct it (Williamson and De Meyer, 2012). And the goal of good
e full reference list for the book, click here or see page 283.”

117

Governance

1 2

Architecture

FIGURE 6.1

Governance is the second gear in a platform ecosystem’s evolutionary motor.

118 CHAPTER 6 Platform Governance
governance is to respect the autonomy of app developers to do their thing while also being able to inte-

grate their varied contributions into a harmonious whole. This is the essence of platform orchestration.

Orchestration therefore entails influencing those whom the platform owner cannot control. The key

function of governance is therefore to provide a context in which distributed innovation driven by

app developers can emerge around a platform.

Platform governance is the second gear of platform orchestration (Figure 6.1). While architecture

can reduce structural complexity, governance can reduce behavioral complexity. Platform governance

matters because it determines whether innovation divisibility made possible by modular platform

architectures is successfully leveraged (Boudreau, 2010; Rochet and Tirole, 2003; Tiwana et al.,

2010). Governance of a platform ecosystem broadly refers to the mechanisms through which a platform

owner exerts influence over app developers participating in a platform’s ecosystem (Schilling, 2005,

p. 159). Governance therefore flows from the platform owner who governs to app developers who are

governed by the platform owner.

This chapter provides a foundation for understanding platform governance, beginning with its pur-

pose and importance. It then explains the three dimensions of platform governance. The first is how the

authority and responsibility for platform and app decisions are divvied up among app developers and a

platform owner (decision rights). The second includes four mechanisms that a platform owner can mix-

and-match to ensure goal convergence and coordination with app developers: gatekeeping, metrics,

process control, and relational control. The third dimension is five platform pricing policies. It then

explains why governance is inseparable from platform architecture and why realizing the potential

of modular platform architectures requires aligning them. It finally explains how the three dimensions

of governance—decision rights, control, and pricing—can be aligned with a platform’s architecture, its

business model, and its lifecycle stage. The mirroring principle provides a powerful mechanism for

aligning decision rights in an ecosystem. But it also leaves some holes that must be plugged by platform

control mechanisms. Aspiring for five simple rules can help design an effective but minimalist platform

control system: simple, transparent, realistic, value-based, and fair.
6.2 THREE DIMENSIONS OF PLATFORM GOVERNANCE
Platform governance encompasses three dimensions (Table 6.1 and Figure 6.2): (1) the division of

authority and responsibilities between the platform owner and app developers (decision rights par-

titioning), (2) the collection of mechanisms through which the platform owner exercises control over

Figure 6.1

Table 6.1 The Four Control Mechanisms and Their Prerequisites

Control
Mechanism Definition Prerequisites

Gatekeeping The degree to which the platform owner uses
predefined criteria for what apps are allowed into
the platform’s ecosystem

• Platform owner must be competent
to judge

• Platform owner must be fair
and speedy

• App developers must be willing to
accept such gatekeeping

Process The degree to which a platform owner rewards
or penalizes app developers based on the
degree to which they follow prescribed
development methods and procedures that it
believes will lead to desirable outcomes

• Platform owner must have the
knowledge to mandate methods to
app developers

• Platform owner should be able to
monitor app developers’ behaviors
or verify compliance

Metrics The degree to which the platform owner rewards
or penalizes app developers based on the
degree to which the outcomes of their work
achieve performance targets predefined by the
platform owner

• Metrics must be set by the platform
owner, predefined, and
objectively measurable

Relational The degree to which the platform owner relies on
norms and values that it shares with app
developers to shape their behaviors

• Existence of shared norms and
values between app developers and
platform owner

• Low app developer churn

1196.2 Three Dimensions of Platform Governance
app developers (the control portfolio, which includes the authority to accept or reject apps), and

(3) decisions about how proceeds will be divvied up between a platform owner and app developers

(pricing policies). Before we discuss each of these facets in detail, three important nuances must be

emphasized. First, that these three dimensions of governance are interrelated; choices about one

dimension can amplify or nullify the choices about the other two. Second, governance is costly.

The optimal governance structure is the simplest one that achieves the goals of a platform at the

least cost to both app developers and the platform owner. Third, governance structures are strategi-

cally inseparable from platform architecture. The same governance structure can be a disaster or a

success depending on whether it is aligned well with the platform’s architecture, the stage of its life-

cycle, and its business model. Misalignment in any one of the three governance dimensions can lead

to a collapse of the ecosystem. The role of each dimension of governance is shown in italics in

Figure 6.2.
6.2.1 Decision rights partitioning
The first dimension of platform governance is decision-making authority or decision rights. A decision

right broadly refers to who—the platform owner or app developer—has the primary authority and

responsibility for making a specific type of decision—simply put, who makes what decisions

Control
Portfolio
Configuration

Decision Rights
Partitioning

2

1

3

Pricing

Provides Autonomy

Ensures Integration

Creates Incentives

FIGURE 6.2

The three dimensions of platform governance.

120 CHAPTER 6 Platform Governance
(Athey and Roberts, 2001; Vazquez, 2004). A decision right can reside primarily with the platform

owner, which represents centralization of a decision right. Or it can reside primarily with an app

developer, which represents decentralization of a decision right. Perfect centralization and decentral-

ization exist mostly only in theory and are rarely ever observed in practice. In practice, a decision right

can reside anywhere along the continuum of complete centralization and complete decentralization.

This means that both the platform owner and app developers have some authority and responsibility

for most decisions but it might lean more toward one party. It is therefore useful to think of any decision

right as a slider that can be moved along the two extremes of centralization and decentralization

(Figure 6.3).

Figure 6.2

1216.2 Three Dimensions of Platform Governance
6.2.1.1 Platform versus app decision rights
Thinking of each individual decision in a platform ecosystem can quickly devolve into an overwhelm-

ing and meaningless exercise. It is therefore necessary to reduce the broad notion of decision rights into

a more comprehensible and tenable subset or classes of decisions. In a platform ecosystem, there are

four broad sets of decision rights. The first distinction is whether decision rights pertain to the platform

or the platform’s apps. Platform decision rights refer to whether the platform owner or the app devel-

opers have the authority and responsibility for making decisions directly pertaining to the platform.

Similarly, app decision rights refer to whether the platform owner or the app developers have the

authority and responsibility for making decisions directly pertaining to apps. On first glance, you might

conclude that platform decisions would be naturally made by the platform owner and app decisions by

app developers. But this is a misleading oversimplification for four reasons.

First, decision rights can be placed anywhere along the continuum in Figure 6.3. It is a purposeful

choice, not a given. This means that platform and app decision rights do not necessarily have a 1:1

mapping to platform owners and app developers, as the simple representation in Figure 6.4 would lead

one to conclude. Instead, we must think of them in terms of their degree of decentralization. App deci-
sions, for example, can be decentralized to a greater degree on one platform and less decentralized on

another. This means that they are often shared to varying degrees between app developers and platform
owners; the question is about the degree to which they are shared. We therefore refer to such sharing as

partitioning of decision rights. Second, even slight differences in the degree of their centralization and
P
la

tf
o

rm
 D

ec
is

io
n

s

App Decisions

P
la

tfo
rm

 O
w

ne
r

Platform Owner App Developer

A
pp

 D
ev

el
op

er

FIGURE 6.4

Platform and app decision rights can be assigned to platform owners or app developers.

Decentralized
with App Developers

Centralized
with Platform Owner

Movable Slider

Decision Right

FIGURE 6.3

A decision right can be placed anywhere on the decentralization continuum.

Figure 6.4
Figure 6.3

122 CHAPTER 6 Platform Governance
decentralization can put two similar platforms on substantively different evolutionary trajectories.

Such small differences in the degree of decentralization of platform and app decisions can amplify

or mute the benefits of architectural choices made by platform owners and app developers. In other

words, they have strong interactions and dependencies with architecture at the platform level and at

the app level. A decision rights arrangement that enables efficient specialization among app developers

under one architecture can become its Achilles heel under another. Therefore, the partitioning of deci-

sion rights must be aligned with the architecture of a platform and the microarchitecture of apps.

Fourth, decision rights partitioning between two parties have an assigner and an assignee. The alloca-

tion of decision rights to an assignee might have little meaning if the assignee does not—or cannot—

accept the responsibility for those types of decisions.

6.2.1.2 Two classes of decision rights: strategic and implementation
Decision rights for a platform or apps can be broadly split into two broad categories1: strategic and

implementation. Strategic decision rights pertain to what a party (app developer or platform owner)

should accomplish and implementation decisions are about how it should accomplish it. Strategic deci-

sion rights therefore are direction-setting, specification-oriented decisions. Implementation decisions

are technical execution decisions that pertain to the choice of features, functionality, design, user inter-

face, and implementation details of a software subsystem. Both classes of decision rights apply to plat-

forms and apps. Therefore, platform strategic decision rights represent the authority and responsibility
for specifying what the platform must accomplish and platform implementation decision rights repre-

sent how a platform actually accomplishes those objectives. Similarly, app strategic decision rights

represent where the authority and responsibility for specifying what an app must accomplish reside

and app implementation decision rights represent how an app actually accomplishes those objectives.

The division of app decision rights can vary by app, and the same platform can use different com-

binations of app decision rights partitioning for different apps. Similarly, an app developer with mul-

tiple apps on the same platform might see different decision rights structures used for various apps on

the same platform. And a multihoming app developer with the same app on multiple platforms will

likely encounter different decision rights structures for that app on different platforms. For example,

the developer of the Skype Mobile app might see different decision rights structures on iOS, Android,

andWindowsMobile platforms. The decision rights structure for an individual app on a given platform

can succinctly be represented in the decision rights partitioning framework in Figure 6.5. The sliders

are independently movable, must be aligned with platform architecture and app microarchitecture at

the outset, and be moved over time to maintain alignment.
6.2.2 Control portfolio design
The second dimension of platform governance is control. Control refers to the means through which the

platform owner ensures that the app developers’ work is aligned with what is in the best interests of the

platform. Control is implemented by the platform owner over app developers using a variety of control

mechanisms. Therefore control mechanisms are the tools that platform owners use to implement and

enforce rules that reward desirable behavior, punish bad behavior, and promulgate standards of behav-

ior among app developers (Evans and Schmalensee, 2007). Control mechanisms can either be formal or
1For research on the distinction between these classes of decision rights, see Tiwana and Konsynski (2010) and Jensen and

Meckling (1992).

