

UiO : University of Oslo

IN5431 - spring 2024
Business case, concept selection and alternative analysis

Agenda

- Introduction
- On making decisions
- The business case
- Generic decision making process
- Summary

Introduction

$\mathrm{UiO}:$ University of Oslo

Planned lectures (subject to change)

Date	Time	Topic
Fri. 19. Jan	$12: 15-14: 00$	Introduction of course and seminar
Fri. 26. Jan	$12: 15-14: 00$	Strategy, governing documents and other structural frames: what does it mean, and what is the importance of IT?
Fri. 2. Feb	$12: 15-14: 00$	Tools and frameworks 1: Introduction + projects
Fri. 9. Feb	$12: 15-14: 00$	Tools and frameworks 2: concept selection and alternative analysis with a business case
Fri. 16. Feb	$12: 15-14: 00$	Tools and frameworks 3: Business processes and IT architecture
Fri. 1. Mar	$12: 15-14: 00$	 platforms.
Fri. 19. Apr	$12: 15-14: 00$	Agile organizations

$\mathrm{UiO}:$ University of Oslo

Date	Time	Topic	What is it really about?
Fri. 26. Jan $12: 15-14: 00$ Strategy, governing documents and other structural frames: what does it mean, and what is the importance of IT? The really big decisions in an organization: what should we improve the forthcoming years? Important discussion before choosing strategy: what are we really working together for - and who are we competing with? Fri. 2. Feb $12: 15-14: 00$ Tools and frameworks 1: Introduction + projects After deciding improvements, one needs to make some kind of sub- organization to coordinate the improvements. One typical sub-organization is a project. There are several frameworks to manage projects. Fri. 9. Feb $12: 15-14: 00$ Tools and frameworks 2: concept selection and alternative analyzis with a business case Both while working explicitly on strategy and in the daily operation of an organization, important prioritziation decisions must be made. There are established approaches for this as well - here we discuss some of them. Fri. 16. Feb $12: 15-14: 00$ Tools and frameworks 3: Business processes and IT architecture Fri. 1. Mar $12: 15-14: 00$ Tools and frameworks 4: IT Governance \& platforms. Fri. 15. $12: 15-14: 00$ Agile organizations Mar			

Recall from the first lecture: Prioritization is essential to all management

- In a typical organization, there is no shortage of good suggestions for improvement - both from internal and external stakeholders
- An important part of management work is to:
- Understand the current situation: how is the organization fit for current and forthcoming challenges?
- Categorize and analyze possible options to improve
- Prioritize these options and then initialize concrete initiatives to achieve the desired results

Recall from the first lecture:
 Prioritization is essential to all management

- In a typical organization, there is no shortage of good suggestions for improvement - both from internal and external stakeholders
- An important part of management work is to:
- Understand the current situation: how is the organization fit for current and forthcoming challenges?
- Categorize and analyze possible options to improve
- Prioritize these options and then initialize concrete initiatives to achieve the desired results

Utility maximisation

1. Consider your options of investing (money, time, ...)
2. For each option, analyse:
a. the expected benefit ("return on investment")
b. the expected cost
c. the timing - when do I get the benefits?
d. the estimated risk - usually focusing on the probability that either benefits turn out lower than expected, or costs turn out higher than expected
3. Choose the most attractive option, considering both the expected benefit, the expected cost, the timing, and the risk

Notes on utility maximisation

- Benefits are not always monetarian
- The hard part is:
- Estimating benefit, cost and risk
- Anyone with managerial responsiblity are expected to prioritize resources to maximize utility for her organization

On making decisions

Rational choices

Economists have been debating the "rationality" of choice for centuries.

It is clear: there are no completely rational actors.

This means any attempt of utility maximisation is, in practice, blurred by both individual's emotions and the cultural context of the organization

$\mathrm{UiO}:$ University of Oslo

Unfortunately, professionals' intuitions do not all arise from true expertise. Many years ago I visited the chief investment officer of a large financial firm, who told me that he had just invested some tens of millions of dollars in the stock of Ford Motor Company.

When I asked how he had made that decision, he replied that he had recently attended an automobile show and had been impressed. "Boy, do they know how to make a car!" was his explanation. He made it very clear that he trusted his gut feeling and was satisfied with himself and with his decision.

I found it remarkable that he had apparently not considered the one question that an economist would call relevant: Is Ford stock currently underpriced? Instead, he had listened to his intuition;

Kahneman, Daniel. Thinking, Fast and Slow (p. 12). Penguin Books Ltd., Kindle Edition.

The first step of choice: consider your options

- No standardized process, depending on situation

- Simple example:
- Individual training budget
- Planning the summer party
- Complex examples:
- A consulting company considering to grow through purcase
- A startup struggling for funding
- Government agency planning a project

A spectrum of decision making effort

```
Little effort
intuitive
response/"gut feeling"
```

Significant effort detailed alternative analysis

No absolute recommendation - and this is heavily debated. What is the appropriate level of analysis in a given situation, in particular with a high level of uncertainty?