Decentralization

Platform Owner App Developer

Platform Owner App Developer

Platform Owner App Developer

Platform Owner App Developer

Platform - Strategic

Platform - Implementation

App - Strategic

App - Implementation

Class of Decision Rights

FIGURE 6.5

A decision rights partitioning framework.

1236.2 Three Dimensions of Platform Governance
informal. Several such mechanisms can be used together and this combination of control mechanisms

represents the control portfolio used by a platform owner over an app developer. Different apps in the

same platform can—but need not—have differently structured control portfolios.

Figure 6.6 summarizes the four control mechanisms that can be used by a platform owner.

A platform owner can use three formal control mechanisms and one informal control mechanism.

All formal control mechanisms focus on imposing rules and standards that a platform owner expects

app developers to aspire toward meeting (Evans and Schmalensee, 2007, p. 22). The formal control

mechanisms include control through gatekeeping, process control, and control using metrics. An infor-

mal control mechanism that can be used in addition to these formal mechanisms is relational control.

Table 6.1 summarizes these control mechanisms. Each control mechanism also has prerequisites for

using it, also summarized in the table.

6.2.2.1 Gatekeeping
The first formal control is via gatekeeping. Gatekeeping represents the degree to which the platform

owner uses predefined objective acceptance criteria for judging what apps and app developers are

allowed into a platform’s ecosystem. The platform owner sets this criteria, not just for what is allowed
in but also who is allowed in. This formal control is also known as input control (Cardinal, 2001), much

like how organizations select which candidates to hire as employees from a pool of applicants. In plat-

forms, this entails an app developer submitting an app to the platform owner for evaluation for inclu-

sion in the platform’s ecosystem.

When gatekeeping is used by a platform owner, the platform owner reserves bouncer rights over

apps that can be included as part of the ecosystem (Boudreau, 2010; Evans et al., 2006, p. 254). Apple,
FormalInformal

Control Mechanisms

Control via Gatekeeping

Process Control

Control via Metrics

Relational Control

FIGURE 6.6

Control mechanism choices usable by platform owners.

Figure 6.6
Figure 6.5

124 CHAPTER 6 Platform Governance
for example, uses gatekeeping heavily as a control mechanism in its iOS platform. However, three

important requirements must be met for control via gatekeeping to be viable. First, the platform owner

must be sufficiently competent to judge app developers’ submissions. Second, the platform owner must

be able to do so fairly and speedily. Third, app developers must be willing to be subjected to such gate-

keeping. If the platform owner is not perceived as being objective, fair, and speedy in judging inputs

into the platform, it exposes app developers to considerable risk and uncertainty about platform-

specific work they have already invested in completing. If deployed carelessly, it can discourage

app developers from committing to developing for a platform.

6.2.2.2 Process control
The second form of control is process control, which refers to the degree to which a platform owner

rewards or penalizes app developers based on the degree to which they follow prescribed development

methods, rules, and procedures that it believes will lead to outcomes desirable from a platform owner’s

perspective. Such desirable outcomes in platforms refer to apps that will interoperate well with a plat-

form, not whether they do well on the market. Such rules and procedures are prescribed by the platform

owner, who then evaluates the extent to which individual app developers followed them. Compliance

with prespecified processes is rewarded and noncompliance is penalized. These processes must be

defined upfront and known to app developers for process control to be viable. In many software plat-

forms, platform development and testing tools, simulation environments, and developer toolkits pro-

vided by the platform owner to app developers are mechanisms through which a platform owner

attempts to implement process control. Process control, however, has two important requirements to

be viable. First, the behaviors of app developers should be observable and monitorable by the platform

owner. Such behavior observability need not be direct and can be through electronic audit trails and

developer logs. Second, the assertionbehindprocess control is that if appdevelopers follow theprocesses

prescribed by the platform owner rather than being left to their devices, the likelihood that they will pro-

duce technically better-performing apps is going to be higher. The platform owner must understand the

work of the app developers sufficiently well—or better—in order to prescribe processes that will indeed

improve the odds of their work being successful (particularly, app integration with the platform).

6.2.2.3 Metrics
A third formal control mechanism is through the use ofmetrics. This formal control refers to the degree

to which the platform owner rewards or penalizes app developers based on the degree to which the

outcomes of their work achieve predefined target performance metrics. Researchers call this output

control because it evaluates the output of app developers’ work (Ouchi, 1979). The requirement for

metrics-driven control is that such metrics must be: (1) prespecified by the platform owner and (2)

objectively measurable. The extent to which an app developer’s completed work meets the targets

determines the rewards or penalties that the platform owner imposes on the app developer. Metrics-

based control comes from the legacy world of traditional software development where an internal

manager or client could specify target criteria such as budget, project schedules, and acceptable defect

levels to the internal IT department or an outside vendor. However, such metrics have little meaning if

the platform owner does not—or cannot—prespecify target metrics such as development budgets or

schedules that it expects app developers to meet.

In platforms, performance and survival of an app in the brutal marketplace serves as a powerful

metric that eliminates the need for much metrics-based control (Armstrong, 2006; Bester and

Krähmer, 2008). In many contemporary platforms, metrics-based control is therefore rarely used

1256.2 Three Dimensions of Platform Governance
because the end-user market rewards high-quality output with strong sales and penalizes low-quality

output with poor sales. In other words, the use of market competition can substitute for control using

metrics. Examples of some weak app-level metrics in platforms can include performance, memory

utilization, and speed at an operational level. They can also include market-oriented metrics such

as unit sales, downloads, and end-user ratings. Use of market-oriented metrics such as these is also

closely tied to the third dimension of governance: pricing structures used by the platform owner to

divvy up proceeds with app developers. The sole purpose of market-oriented metrics is therefore

simply measurement to implement revenue-splitting agreements.
6.2.2.4 Relational control
The fourth and only informal form of control is relational control. This control mechanism refers to the

degree to which the platform owner relies on norms and values that it shares with app developers to

influence their behavior. This control mechanism thus relies on the platform owner to provide an over-

arching collective goal for the platform ecosystem; a sort of shared identity that defines the character of

the platform ecosystem and rallies app developers around it by harmonizing their own goals with those

of the platform. Such system-level goal-setting sets a trajectory to evolve the platform ecosystem and

creates unity in effort without micromanaging app developers (Meadows, 2008, p. 165). Therefore, a

shared culture, similar set of values, and shared norms provide a common ground that can align the

objectives of the platform owner and the work of app developers. Researchers call this clan control

because it relies on clannish behavior (Kirsch, 1997; Ouchi, 1980). Relational control is widely used

in open-source platforms such as various Linux platform development communities. The upside to

relational control is that it is often one of the least costly forms of control since it requires little enforce-

ment and effort from the platform owner. However, the preexistence of shared norms and values in the

app developer community is an important precondition for relational control to be viable. This require-

ment is often not met if an app developer does not share a long history with the platform. It is also

unlikely to be met in platforms that have an ongoing inflow of new app developers who join the plat-

form but do not have the same shared history, professional values, and norms as existing developers.

High app developer churn therefore reduces the viability of relational control. Therefore, relational

control rarely suffices by itself, although it can nicely complement other formal control mechanisms.

The combination of these four control mechanisms at the platform level describes a control port-

folio, as illustrated in Figure 6.7. Each control mechanism is an independent slider that can be omitted,

used to some degree, or used extensively as part of a control portfolio. The control portfolio used by a

platform owner can therefore be succinctly described using this template.
Gatekeeping
SomeNone Extensive

Process

Metrics

Relational

Control
Mechanism...

Control
Portfolio

FIGURE 6.7

A control portfolio is a combination of the four control mechanisms used by a platform owner.

Figure 6.7

Gatekeeping
SomeNone Extensive

Process

Metrics

Relational

SomeNone Extensive SomeNone Extensive

iOS Control Portfolio Android Control Portfolio Ubuntu Control Portfolio

FIGURE 6.8

An illustration of the control portfolios used by three platforms.

126 CHAPTER 6 Platform Governance
Figure 6.8 illustrates the control portfolios used by three different platforms: iOS, Android, and

Ubuntu. As this comparison illustrates, some platforms rely on a combination of some degree of diverse

control mechanisms (e.g., Android) whereas others lean heavily toward the extensive use of one dom-

inant control mechanism in designing their control portfolio.
6.2.2.5 Attempted versus realized control
Just because a platform owner decides to implement a particular control mechanism over all developers

does not necessarily result in the expected behavior. In other words, there is a difference between control

attempts by a platformowner and the degree towhich the platformowner is actually able to realize it over

individual app developers. A control mechanism is effective when the level of attempted control and

realized control for thatmechanismare not too far apart. This requires two things. First, the controlmech-

anism should be accepted by app developers as being legitimate, fair, and reasonable. The power of a

controlmechanism requires the consent of the governed. Leadership is possible onlywhen others choose

to follow, so some consensus is always needed for any control mechanism to be realizable. Second, the

prerequisites for it (Table 6.1) must be satisfied in the relationship between the platform owner and indi-

vidual app developers. Both of these conditions are more likely to be met with some app developers and

less with others. Therefore, theremight be little variability in a platform owner’s attempted control port-

folio but considerable variability in the level of control realized by the platform owner over individual

app developers. As illustrated in Figure 6.9, a uniform control portfolio that the platform owner attempts

to use over three app developers might be realized differently with each of them.

The optimal control portfolio used in a platform should further multiple, often competing objectives

of a platform and should also be aligned with the platform’s architecture. We subsequently describe

five guiding principles for how platform owners can design an optimal control portfolio in this chapter.
6.2.3 Pricing
The third dimension of platform governance is platform pricing policies. The goal of pricing policies is

to create incentives that are compelling enough to encourage app developers to make personal invest-

ments to ensure the prosperity of their own app offerings, and in turn the vibrancy of the platform eco-

system as a whole. Pricing policies encompass five choices:

1. Whether pricing should be symmetric or asymmetric for the two sides of the platform

2. If asymmetric, who to subsidize and for how long?

3. Pricing for access versus usage?

4. Pie-splitting using a fixed scale or a sliding scale?

5. App pricing decisions

Figure 6.8

Gatekeeping
None Extensive

Process

Metrics

Relational

Control
Attempted by

a Platform
Owner

Realized Control over
App Developer A

Realized Control over
App Developer C

Realized Control over
App Developer B

FIGURE 6.9

Control attempts by a platform owner over app developers are often not realized uniformly.