General guideline: high impact decisions, little prior experience, less trust and/or shared perspective among decision makers mandate higher level of analysis.

Generic decision making process

What are the key steps of problem solving/ identifying opportunities?

Iterate as needed

Step	Description	Note
1.Understand the situation	Using available methods (could be interviews, document analysis, expert observation and external information sources), aim to achieve a clear picture of the current situation within the organization. - preferably including root cause-analysis	Try to understand the "whys" - including both internal competency, technical assets, and cultural factors
2. Synthesize	Based on analysis, present alternative actions. These can often be "concepts", e.g. an internally consistent set of work items	Strive to ensure the recipient feel that all the relevant options are
considered		

What are the key steps of problem solving/ identifying opportunities?

Iterate as needed

Step	Description	Note
1.Understand the situation	Using available methods (could be interviews, document analysis, expert observation and external information sources), aim to achieve a clear picture of the current situation within the organization. - preferably including root cause-analysis	Try to understand the "whys" - including both internal competency, technical assets, and cultural factors
2. Synthesize	Based on analysis, present alternative actions. These can often be "concepts", e.g. an internally consistent set of work items	Strive to ensure the recipient feel that all the relevant options are considered
3. Evaluate and	For each of the alternative actions/concepts (see step 2), present advantages, disadvantages. Then present a pecommendation	The level of detail in the evaluation is adapted according to situation

Little effort

intuitive response/"gut feeling"

Significant effort detailed alternative analysis

Two common approaches

- Quantify the expected cost and benefit for each alternativ using money: which alternative is the most profitable?
- Qualitatively evaluate important properties for each alternative

Quantitatively comparing alternatives: The Business Case

UiO: University of Oslo

Utility maximisation

1. Consider your options of investing (money, time, ...)
2. For each option, analyse:

A more detailed analysis of these four factors
a. the expected benefit ("return on investment")
b. the expected cost
c. the timing - when do I get the benefits?
d. the estimated risk - usually focusing on the probability that either benefits turn out lower than expected, or costs turn out higher than expected
3. Choose the most attractive option, considering both the expected benefit, the expected cost, the timing, and the risk

Comparing alternatives

- Goodumbrellas Inc has been struggling to get Umbrella Heaven up and running
- After spending $\$ 2$ million without any real results, they are now considering their options
- The board has asked the management to come up with
 three alternative actions

Comparing alternatives

- After working day and night, the middle-managers of Goodumbrellas and their subordinates can finally present three alternative directions:

A: Halt
Accept losses, and cancel the plan to establish a consumer market channel

B: Continue

Continue efforts, and assume experience reduces risk of further challenges

C: Outsource

Outsource the initiative - find a provider with proven success to give Umbrella Heaven the love it deserves

A: Halt

Accept losses, and cancel the plan to establish a consumer market channel

B: Continue

Continue efforts, and assume experience reduces risk of further challenges

C: Outsource

Outsource the initiative - find a provider with proven success to give Umbrella Heaven the love it deserves

What should they choose?

The business case

$\mathrm{UiO}:$ University of Oslo

Technology Review: Adapting Financial Measures:

Making a Business Case for Software Process

 Improvement*Department of Computer Science, Portland State University, Portland, OR 97207.075
DAVID RafFo and John Settle \{david,
School of Business Administration, Portland State University, Portland, OR 97207-0751
nancy eickelmann
WVU Software Research Laboratory, NASA IV \& V Facility, Faimont, WV 2655

Abstract. Software firms invest in process improvements in order to benefit from decreased costs and or increased productivity sometime in the future. Such efforts are seldom cheap, and they typically
require making a business case in order to obtain funding We review some of the main techiniqus from requirc making a business case in orderto abtaters as.
financial theory for evaluating the risk and returns associated with proposed investments and apply them to process improvement programs for software development. We also discuss significant theoretical considerations as well as robustress and correctness issues associated with applying each of the
techniques to software development and process improvement activities. Finally we introduce a present techniques to software development and process improvement activities. Finaly we introduce a present
value technique that incorporates both risk and return that has many applications to software development activities and is recommended for use in a software process improvement context.
Keywords: Return on investment, business case for SPI, process improvement, ROI

1. Introduction

Software firms invest in process improvements in order to benefit from decreased costs and or increased productivity sometime in the future. In order to make the costs and or increased productivity sometime in the future. In order to make the
business case for implementing a software process improvement effort the proSince software process weighed against the costs of implementing the progra first time," the benefits may not accrue for months or even years, though the costs are usually incurred immediately. When evaluating future benefits, it is prudent to consider both the timing (i.e., how long until we start to see the benefits?) as well as the risk (i.e., how likely are the actual future benefits to vary from their projected values?

This work has been funded in part unde WV. Contacts NCC $2-152$ and NCC 2 -93 in conjunctio with NASA's IV \& V Facility, Fairmont, wV.

Harrison, Warren, et al. "Technology review: adapting financial measures: making a business case for software process improvement." Software Quality Journal 8.3 (1999): 211-231

Present value

- When considering the benefits of an investment, the actual value is insufficient the timing of the yield must
 also be considered.
- Minimal example: earning 100,000 this year is better than earning 100,000 in 10 years.