1276.2 Three Dimensions of Platform Governance
6.2.3.1 Decision 1: symmetric or asymmetric pricing?
Recall that there are at least two sides to a platform: app developers and end-users. The first pricing

decision that a platform owner must make is whether you make money on one side and give a break to

the other side (asymmetric pricing), or make money on both sides (symmetric pricing). The choices are

illustrated in Figure 6.10. If a platform owner chooses to make money on only one side, it usually

entails zero pricing or even negative pricing on the other side. For example, some platforms make

money from end-users but subsidize app developers. Often, platform owners go even beyond subsidies

by providing tools, hardware, and other costly incentives that cause them to lose money on one side.

The subsidized side of the platform can often make up the losses in the form of increased profits from

the other side. For example, Amazon Kindle and gaming console developers (e.g., Nintendo, Sony

Playstation, and Microsoft Xbox) subsidize end-users. In contrast, mobile computing platform owners

such as Apple, Google, and Blackberry subsidize app developers. In traditional businesses, this would

be considered irrational and a recipe for the business model to collapse. However, in platform markets,

strategically subsidizing one side can more thanmake up the lost money from the other side. It is impor-

tant to make platform pricing decisions for long-term profitability, which might be at odds with short-

term profitability. This is a tricky strategic decision and is tied directly to the stage of the platform’s

lifecycle, criticality of network effects, and competitive dynamics in the platform’s immediate market,

as we discuss later in this chapter.

Figure 6.9

Asymmetric
Pricing

Symmetric
Pricing

Symmetric
Pricing

Asymmetric
Pricing

S
id

e
1

(A
p

p
 D

ev
el

o
p

er
s)

Side 2 (End-Users)

M
on

ey
-M

ak
in

g

Money-Making Money-Losing

M
on

ey
-L

os
in

g

FIGURE 6.10

Asymmetric versus symmetric pricing across two sides of a platform.

128 CHAPTER 6 Platform Governance
6.2.3.2 Decision 2: which side to subsidize and for how long
The second pricing decision platform owners must make is which side to subsidize (if any) and for how

long. For example, a platform owner might pay one side to join simply to attract the other side. The

unsubsidized side should, however, always be the money-making side. If one side subsidizes the other,

the platform owner must also decide how long this subsidy should last. Abruptly attempting to end the

subsidy on the subsidized side can be challenging and must be planned in advance. For example, the

newspaper publishing industry (e.g., the New York Times) subsidized readers by offering them free

access to online content from the mid-1990s to the mid-2000s. This successfully attracted advertisers

(the other side). But when they tried to end the subsidy to the readers by attempting to charge them

access fees, it resulted inmass attrition of readership. If they had the foresight to plan to end the subsidy,

a more feasible approach would have been to offer readers expiring monthly credit or points that they

could have redeemed to gain free access during the intended subsidy period. We explain later how

platform owners can make such subsidy decisions by considering various aspects of their platform

and its competitive environment.
6.2.3.3 Decision 3: usage versus access pricing
The third pricing decision platform owners must make is about pricing for access and pricing for usage

(Figure 6.11). It is important to set separate prices for access and usage. Access fees are the prices

charged to app developers (but rarely to end-users) for gaining access to the platform. Usage fees

are prices charged to app developers for actual usage of the platform. It often makes sense to set

one of these prices to zero or even negative (e.g., where app developers are paid by the platform owner

using side payments) depending on the platform’s stage in its lifecycle, whether it is in the pre- or post-

dominant design phase, and the accumulation of critical mass on the developer and the end-user sides.

We subsequently explain how usage and access pricing policies can be aligned with these properties of

a platform.

Figure 6.10

Positive Negative

P
os

iti
ve

N
eg

a
tiv

e
Usage Pricing

A
cc

es
s

P
ri

ci
n

g

FIGURE 6.11

Access and usage pricing can be negative or positive.

1296.2 Three Dimensions of Platform Governance
6.2.3.4 Decision 4: pie-splitting using a fixed scale or a moving scale?
The fourth pricing decision that platform owners must make is about the pie-splitting structure. This

means that for every dollar of revenue earned from an app, how the revenue will be shared between the

app developer and platform owner. The choice is one of adopting a fixed scale or a moving scale.

A fixed scale means that the platform owner keeps a predetermined percentage of each dollar of

revenue (say, 30%, as in Apple’s case). A moving scale means that the scale changes with an increase

in the units of the app sold or in its usage. The percentage can either rise (a rising scale) or decrease

(a sliding scale) with an increase in sales volume.

These three choices are illustrated in Figure 6.12. Mobile computing platforms most commonly use

a fixed scale structure. The traditional book publishing industry, in contrast, frequently uses a rising

scale where the first block of copies sold (say the first 5,000) pay the authors a small percentage

(e.g., 5%), the next block pays a higher percentage (e.g., 7.5%), and all subsequent copies sold pay

a higher ceiling percentage (e.g., 10%). As we subsequently explain, there is no one right model.

The choice can have a strong impact on the incentives of app developers, and a model appropriate

for one stage of the platform’s lifecycle might not be appropriate for another stage.

6.2.3.5 Decision 5: app licensing decisions
The final pricing decision is app-specific pricing and licensing decisions. Unlike the preceding four

pricing policies where the platform owner has the primary say, the app developer usually has consid-

erable leeway in app pricing decisions. However, such decisions are likely to be constrained by the

other four platform owner pricing choices. An app developer can use one of three pricing structures

for an app:

1. Single perpetual license: This sort of license is perpetual in the sense that a one-time payment by an

end-user grants nonexpiring rights to use the app. The license can either be an individual license

(the buyer can use the app on a limited or unlimited number of her own instantiations of the

platform), a machine license (which allows the end-user to use it on a particular machine that it was

purchased for but not for any subsequent machine), or a floating license (which allows the user

to use it on any one machine at a time and the host machine can change without constraints).

This model is the most widespread in the traditional software industry. An app that is given away for

Figure 6.11

App Unit Sales

C

P
er

ce
nt

ag
e

P
ai

d
to

 A
pp

 D
ev

el
op

er

0

100%

Rising Scale

App Unit Sales

P
er

ce
nt

a
ge

 P
ai

d
to

 A
pp

 D
ev

el
op

er

0

100%

App Unit Sales

BA

P
er

ce
nt

a
ge

 P
ai

d
to

 A
pp

 D
ev

el
op

er

0

100%

Fixed Scale Sliding Scale

FIGURE 6.12

Pie-splitting between the platform owner and app developers can be on a fixed, sliding, or rising scale.

130 CHAPTER 6 Platform Governance
free is a single perpetual license priced at zero dollars, with revenue generated from a third side (e.g.,

advertising) or from the sales of a complementary product or service (e.g., department store sales, an

airline flight, a banking relationship, or a credit card account).

2. Subscription-based license: This sort of license allows the user to use the app for the duration of an
active subscription period (e.g., 1 year) and usually includes all future updates to an app during that

period. This licensing model is a service-oriented model. The ubiquitous IP connectivity of

contemporary software platforms allows this model to now be cost-effectively implemented

because instant verification of an active subscription is possible each time the end-user attempts to

use an app.

3. Usage-based license: This sort of model charges the user based on actual usage and requires some

direct measure of usage (such as number of times used or number of hours used). This licensing

model is a utility-oriented model, much like you pay for the actual amount of electricity or

water consumed. The necessary condition for this licensing model is the ability to precisely and

Figure 6.12

1316.3 Aligning Governance
cost-effectively meter usage. This is increasingly viable in software platforms due to their

near-ubiquitous IP connectivity. The actual revenue need not directly be recouped from the

end-user; it can be recouped from a third side (e.g., an advertiser) on a multisided platform.

These three pricing strategies can directly be linked to free versus paid apps common in

contemporary mobile app stores. The free model is a usage-based license subsidized by

advertising. It generates an ongoing stream of revenue for the app developer, unlike the paid

model that typically generates revenue from a one-time sale.
6.3 ALIGNING GOVERNANCE
Alignment is typically between two things. Table 6.2 summarizes what each of the three dimensions of

platform governance must be aligned with. All the dimensions of platform governance must be aligned

with its architecture. Innovation at the app level thrives on autonomy—granted by architecture—plus

incentives of app developers for risk-taking—granted through governance. The decision rights dimen-

sion must additionally be aligned with the platform’s business model. The pricing dimension of gov-

ernance must additionally be aligned with the platform’s lifecycle stage and its business model.

Platform lifecycle refers to the three dimensions described in Figure 2.1 in Chapter 2: emergence

of a dominant design, diffusion among end-users, and phase along the S-curve. We will stay clear

of an academic treatise of what business models mean. In this book, it is sufficient to think of the busi-

ness model simply as how a platform ecosystem’s participants hope to pay their bills. It is how app

developers and platform owners intend to generate revenue.
6.3.1 Aligning decision rights partitioning
Aligning the distribution of decision rights in a platform ecosystem requires analyzing primarily how

they fit with the ecosystem architecture and secondarily with the platform’s business model. As

Table 6.2 shows, decision rights need to be aligned with ecosystem architecture and with the platform’s

business model. Two heuristics apply to aligning decision rights with architecture: the mirroring prin-

ciple and specialized knowledge.

6.3.1.1 Aligning decision rights and architecture using the mirroring principle
The gist of the mirroring principle is that organization of the development teams in a platform ecosys-

tem must mirror its technical architecture (Baldwin and Clark, 2000, p. 47). The division of authority

over decisions (decision rights) is a defining property of organizational structure (Nault, 1998).
Table 6.2 Considerations in Aligning Governance Choices

Governance Dimension Architecture Lifecycle Business Model

Decision rights l l

Control l

Pricing l l l

132 CHAPTER 6 Platform Governance
The architecture of a platform ecosystem determines the structure of dependencies between the task

structure of the platform owner’s work and the app developers’ work. The boundaries of subsystems

in an ecosystem determine feasible boundaries between groups that are responsible for each of them.

Properties of a platform’s architecture therefore determine whether the app development work can be

done by outside app developers or is better done inhouse by the platform owner. Therefore, modular-

ization of platform architecture provides a powerful mechanism for the separation of responsibility

between the platform owner and app developers. Although a modular platform architecture provides

a framework for making innovation effort divisible, the organization of the ecosystem must leverage

this property to benefit from modularization.

The technical architecture of an ecosystem is therefore inseparably intertwined with the organiza-

tional structure of the ecosystem that is used. Architecture of an ecosystem imposes constraints on app

developers who interact with it and build their work on it. It is of little consequence to attempt to resolve

the debate about where architecture precedes organization or vice versa. Architecture and decision

rights partitioning must be mirror images for them to reinforce each other’s potential advantages. A

misalignment between the two can create a severe coordination deficit (Sosa et al., 2004). Therefore,

the relationships between the platform owner and app developers ought to be analogous to the relation-

ship between the platform and apps. The boundaries of the development teams responsible for apps and

the platform therefore usually follow the boundaries between apps and the platform within an ecosys-

tem. Boundaries of individual organizations’ responsibilities must align with boundaries of apps vis-à-

vis the platform. If the platform’s architecture is highly interdependent (monolithic), so should the link-

ages between app developers and the platform owner.
SHARED VERSUS PROPRIETARY ARCHITECTURE
If the ownership of a platform is shared among multiple owners or it is based on an open standard, it represents a
shared rather than a proprietary platform (which belongs to one platform owner). These multiple owners of the
platformmust cooperate tomake any changes to the platform architecture. Such distributed ownershipmitigates the
hold-up risk faced by app developers but also suffers from coordination challenges. It can result in a gridlock in
making platform strategic decisions that can impede the evolution of the platform as well as its ecosystem. In
contrast, a single platform owner has more power over the direction of a platform. It is therefore useful to view an
increase in the number of platform owners as diffusion of power related to the platform’s architecture.
Thus architecture precedes how an ecosystem is organized, and howmuch of the innovation work is

done inhouse vis-à-vis outside developers. While the initial platform designers have knowledge of the

entire platform, app developers do not need the same depth of knowledge of the platform if the archi-

tecture is sufficiently modularized. Their work can proceed independently, largely in ignorance of the

inner workings of the platform. Compliance with the platform’s interface specifications ensures that

their apps will integrate and interoperate with the platform. This allows greater specialization by app

developers in the domain of their apps. Thus technical division of the ecosystem through architecture

enables division of cognitive labor.

How development tasks for a platform and its apps in an ecosystem are partitioned must match how

authority for them is divvied up between the platform owner and app developers. In other words, the

partitioning of decision rights should mirror the technical architecture of the platform ecosystem. Mod-

ular ecosystem architectures therefore require modular partitioning of responsibilities and authority

1336.3 Aligning Governance
across the ecosystem. A modular organizational structure is where each organization participating in

the ecosystem is the owner-operator for their subsystem—autonomous, perhaps even in competition

with others within the ecosystem. A modular organizational structure in an ecosystem is therefore

one where the authority for platform decisions resides primarily with the platform owner and the

authority for app decisions resides primarily with individual app developers. Architectural decoupling

between a platform and apps must therefore be mirrored in the division of authority and responsibility

across the ecosystem. The more modular the architecture of the platform ecosystem, the more modular

should the partitioning of decision rights be for the platform and apps.Modularization of decision rights

therefore economizes on the limited coordination capabilities of app developers and the platform owner

(Ethiraj and Levinthal, 2004a,b; Simon, 1978). By extension, the more modular the microarchitecture

of an app, the more modular should the partitioning of decision rights be for that app. In contrast,

the more monolithic a platform’s architecture, the more centralized and concentrated should the

allocation of decision rights be. Such mirroring creates synergies such that governance amplifies

the benefits of modular architectures. The implementation of the mirroring principle is illustrated in

Figure 6.13.
6.3.1.2 Aligning decision rights with specialized knowledge
The second criterion for aligning decision rights is to locate the authority for each class of decisions

where the specialized knowledge needed to make those decisions is located (Jensen and Meckling,

1992; Macher and Boerner, 2012; Tiwana, 2009). This criterion ensures that decision rights are aligned

with the platform’s business model. Recall that the four types of decision rights were the strategic and
implementation decisions pertaining to the platform and individual apps. Using this logic, the optimal

location for each of the four classes of decision rights can be determined. Decision rights are aligned

with the platform business model when each class of decision rights is located with the core knowledge

needed to make that class of decisions.
FIGURE 6.13

Using the mirroring principle to align decision rights with architecture.

Figure 6.13

Table 6.3 Aligning Platform and App Decision Rights with Ecosystem Architecture

Decision
Right

Core
Knowledge
Needed

Complementary
Knowledge
Needed

Locus of Core
(Complementary)
Knowledge Optimal Location

Platform:
strategic

Platform’s
market

Some knowledge
of user needs

Platform owner (app
developer)

Platform owner, but
with app developer
input

Platform:
implementation

Platform’s
technology

– Platform owner Platform owner

App: strategic App domain
user needs

– App developer App developer

App:
implementation

App domain
user needs

Some knowledge
of platform
technology

App developer
(platform owner)

App developer, but
with platform owner
input

134 CHAPTER 6 Platform Governance
Table 6.3 summarizes the knowledge-authority co-location logic for aligning decision rights with

the distribution of specialized expertise in a platform ecosystem. Consider each of the four classes of

decision rights. Two classes of decisions—the platform’s implementation decisions and an app’s stra-
tegic decisions—are the most straightforward because they rely primarily on one specific type of

core knowledge.

Platform implementation decision rights are operational decisions that pertain to the choice of fea-
tures, functionality, design, and user interface of the platform (Tiwana, 2009). The core knowledge that

they require is a deep understanding of the platform’s technology, which is usually the platform

owner’s knowledge. Platform implementation decisions should therefore ideally be centralized (i.e.,

held by the platform owner). Centralization of platform implementation decisions also gives a platform

owner architectural control over the ecosystem, which subsequently impacts the platform owner’s abil-

ity to influence its evolutionary trajectory. Centralization of platform implementation decisions also

potentially works well for app developers because it allows them to benefit from the scale economies

generated by sharing the centrally managed commonalities in functionality that their apps might build

on but that do not differentiate them in their own niche markets.

App strategic decision rights pertain to decisions about what an app should do. Recall that the value
that end-users attach to a platform is often shaped by capabilities and functionality beyond those

natively built into a platform. The source of such capability extension is apps. Apps require a deep

understanding and in-depth knowledge of diverse user needs and application domains that might

not be obvious to a platform owner but that app developers can bring to the table. These apps therefore

target niche market segments of diverse sizes and structures subject to different levels of technical and

business uncertainty (van Schewick, 2012, p. 134). These markets might also have different norms for

compatibility across rival platforms (i.e., whether an app designed to work on one platform must also

work on a rival platform) (Rysman, 2009). For example, social networking app users might expect

cross-platform compatibility but instant messaging app users might not expect it. (These markets might

also have widely varying norms for app microarchitectures, hence app-level modularity.)

Such sources of knowledge of users’ needs in diverse, narrow application is increasingly dispersed

(Dhanaraj and Parkhe, 2006). App developers are more likely than platform owners to have deep

1356.3 Aligning Governance
knowledge of such user needs in an app’s domain. The locus of the core knowledge needed for deci-

sions about what an app should do—app strategic decisions—is therefore app developers. Application

strategic decision rights should therefore be decentralized (i.e., held by app developers). However, this

is only appropriate when the platform architecture is sufficiently modularized. If the platform archi-

tecture were monolithic, app development would either have to be done by the platform owner or a

combination of precise metrics and intense monitoring coupled with intense coordination between

the platform owner and app developer would be needed.

As we subsequently describe in Part IV of this book, this has significant evolutionary consequences

for apps. For example, decentralization of app strategic decisions gives app developers considerable

control over cross-platform compatibility, business models used for revenue generation, and the power

to adapt as fast as they need to. The diverse markets served by such apps can also vary significantly in

how dynamic they are, often requiring different apps to adapt at different rates. Such decentralization

therefore increases the prospects for individual app developers to maintain competitive differentiation,

rebuff envelopment threats from the platform owner, and leverage network effects that create noncoer-

cive lock-ins. Decentralization of app strategic decision rights also works well from the platform

owner’s perspective because it fosters “combinatorial” innovation around the ecosystem by mixing

ideas from outside and inside its own organization.2 Decentralization of app strategic decision rights

also minimizes the burden on the platform owner for coping with the potentially large variability in

evolution rates of the platform’s app portfolio.

However, platform strategic decision rights and app implementation decision rights are not as

straightforward to align with knowledge because they draw on a distinct core body of knowledge

but also require a complementary body of knowledge that is usually not colocated with the same party

in an ecosystem (Hoetker, 2005; Kapoor and Adner, 2011; Tiwana and Keil, 2007).

Consider platform strategic decision rights. These represent the authority for direction-setting deci-
sions about what a platform should do. The core knowledge needed is an understanding of the plat-

form’s target markets, including an appreciation of rival platforms, industry needs, trends, and cost

structures. The locus of such core knowledge is likely the platform owner. Therefore, on first glance,

it makes sense to centralize platform strategic decision rights. Centralizing platform strategic decision

rights also gives the platform owner the power to strategically maintain selective incompatibility that

locks out rival platforms and (coercively) locks in app developers to the platform (Rysman, 2009).

When the platform owner retains strategic decision rights for a platform, it also retains the power

to alter the rights and privileges of app developers and set contractual obligations and rules of partic-

ipation (Boudreau, 2010). This gives a platform owner the flexibility to tweak the degree of openness of

the platform over time.

However, simply centralizing these decision rights with the platform owner runs the risk of over-

looking a critical type of complementary knowledge that is likely to be a platform owner’s weakness:

deep knowledge of user needs. Recall that by definition a platform is at least two-sided. These two

sides—app developers and end-users—are both users of the platforms.
2When a platform owner holds app strategic decision rights (i.e., they are centralized), the structure begins to resemble tra-

ditional software outsourcing. This is a viable decision rights structure only when the platform owner wants to dictatewhat an
app developer should accomplish. It also alters the appropriate structure of control portfolios described in the next section,

which must then emphasize output metrics set by the platform owner over any other control mechanism.

136 CHAPTER 6 Platform Governance
App developers must have some input in platform strategic decisions because they are likely to be

able to contribute two distinct types of knowledge that are needed by the platform owner for making

direction-setting decisions. First, app developers are likely to understand their own needs for their app

development work around a platform better than the platform owner. External stakeholders such as app

developers whowere never in the picture in traditional organizations must therefore be given the oppor-

tunity to provide real input into platform decisions (de Weck et al., 2011, p. 19). Input from app devel-

opers allows a platform owner to appropriately evolve the interfaces to its platform to better meet app

developers’ evolving needs, while simultaneously protecting and selectively disclosing intellectual

property that is core to the platform. By itself, control over the architecture of a platform gained by

centralizing platform implementation decision rights does not guarantee that the platform will be able

to sustain a win–win, pie-expanding proposition with app developers. A platform will survive only if it

helps everyone in its ecosystem do better with it than without it. In order for a platform to thrive, plat-

form owners must not only attract but also retain app developers. A platform owner must therefore

continue to contribute unique capabilities valued by app developers that compare favorably with rival

platforms, and capabilities that have no direct substitutes. Allowing app developers to have input in

platform strategic decisions therefore enables a platform owner to remain sensitized to their emerging

needs while also delivering the necessary economies of scale in the functionality shared by their apps.

Second, app developers are also likely to be closer to the pulse of emerging end-user needs from

their specialized market segments of their own apps. End-user expectations of tomorrow’s mass market

end-users often stem from today’s leading-edge user needs (Von Hippel, 1986). App developers are

more likely to be better tuned to the emerging needs of such leading-edge users, who are typically found

in niche segments of the broader end-user communities. In contrast, the platform owner’s knowledge of

end-user needs is likely to be more mass-market-oriented. Therefore platform strategic decision rights

should lean toward centralization with platform owners but with app developers’ inputs. In other words,

they are optimally placed toward the centralization side of the scale but away from extreme central-

ization. This is illustrated in the range of possible placements for this class of decision rights in

Figure 6.14. Where precisely within this range they are placed depends on the modularity of a plat-

form’s architecture. (When a platform owner holds app strategic decision rights, the platform model

begins to resemble a traditional outsourcing arrangement.)

Finally, app implementation decision rights represent how app developers execute and realize app

strategic decisions. The first core knowledge needed for app implementation decisions is likely to be with
Decentralized

Platform Owner App Developer

Platform Owner App Developer

Platform Owner App Developer

Platform Owner App Developer

Platform - Strategic

Platform - Implementation

App - Strategic

App - Implementation

Class of Decision Rights

Centralized

Optimal Location

FIGURE 6.14

Optimal decision rights partitioning in modularized platform ecosystems.

Figure 6.14

1376.3 Aligning Governance
app developers. The first advantage of greater decentralization of app implementation decision rights is

that it places the authority over app implementation decisions where the core knowledge to make such

decisions resides. Second, it frees an app’s developer to upgrade and evolve an app unconstrained by

the platform. Provided an app developer sufficiently modularizes an app’s microarchitecture, this rein-

forces the potential advantage of the flexibility provided by architectural encapsulation (wherein the

app displays no hidden internal details beyond its visible information to the rest of the ecosystem). A third

advantage is that control over app implementation decisions provides an app developer the option tomulti-

home (i.e., to potentially make the app portable across multiple competing platforms). Portability means

that an app can be readily executed on a different platform from the one forwhich it was initially designed.

For example, an app such as Skype can readily be run on iOS, Android, or Blackberry OS. Portability is

attractive to app developers and end-users, but not usually to platform owners.

However, simply decentralizing these decision rights with app developers runs the risk of overlook-

ing a critical type of complementary knowledge that is likely to be app developers’ weakness. Imple-

mentation of apps requires some knowledge of the platform technologies, especially to ensure that an

app leverages the unique capabilities of a platform when appropriate, and to ensure interoperability

with the platform. Therefore, such decisions should lean toward decentralization with app developers

but with some input from platform owners. In other words, they are optimally placed toward the decen-

tralization side of the scale but away from extreme decentralization. This is illustrated in the range of

possible placements for this class of decision rights in Figure 6.14. Where precisely within this range

they are placed depends on the modularity of an app’s microarchitecture and how the four functional

elements of the app are distributed across client- and server-side devices. The decision rights partition

framework leaves unaddressed the question of who—platform owner or app developer—actually con-

trols the relationship with an individual app’s end-user. The answer depends on the microarchitecture

for an individual app chosen by the app developer.

Figure 6.14 summarizes the resulting optimal pattern of decision rights partitioning in a modular-

ized platform ecosystem. The more modular the platform’s architecture, the more centralized should

platform decisions be and the more decentralized should app decisions be. However, platform strategic

decision rights can be anywhere in a range of levels leaning toward centralization but with some app

developer say in them. However, app implementation decision rights can be anywhere in a range of

levels leaning toward decentralization but with some platform owner say in them.
6.3.2 Aligning control portfolios
6.3.2.1 The dual purpose of control in platforms
The purpose of control mechanisms in an ecosystem is twofold: creating convergent goals and ensuring

coordination between the platform owner and app developers.

Creating convergent goals. The first purpose of platform control is to ensure that the work of app

developers furthers the interests and objectives of the platform. At the very least, it must not hinder

them. App developers and platform owners are usually independent organizations that are likely to

pursue their own self-interest, even if it is at the expense of the other party (Eisenhardt, 1989). Goal

convergence can partially be accomplished by careful platform pricing choices that align the goals of

app developers and platform owners. For example, pricing structures that split revenues create a shared

fate that can bind together the interests of platform owners and app developers. But revenue-sharing

models are not always viable in platforms (e.g., in open-source, nonprofit platforms). An alternative

138 CHAPTER 6 Platform Governance
way to create convergent goals is through relational controls that rely on a shared sense of purpose,

norms, and values that bind together the interests of a platform owner and app developers. Control

mechanisms must also vet and weed out apps that are potentially damaging to the ecosystem. These

can include outright malicious apps intended to harm the platform’s end-users or apps that are designed

to compromise or circumvent a platform’s business model and rules.

Facilitating coordination. The second purpose of platform control is to facilitate coordination

between the platform owner and app developers, primarily ensuring integration between the platform

and apps. The potential power of platform ecosystems comes from leveraging the unique expertise of

many, diverse independent app developers on a scale irreplicable within a single organization. How-

ever, this diversity can also be the root of utter chaos. Apps must seamlessly interoperate and integrate

with the platform to ensure a cohesive platform ecosystem. This property—composability—is the

degree to which an app can be readily integrated with the platform. After all, ecosystem-level innova-

tion does not arise from the mere gathering—but from new combinations—of many app developers’

capabilities (Dhanaraj and Parkhe, 2006).

We have already described two strategies in platforms that help facilitate such coordination: (1) an

appropriate choice of architecture by the platform owner and app developers and (2) mirroring decision

rights partitioning and architecture. However, even these two devices taken together leave one hole in

ensuring coordination across the ecosystem, which a control portfolio must plug: variance in interface

standards compliance. The implicit coordination capability of architectureworks only if every developer

is following agreed-upon standards for connecting their apps to the platform. Compliance by app devel-

opers to amodularized platform’s interface specifications ensures integration of apps with the platform.

The challenge comes from variance in the extent to which different app developers comply with the

interface standards. A roadblock in ensuring systems integration is the repeated need to ensure it. Dif-
ferent apps often evolve at different rates, and often evolve faster than the platform does. So, the need

for ensuring seamless integration of apps with the platform is hardly a predictable, one-shot activity but

rather an ongoing one. As an app evolves, it must maintain interoperability across each iterative release.

Therefore, it is useful to think in terms of systems reintegration rather than one-shot systems integration

between a platform and apps. Mirroring modularized architecture with modularized decision rights

does not eliminate the need for integration processes.

Paradoxically, this means that modular ecosystems organized around modular architectures require

monolithic—not modular—integration processes (Brusoni and Prencipe, 2006). This is illustrated in

Figure 6.15. By integration processes here we are referring to the processes used to integrate the outputs

of app developers’work, not how they develop apps. (The latter are app implementation decision rights.)

This ensures that app developers can be locally optimizing but globally aware. Freedom in app devel-

opers’ work must therefore be coupled with strict specifications of contributions, expectations of per-

formance, and appropriate rewards and penalties. This requires some degree of formal control by the

platform owner over app developers. Control mechanisms can help address this challenge by ensuring

better compliance to a platform’s interface specifications and design rules.

This brings us back to the Goldilocks principle: Platform owners must get the control portfolio just
right. The challenge for platform owners is to manage the delicate tension between developer auton-

omy and ecosystem-wide integration. Control portfolios must simultaneously support the entrepre-

neurially oriented independence of app developers and seamless integration of their output into the

platform’s ecosystem. Too much control can stifle innovation by app developers. Too little control

can compromise ecosystem-wide coherence (Boudreau, 2010). Granting access by opening a platform

App

Platform

AppApp

Modular Architecture

App
Developer

Platform
Owner

App
Developer

App
Developer

Modular Ecosystem Structure

Monolithic Integration Processes

Mirror
Images

FIGURE 6.15

Modular ecosystems organized around modular architectures still require monolithic integration processes.

1396.3 Aligning Governance
therefore does not entail giving up control. In going overboard with giving up control, a platform

owner can position itself out of the ecosystem altogether. (Think of IBM and the PC business that

it literally created.) A 16-year study of platforms found evidence that giving up control did not

increase innovation in platforms beyond an incrementally trivial level; instead it put them on a devolv-

ing path to failure (Boudreau, 2010). Therefore, a platform ecosystem that thrives will neither be like a

democracy nor a centrally planned regime. Instead, it must be like a benevolent dictatorship (Tiwana

et al., 2010).
6.3.2.2 Rules of thumb for designing a platform control portfolio
Platform-based businesses represent a shift from closed innovation models to open innovation models.

The closed innovation model—the mainstay of traditional organizations—was based on the philosophy

that innovation requires control: Companies generated their own ideas, developed and implemented

them, and then took them to market. Self-reliance was the prized virtue, and the key task of managers

was to screen out bad ideas. This model dominated most of the past century. This internally focused

approach to innovation is increasingly becoming obsolete as traditional organizational structures are

being supplanted or altogether replaced by distributed innovation networks such as platform ecosys-

tems. The platform model is based on the philosophy that innovation requires giving up some control.
Five rules of thumb should guide the design of a platform’s control portfolio to accomplish these goals.

1. Simple. The first rule of thumb is that a control portfolio should be as simple as possible in its

structure. Simply put, less is more. Controls impose costs on the platform owner who must design,

implement, and most importantly enforce control mechanisms (Anderson and Dekker, 2005).

These costs must be commensurate with their realized benefits. A control mechanism that cannot

be reliably enforced is likely to deliver little benefit but will nevertheless impose costs. Controls

Figure 6.15

140 CHAPTER 6 Platform Governance
also impose compliance costs on app developers. These costs are not only direct financial costs but

also indirect costs such as discouraging frequent releases of apps. This can slow down—even

cripple—the evolution of individual apps, create a destructive pattern of missed windows of

opportunity, and increase time lag between updates. Such costs are borne immediately by app

developers, but their damage to the vibrancy of a platform can easily exceed the damage they can

do to individual app developers. Rapid iterative refinement is usually critical in highly competitive

appmarket segments. If controls stymie the speed of such refinements in apps, they can amplify the

destructive power of the Red Queen effect that we discussed in Chapter 2. A useful heuristic is

therefore to structure a control portfolio that is least costly for both app developers and for the

platform owner. Remember that architecture itself is a form of control. By defining the

architectural rules for app developers, a platform owner invokes a source of real power in a

platform ecosystem (Meadows, 2008, p. 158). Control though architecture can substitute for many

of the costlier, overt control mechanisms. But overt control is effective only in extreme

moderation. Therefore, the minimal subset that gets the job done (i.e., ensures that the app

developers are working in the best interests of the platform and ensures easy integration of their

work into the ecosystem) is optimal. Instead of asking themselves how much of each control

mechanism to use, it is more fruitful to ask the question of whether a specific control mechanism is

even necessary. If it is, can it be realized in practice? Can it be enforced? If a control mechanism is

absolutely necessary, it is the platform owner’s responsibility of minimizing the cost imposed by it

on app developers.

2. Transparent. The second rule of thumb is that a control portfolio should be transparent to app

developers. Compliance with a set of controls imposed by the platform owner is more likely to

happen if app developers clearly understand precisely how their work will be evaluated.

Ambiguity about this (as was the case with Apple’s iOS) can make compliance so cryptic that it can

discourage existing app developers from sticking with a platform and dissuade new app developers

from joining the platform. To have high transparency, a platform owner can take two steps. First,

be explicit about expectations and how performance on specific criteria related to how those

expectations will be measured. Second, make the process of evaluation on such criteria visible to

app developers.

3. Realistic. The third rule of thumb is that a control portfolio should be based on a good

understanding of how the app developers’ work is done. The platform owner must therefore

consider whether each control mechanism chosen for the control portfolio is a realistic reflection of

app developers’ day-to-day routines and practices. To the extent possible, a platform owner must

seek to establish guidelines—not rulebooks—for app developers and also make a few

nonnegotiable principles explicit.

4. Shared values. The fourth rule of thumb is that a control portfolio must conform to the platform

owner’s philosophy about the platform. This philosophy is effective only if it is also shared by

other members of the ecosystem, particularly app developers. A well-designed control portfolio

should reinforce this philosophy and at the very minimum not contradict it. (An important

control mechanism that can promulgate shared values, norms, and a shared culture among app

developers and the platform owner is relational control.)

5. Fair. The final rule of thumb is that a control portfolio should be fair. This means that it should

be consistently applied to all app developers, it should have no contradicting rules, and must be

fairly applied and interpreted by the platform owner. Fairness also includes fairness to the

1416.3 Aligning Governance
platform’s other sides such as the end-users. An important role that controls must therefore also

serve effectively is to prevent members of either side to take unfair advantage of the other (Evans

and Schmalensee, 2007, p. 35).

6.3.2.3 Aligning individual control mechanism choices
Platform owners must ask three questions to pick which of the four control mechanisms to deploy and

to what degree:

1. Is it needed? If not, skip it.

2. Whether something else can substitute for it? If yes, use the substitute instead.

3. Is it viable? Viability requires that the preconditions in Table 6.1 for using it are met. If not, skip it.

The forthcoming logic is summarized in Table 6.4.
Table 6.4 Evaluating Individual Control Mechanisms for Inclusion and Exclusion

Control
Mechanism Needed? Substitute? Viable if. . .

Gatekeeping When creating performance
metrics or monitoring
processes is not possible

None; but prescreening
app developers helps

• App developers accept a
platform owner’s
authority to play
gatekeeper

• Compliance criteria are
known and considered
fair by app developers

• Platform owner can cost-
effectively verify
compliance

Process Not needed if performance
metrics are used

• Gatekeeping
• Use of metrics-

based control
• Allocation of app

implementation
decision rights to
app developers

• Platform owner has
credible expertise to
dictate methods

• Platform owner can
verify process
compliance by
app developers

Metrics Not needed if app
developers retain app
strategic decision rights

• Use of
process control

• If market determines
winners and losers
among app
developers

Metrics are objectively
measurable

Relational • Fills gaps left by
formal controls

• Lower cost than
formal controls

None, but prescreening
app developers helps

• App developer churn
is low

• App developers and
platform owners are
bound by clan-like
shared values

142 CHAPTER 6 Platform Governance
6.3.2.4 Aligning gatekeeping with platform architecture
Gatekeeping is required when a platform owner can neither reliably use predefined performance met-

rics nor cost-effectively impose or monitor process compliance by app developers. Both of these chal-

lenges often exist in platforms, leaving platform owners with no good substitutes for gatekeeping. But

gatekeeping requires that criteria for their app being allowed into the platform ecosystem is explicitly

known and considered fair by app developers and that the platform owner can cost-effectively verify

compliance. The more visible—but less important—role of gatekeeping is to keep ill-intentioned apps

out. The more important role of gatekeeping is to ensure the integrity of apps and their compliance with

the design rules, constraints, and interface standards to proactively ensure interoperability with the plat-

form. Recall that modularization of platform architecture facilitates app integration with the platform

only if individual apps comply with the platform’s interface specifications and design rules. Therefore,

the primary purpose of gatekeeping is ensuring app developer compliance.

However, testing costs are the Achilles heel of modular architectures (Baldwin and Clark, 2000,

p. 272). Gatekeeping can become very costly and time-consuming for a platform owner as the frequency

of updates to individual apps increases and the size of the app developer pool grows. Over time, this can

become enough of a bottleneck that a platform can fall behind in the competitive race against rival plat-

forms. Therefore, a platform owner has a strong incentive to invest in tools and mechanisms that lower

app developers’ costs and its own costs of verifying compliance of apps with the platform’s design rules

and conformitywith its critical interface specifications.Developer toolkits, referencemodels, integrated

development environments, and app testing tools are examples of such tools (Evans et al., 2006, p. 413;

Parker and Van Alstyne, 2005). Two additional ways to reduce gatekeeping costs upfront include (1)

prescreening who is allowed to join the platform (a form of relational control) and (2) being clear about

constraints on what apps are not allowed to do. An example of the latter is Apple’s prohibition on apps

duplicating the native functionality of the iOS platform. In summary, gatekeeping has almost no direct

substitutes and is essential for fully extracting value out of modular designs.

6.3.2.5 Aligning process control with platform architecture
Process control is required when the platform owner either (a) cannot prespecify objective metrics to

evaluate app developers’ outputs or (2) has a better understanding than app developers of how to suc-

cessfully develop apps. The first condition is often met in platform settings but the second one holds

true only occasionally. The platform owner can rarely dictate to the developers how to do their day-to-

day app development work because it lacks the legitimate authority to issue commands and indepen-

dent app developers are not obligated to obey (Dhanaraj and Parkhe, 2006). Nor can it inexpensively

monitor or micromanage how app developers do their own development work. Decentralization of app

implementation decision rights to app developers also contradicts the use of process control because it

translates into granting autonomy to app developers for how to implement their apps.

However, a platform owner often can credibly prescribe development and testing procedures that

will ensure app interoperability with its platform. Modular platform interfaces themselves provide

some app integration mechanisms that reduce the need for ongoing coordination between a platform

owner and app developers. Furthermore, use of gatekeeping by the platform owner also reduces the

need for extensive process control. This leaves only one potential use for process control: to help

app developers pass gatekeeping checks. Therefore, some process control can increase the value of

extensive gatekeeping in ensuring apps’ compliance with a platform’s interface specifications and

design rules.

1436.3 Aligning Governance
A platform owner can invest in four things to facilitate such compliance using noncoercive, facil-

itative process control:

• Programming resources. Examples of such resources include documentation such as technical

specification, manuals, programmers’ guides, and programming tools used to write apps. Apple’s

investments in such resources for its iOS developers have paid back handsomely (Burrows, 2011).

• Integrated development environments (IDEs), software development toolkits (SDKs), and

reference models are other common ways for platform owners to assist app developers with

compliance to a platform’s interfaces (Evans et al., 2006, p. 79; Parker and Van Alstyne, 2005).

They automate rote tasks such as tracking changes, managing source code versions, and testing of

apps using simulators. Providing such tools can help improve app developer productivity and better

manage complexity associated with developing for a platform. The platform owner should rarely

charge for such app developer tools. The focus should be on enabling everyday development

processes and helping improve app developer productivity. The objective is to reduce the cost and

effort incurred by app developers in developing around the platform.

• Mock-up and prototyping tools. These are tools that allow app developers to inexpensively create

prototypes of what a finished app would look like before having to implement it in code. The

purpose of such tools is what Michael Schrage (2000, p. 126) calls demand articulation: End-users

cannot readily tell app developers what app features that they need but recognize them when they

see them. This allows app developers to quickly refine app design concepts before they make

irreversible investments in implementing apps that eventually turn out to be duds. A platform owner

providing such tools also reinforces the decentralization of app strategic decision rights to app

developers in modularized platform ecosystems. This subsequently has much larger payoffs in a

platform’s evolution and survival in Red Queen competition against rival platforms.

• Integration protocols and testing standards. These are procedures that allow the app developers to

proactively assess how well an app conforms to a platform’s rules and interface specifications

(Baldwin and Clark, 2000, p. 77). The earlier in the app development process an app developer can

test standalone apps for compliance, the cheaper it will be to fix potential problems (Hibbs

et al., 2009).

6.3.2.6 Aligning metrics-based control with platform architecture
Control via metrics is rarely required in platform ecosystems for two reasons. First, when app strategic

decision rights are decentralized, app developers—rather than platform owners—set most criteria and

metrics for judging the performance of their apps. However, metrics-based control requires platform

owners to set predetermined metrics for evaluating the app developers’ performance. Objective mea-

surement of app developers’ performance using metrics, even if possible, is meaningless when the plat-

form owner does not set them. (Recall from Section 6.3.2.3 that this information-intensive, costly

control mechanism is a legacy from the traditional software development model.) Second, competitive

markets determine winners and losers among apps in platform ecosystems. End-user markets therefore

provide high-powered incentives for app developers to create apps that do well in the marketplace.

These incentives, coupled with their own investments in their apps, suffice to motivate app developers

to use their distinctive capabilities and to leverage their unique expertise to ensure that their apps com-

pete well in meeting the needs of their end-users. Third, process control and metrics-based control do

not mix well (Tiwana and Keil, 2007). If process control is used by a platform owner—as is often done

144 CHAPTER 6 Platform Governance
in platform ecosystems—it provides a direct substitute for metrics-driven control. Therefore, control

via metrics is rarely needed3 or viable, and often has less costly substitutes in modular4 platform mar-

kets. Only a small set of objective performance metrics such as sales or usage is sufficient to implement

the revenue-sharing agreement between the platform owner and individual app developers.
6.3.2.7 Aligning relational control with platform architecture
Relational control fills gaps left by formal controls, especially in dealing with outside-the-contract sit-

uations not covered by the formal agreements between the platform owner and an app developer

(Bernheim and Whinston, 1998; Tadelis, 2002). Relational control is among the least costly control

mechanisms. However, it is difficult to implement right off the bat because shared values, norms of

behavior, peer pressure, and the shared mindset among the app developer community—especially a

globally distributed one with markedly different values and norms—that it relies on take time to

emerge. The app developer community must also be stable enough over time for it to be viable. Plat-

forms often have developer churn, with new developers lacking the shared history of existing devel-

opers. The potential diversity of app developers, the churn in membership, and the youth of the

platform can therefore decrease the viability of relational control.

Relational control will therefore rarely suffice by itself but can be a useful complement to the other

formal control mechanisms. The platform owner can help foster a clan-like culture by promulgating a

sense of shared values, norms, sense of purpose, and mindset among its developer community by

(1) setting examples through its own actions (e.g., fairness, impartiality, design ethos), (2) reinforcing

a common identity among members of the ecosystem (Dhanaraj and Parkhe, 2006), and (3) organizing

socialization opportunities among its app developers (e.g., developer conferences). Prescreening who

is allowed to join the app developer community is another way to accelerate the development of shared

norms. Prescreening might use criteria such as prior history of the developer on other platforms to

ensure that members of the app developer community meaningfully complement the platform owner’s

own capabilities.

The litmus test for an ideal control portfolio is one that is simple, transparent, fair, and realistic. The

ideal mix of controls is to use one formal control mechanism as a dominant form of control and sup-

plement it with relational control if possible. When relational control is not viable, use gatekeeping

with either process control or metrics-based control.
6.3.3 Aligning platform pricing policies
Pricing decisions by platform owners are key to creating incentives that can encourage a critical mass

of app developers to create platform complements that can keep a platform ahead of rival platforms in

Red Queen competition. The five pricing decisions in platforms must be aligned with the architecture,

platform lifecycle stage, and the platform’s business model, as summarized in Table 6.5.
3The only rare exception is when app strategic decision rights are centralized (i.e., the platform owner rather than app devel-

oper makes direction-setting decisions for an app). In this case, the platform model begins to resemble a traditional outsour-

cing arrangement where metrics-based control should largely replace process control and gatekeeping.
4In contrast, if the platform architecture were monolithic and output metrics were unavailable, development of the app would

have to be done by the platform owner.

Table 6.5 Considerations in Aligning Pricing Policies

Pricing Decision Business Model Lifecycle Architecture

Symmetry l l

Subsidy-side l l

Access/usage fees l l

Sliding scale? l l l

App pricing model

1456.3 Aligning Governance
6.3.3.1 Aligning the pricing symmetry decision
The first criterion in deciding whether to price the two sides asymmetrically is the platform’s business

model. If a platform is two-sided from the beginning, getting both sides on board is critical to getting it
off the ground. Recall that most successful multisided platforms started out as one-sided services that

added a second side only after a critical mass of adopters was on board on the first side. For example,

Dropbox, the popular file-sharing service, added app developers (the second side) only after it had a

large end-user base (the first side; initially the only side).

In two-sided platforms, one side is often the loss leader and the other side is the profit center. Money

lost on the money-losing side is usually made up on the money-making side. Only in rare cases do

platforms make money on both sides; this is often when it starts off as a dominant early mover that

started out as a successful product (e.g., iPhone) or service (e.g., Dropbox and YouTube) with a lot

of adopters. Platform pricing therefore often must be asymmetric such that either the app developers

or the end-users are the side that pays a lot less than the other side.

A second consideration is whether the platform’s business model depends on cross-side network

effects for its success. If so, asymmetric pricing can accelerate the creation of cross-side network effects

in the early stages of its lifecycle; if enough subsidy-side users are attracted to a platform, the money-side

users will pay a premium to reach them (Eisenmann et al., 2006). An example of this is Amazon’s Kindle

platform. Amazon subsidized end-users (by selling devices based on the platform at a loss) to create a

large potential reader base. This attracted major book publishers to the Kindle platform, jumpstarting

cross-side network effects. The initial subsidies can then be reduced, possibly even eliminated. This

approach, however, can fall flat if there are no early-mover advantages in the platform’s market.

Being a first mover to sell in a product or service category does not necessarily guarantee success.

A first mover can be riddled by an underdeveloped or immature pipeline of adopters on the subsidized

side and unclear market requirements, which can make being an early follower a more attractive prop-

osition for entering a potential platform market. The ability to create switching costs5 among the

subsidized-side adopters, exploiting scale and increasing returns advantages and possibly network

effects is necessary for first-mover advantage to be plausible. Dropbox is an example of a platform
5Switching costs arise when the initial investment in complementary products such as purchased apps, going up the learning

curve for a platform, and the whole hassle of replicating her setup on a rival platform can discourage the subsidized-side user

from leaving the platform for another one. Learning costs and familiarity with the QWERTY keyboard, for example, kept

users from switching to a technically superior Dvorak keyboard. The same logic often applies in platforms.

146 CHAPTER 6 Platform Governance
that inspired many copycats attempting to replicate its offering. Such copycats who enter the market

after the product or service has begun to penetrate the mass market are known as late entrants. They

were able to replicate Dropbox’s offering but were unable to overcome the strong same-side network

effects that Dropbox had used to create a first-mover advantage.
6.3.3.2 Aligning the choice and duration of the subsidized side
If a platform owner decides to subsidize one side, which one should it be and for how long? The first

criterion in deciding which side to subsidize is the platform’s business model, particularly if it depends

on cross-side network effects. The trick is to subsidize the more price-sensitive side and charge the side

whose demand increases more strongly with growth on the subsidized side. A platform owner should

charge the lowest prices to the side it needs most to get cross-side network effects started. Put another

way, charge more to the side that derives more value from the presence of the other side. Even if a

platform owner makes a loss on one side, it can recoup the losses from the other side provided the

demand on the other side is sufficiently strong.

Consider two examples. Adobe’s portable document format (PDF) did not catch on until Adobe

priced the PDF reader at zero. Subsidizing end-users substantially increased sales of PDF writers, from

which Adobe earned all of its revenues. Now, think of a trade press magazine as another example.

If readers of a magazine value the number of ads less than advertisers value the number of readers,

then magazine publishers should do better to subsidize readers relative to the advertisers

(Armstrong and Wright, 2007). This approach works well for many trade magazines that are free to

readers but that charge hefty fees to advertisers. Therefore, as a general rule, use prices that lead to

zero (or negative profits) from the side that is more valuable to the other and has greater ambiguity

about the value they will derive from adopting the platform (Evans and Schmalensee, 2007, p. 84).

However, such subsidies are needed only until critical mass is achieved by a platform on both sides.

Achieving critical mass triggers a self-reinforcing bandwagon effect because the value of a platform to

either side increases approximately proportional to the square of the number of users (Rohfls, 2003,

p. 55). Subsidies can be reduced after critical mass is reached, although it is unadvisable to completely

eliminate them.

The question for platform owners to ask themselves is whether app developers value access to end-

users more, or end-users value apps more. Will subsidizing app developers increase end-user demand

for the platform by increasing the number of apps they can use, particularly in comparison to rival plat-

forms? If so, subsidize the app-developer side. This is the case with many smartphone platforms. In

such markets, availability and variety of apps is decisive in end-user platform choice. Superstar apps

and so-called killer apps that end-users value highly can have a disproportionately large effect on end-

user platform adoption; their developers are often prime candidates for subsidies. Conversely, will sub-

sidizing end-users increase the demand from app developers by increasing the prospective pool of will-

ing buyers of their apps for that platform? If so, subsidize the end-user side. This is the case with many

gaming console platforms. The same logic can be used by app developers when an app attempts to grow

into a nested, mini platform (see Chapter 11).

The second criterion is the platform’s stage in its lifecycle. Two considerations enter this decision:

(1) whether a platform is in its pre- or post-dominant design stage and (2) its diffusion among end-users.

In the pre-dominant design phase, app developers are usually stronger candidates for subsidizing

because a winning industry-wide design is yet to emerge. At this stage, the platform’s market can

1476.3 Aligning Governance
be a winner-takes-all kind of competition. Therefore, rapid adoption of a platform by app developers

can boost the rate of innovation, increase end-users’ perceptions of its usefulness, and accelerate its

mass adoption. Together, this can increase the likelihood of a platform becoming the dominant design

that rivals will eventually be forced to follow. Negative pricing can therefore become optimal when a

platform owner’s viability (and profits) are contingent on promoting network effects (Parker and Van

Alstyne, 2005). Second, same-side network effects are difficult to initiate in the early stages of diffu-

sion among end-users but are self-reinforcing once they take off. Having app developers on board

shapes end-users’ expectations about the platform’s future; such expectations heavily influence their

present adoption decisions (Rysman, 2009). A useful metric for tracking progress in diffusion among

end-users is a platform’s installed base (Rochet and Tirole, 2003). Real-time information about this

metric can readily be collected in ubiquitously networked software-based platforms. Subsidies might

be reducible for the subsidized side once a platform reaches the early-majority stage in its diffusion

among end-users.
6.3.3.3 Aligning usage and access pricing
The first criterion in deciding whether to charge access and usage fees is the platform’s stage in its

lifecycle. A platform owner can theoretically charge all sides (e.g., app developers, end-users, adver-

tisers) platform access fees (typically fixed upfront fees) and usage fees (typically variable fees), or

both (Hagui, 2006). Or platform owners can choose to charge neither to two of their sides (e.g.,

app developers and end-users) and instead make up for the loss from a third side (e.g., advertisers).

The correct choice of access and usage policies and fees depends on the platform’s business model,

its industry, and the norms among direct and indirect rivals. Indirect rivals can be particularly tricky

to recognize for platforms and apps that are attempting to create new “blue ocean” markets. For exam-

ple, iOS’s competitors were dumb phones and Blackberries but Android OS’s competitor was iOS.

Similarly, Dropbox’s competition was the inexpensive USB thumb drive, not other file-sharing ser-

vices. Therefore, the choice of the primary fee model is one that does not have easy answers. However,

two general rules usually should be followed. As a first general rule, platform owners must keep access

fees low to encourage prospective adopters on all sides to try the platform. But access fees for the sub-

sidized side should not be zero for an established platform but can be zero or negative in fledgling

platforms. Willingness to pay a token access fee can be just enough to signal credible commitment

and seriousness from app developers. Apple, for example, charges its iOS app developers a token

$99 annual fee for access to the platform. For fledgling platforms yet to attract a critical mass of

app developers, access fees can even be negative. Blackberry, for example, guaranteed to underwrite

a minimum revenue for $10,000 for new apps on its BBOS 10 platform, effectively paying app devel-
opers to join. Poor pricing decisions about access fees for upstart platforms can keep them from build-

ing the right mix or critical mass of participants from one or both sides, leading to failure even before

they’ve had a chance to take off. As a second general rule, a platform should charge either access fees or

usage fees to individual sides, but not both. However, access and usage fees can be mixed within a

platform but not on the same side of the platform.6
6For example, it is possible for a platform to charge access fees to app developers, nothing to end-users, and usage fees to

advertisers.

148 CHAPTER 6 Platform Governance
The second alignment criterion is app microarchitecture. A platform owner should charge usage

fees to at least one side—either end-users or app developers—if (1) an app’s microarchitecture heavily
uses native services of the platform and (2) such services lack scalability. This permits recouping

expenses from the usage of apps that hog platform resources and scale-limited services. But this

imposes a considerable overhead of metering usage by individual apps on the platform owner.7 How-

ever, having to resort to such pricing policies is often symptomatic of two larger problems. First, it

might be a red flag that the platform’s architecture itself lacks sufficient scalability, often a sign

of larger looming problems as the platform grows. Second, app microarchitecture is a decision

largely made by app developers but it is heavily influenced by platform architecture. Having to

charge fees for platform services could potentially signify weaknesses in modularization of the

platform’s architecture.
6.3.3.4 Aligning the pie-splitting scale choice?
The first criterion in deciding how to split the revenue pie with app developers is the platform’s busi-

ness model. To remain attractive, a platform must allow app developers to profit sufficiently from their

work (Gawer and Cusumano, 2008). Pie-splitting choices by a platform signal are also an important

credible signal to app developers that a platform owner will not abuse its power and that they share a

common destiny. Although fixed scales are most common in contemporary platforms (e.g., Apple splits

revenues using a 30–70% fixed scale), moving scales can serve a useful role in various stages of a plat-

form’s lifecycle. A rising scale model is fairly common for author royalties in the traditional book pub-

lishing industry. If used in a platform ecosystem, rising scales create stronger rewards for apps that

perform better in the marketplace. This can create strong incentives for app developers to study their

own niche markets more intensively, invest in understanding user needs more closely, and evolve their

apps. When app developers maintain presence on more than one rival platform and when platform

owners cannot dissuade or restrict such multihoming, rising scales can also encourage them to invest

more heavily in developing their app for that platform. This subtle strategy to deter multihoming is

known as steering (Rochet and Tirole, 2003).

The platform’s lifecycle stage provides a second criterion for aligning pie-splitting choices. The

earlier a platform is in its lifecycle, the more intense is the competition for app developers. Incentives

matter even more in such early stages because app developers are potentially more mobile and can

move to a competing platform. The vibrancy of a platform ecosystem then critically hinges on attract-

ing new app developers and retaining existing ones. By using a rising scale in a platform’s early life-

cycle stages, a platform owner can offer stronger incentives than rivals to app developers. In the long

run, app developers are more likely to opt for a smaller piece of a bigger pie than a smaller pie.

Architecture provides a third criterion for aligning pie-splitting choices. If an app intensively uses

the platform’s native services in its microarchitecture and the platform has scalability limitations (or

scaling is costly for the platform owner), a sliding scale is a viable option. Platform owners should

generally refrain from using sliding scales.
7An alternative is to insist that app developers use multi-tiered app microarchitecture as an alternative capacity scaling

strategy.

1496.3 Aligning Governance
6.3.3.5 Decision 5: app licensing decisions
The choice of perpetual, subscription-based, or usage-based licensing by an app developer for an app

largely depends on the app developer’s business model. A platform’s architecture and portfolio of

software services, however, can constrain viable business models that app developers can implement.

For example, integration of advertising services into iOS and Android platforms makes it more viable

for an app developer to create advertising-supported apps rather than being limited to revenue-

generating apps. Furthermore, app microarchitectures play a direct role in how easy it is to create

variants of a single app. These variants are often priced differently. This strategy (called app

versioning) means different customers pay different prices for more or less capable variants of an

app. However, the possible choices of app microarchitecture available to app developers are also

constrained by platform architecture. Therefore, the connection between app licensing and platform

architectures is at best indirect. The app licensing decision has consequences for versioning of

apps by app developers. We describe in detail several strategies for versioning in our discussion

of app evolution in Part IV.

Table 6.6 summarizes the foregoing discussion of how each of the five pricing choices can be better

aligned with a platform’s business model, its lifecycle, and its architecture.

Platform governance decisions by platform owners impact several of the ecosystem evolution prin-

ciples over the life of a platform. Table 6.7 provides a preview of these. The next section explains these

ideas in depth.
Table 6.6 Summary of Considerations in Aligning Platform Pricing

Pricing
Decision Business Model Lifecycle Architecture

Pricing
symmetry?

Asymmetric if two-sided
from outset and dependent
on cross-side network
effects

Asymmetric if first mover
advantage can be secured
through network effects or
switching costs

–

Subsidized-
side?

• If one side values the
other more

• “Superstar” apps

• Dominant design emerged?
• Diffusion among end-users?

–

Access
fees?

• Generally avoid
• Token access fee from

app developers to signal
credible commitment

Negative or zero access in early
but nonzero in later lifecycle
stages

Usage fees for native
services-intensive app
microarchitectures

Moving pie-
splitting
scale?

Rising scale if app
developers multihome rival
platforms

Rising scale if intense cross-
platform rivalry

Sliding scale if low
platform scalability

App pricing
model?

– – Viable app licensing
models are
constrained by
platform architecture

Table 6.7 Consequences of Governance Choices in Platform Ecosystems

Principle Affected

Governance Dimension

Decision Rights Control Pricing

Red Queen effect l

Chicken-or-egg problem l

Penguin problem l

Emergence l l

Seesaw problem l

Humpty Dumpty problem l

Mirroring principle l

Coevolution l l

Goldilocks rule l

150 CHAPTER 6 Platform Governance
CHAPTER SUMMARY

• Governance is how a platform owner influences its ecosystem. App developers are not soldiers in an
army but rather like musicians in a symphony. The role of governance is to coherently orchestrate

the integration of their unique contributions into a platform’s ecosystem. Good platform

governance must respect app developers’ autonomy while ensuring ecosystem-wide integration.

• Governance complements architecture. Platform governance determines whether thoughtful

architecture pays off. The two must be aligned.

• Governance has three dimensions. These are (1) who decides what (decision rights), (2) how a

platform owner controls app developers (control mechanisms), and (3) pricing policies.

• Governance must aspire to be simple and cheap. The optimal governance structure is the simplest

one that achieves the goals of a platform at the least cost.

• Decision rights are division of authority among a platform owner and app developers. The authority
and responsibility for four classes of decisions can be split any way between a platform owner and

app developers: strategic and implementation decisions about the platform, and strategic and

implementation decisions about individual apps. Strategic decisions are decisions about what it

should do and implementation decisions are about how it should do it. Centralization and

decentralization of decision rights refer to whether they lean toward the platform owner or

app developers.

• Control is how a platform owner creates goal convergence and facilitates coordination with app
developers. A portfolio of control mechanisms used by a platform owner can mix-and-match

different levels of formal (gatekeeping, metrics, and process control) and informal (relational)

control mechanisms.

• Pricing policies involve five decisions. These involve decisions about whether app developers or

end-users are subsidized by the other side, for how long, whether a platform owner charges access

or usage fees, the pie-splitting structure, and app licensing choices.

151Chapter Summary
• Aligning decision rights follows the mirroring principle. The partitioning of decision rights among a

platform owner and app developers must mirror the platform’s architecture. Decentralization of

design in platform architecture must therefore be mirrored in the decentralization of authority. It

must also be aligned with who has the knowledge to make each class of decisions. The optimal

structure requires some sharing of decision rights between a platform owner and app developers.

• Control complements decision rights.Modular ecosystems organized around modular architectures

require monolithic integration processes, which a platform’s control mechanisms provide.

• Aligning a control portfolio uses five simple rules. It should be simple, transparent, realistic, reflect

shared values, and fair.

• Platform pricing policies. Pricing policies must be aligned with the platform’s business model, its

stage in its lifecycle, and its architecture.

Chapters in the next section delve into the evolution of ecosystems, platforms, and apps.

	Platform Governance
	Platform governance as the blueprint for ecosystem orchestration
	Three dimensions of platform governance
	Decision rights partitioning
	Platform versus app decision rights
	Two classes of decision rights: strategic and implementation

	Control portfolio design
	Gatekeeping
	Process control
	Metrics
	Relational control
	Attempted versus realized control

	Pricing
	Decision 1: symmetric or asymmetric pricing?
	Decision 2: which side to subsidize and for how long
	Decision 3: usage versus access pricing
	Decision 4: pie-splitting using a fixed scale or a moving scale?
	Decision 5: app licensing decisions

	Aligning governance
	Aligning decision rights partitioning
	Aligning decision rights and architecture using the mirroring principle
	Aligning decision rights with specialized knowledge

	Aligning control portfolios
	The dual purpose of control in platforms
	Rules of thumb for designing a platform control portfolio
	Aligning individual control mechanism choices
	Aligning gatekeeping with platform architecture
	Aligning process control with platform architecture
	Aligning metrics-based control with platform architecture
	Aligning relational control with platform architecture

	Aligning platform pricing policies
	Aligning the pricing symmetry decision
	Aligning the choice and duration of the subsidized side
	Aligning usage and access pricing
	Aligning the pie-splitting scale choice?
	Decision 5: app licensing decisions

	Chapter summary