Why present value?

- Assume your company has 10000000 NOK to invest. Oslo Børs (the stock exchange) has given an average return of investment on 10% the last 5 years.
- Assuming the same trend:
- Five years from now, we will have ca 16105000 NOK
- 10 years from now, we will have ca. 25940000 NOK
- For a company, any way to invest the 10000000 must have an expected future value exceeding these numbers (assuming the investment has similar risk as the stock market)

PV shorthand

Let
Generic formula:

$$
P V=F V \frac{1}{(1+r)^{n}}
$$

$$
\begin{aligned}
& F V=\$ 10,000 \\
& r=10 \% \\
& n=2
\end{aligned}
$$

Then
$P V=\$ 10,000 \frac{1}{(1+10 \%)^{2}}=\frac{\$ 10,000}{\left(1+\frac{10}{100}\right)^{2}}=\frac{\$ 10,000}{(1.10)^{2}}=\$ 8,264.463$

$\mathrm{UiO}:$ University of Oslo

More complete example

A project manager has the option of either purchasing a new testing tool for $\$ 250,000$ or using the same resources to hire and train additional Test Engineers. It has been projected that the new testing tool would provide $\$ 600,000$ in cost savings within a year by automating several aspects of the testing effort.

The effort savings would allow fewer testers to be assigned to the project. Thus, it is not expected that any defects would be found that would not be found with the current testing staff.

However if the manager chose instead to hire additional Test Engineers, at the end of three years, it is expected that the additional staffing will be responsible for $\$ 750,000$ in rework cost savings by finding additional defects prior to release. Assuming an annual discount rate of 15%.

$$
\begin{aligned}
& \text { Testing Tool }-\$ 600,000 \text { in one year } \\
& P V_{\text {tool }} \$ 600,000 /(1.15)^{1}=\$ 521,739 \\
& \text { Hire Testers }-\$ 750,000 \text { in three year } \\
& P V_{\text {hire }} \$ 750,000 /(1.15)^{3}=\$ 439,421
\end{aligned}
$$

> Despite the higher final yield, the "Testing Tool" alternative is the most valuable under these assumptions, as the cost savings are available within one year compared to three for the "Hire Testers" alternative

Dealing with periodic returns

In practice, an investment rarely yields all returns at once.
For an investment expected to yield the following returns at the end of each year:

Return $_{1}$: \$10,000
Return 2 : $\$ 20,000$
Return ${ }_{3}$: \$30,000
Generic formula:

Given a discount rate of 10%, the overall present value - PV(total) - is:
$\mathrm{PV}($ total $)=$

$$
P V_{t o t a l}=\sum_{i=1}^{n} \frac{\text { Return }_{i}}{(1+r)^{i}}
$$

$P V(Y 1)+P V(Y 2)+P V(Y 3)=$
$\$ 10,000 / 1 \cdot 10^{1}+\$ 20,000 / 1 \cdot 10^{2}+\$ 30,000 / 1 \cdot 10^{3}=$ $\$ 9,091+\$ 16,529+\$ 22,539=\$ 48,159$

Net present value (NPV)

The "Net present value" (Norwegian: "netto nåverdi") is simply the periodic result of the investment, i.e. profit - cost, subtracted any initial investment (I)

$$
N P V=\sum_{i=1}^{n} \frac{\text { Result }_{i}}{(1+r)^{i}}-I
$$

NPV-example (in NOK)

Period	Result	PV (discount rate = 10\%)	
1	0		0
2	100000	82645	
3	150000	112697	
4	500000	341507	
5	500000	310461	
Sum		847309	

Initial investment: 600000

$$
N P V=\sum_{i=1}^{n} \frac{\text { Result }_{i}}{(1+r)^{i}}-I \quad \text { which means } N P V=847309-600000=247309
$$

Example: comparing alternatives

Assume you develop and sell a custom CMS. You have decided to improve quality control.

Should you:
With discount rate $=10 \%$, we get

$$
\begin{aligned}
& N P V_{A}=\sum_{i=1}^{5} \frac{100000}{(1,10)^{i}}-0=379079 \\
& N P V_{B}=\sum_{i=1}^{5} \frac{200000}{(1,10)^{i}}-350000=408157
\end{aligned}
$$

A: Hire manual testers. This will cost 100000 /year, and is expected to give an increased profit of 200 000/year

B: Invest in automated tests. This will require an initial investment of 350000 , also with an expected profit of 200 000/year

What about risk?

Assume you develop and sell a custom CMS. You have decided to improve quality control.

Should you:
A: Hire manual testers. This will cost $100000 /$ year, and is expected to give an increased profit of 200 000/year

B: Invest in automated tests. This will require an initial investment of 350000 , also with an expected profit of 200 000/year

What about risk? Add a risk premium to the discount rate.

A: Hire manual testers. This will cost $100000 /$ year (500000 total), and is expected to gain 200 000/year

B: Invest in automated tests. This will require an initial investment of 350 000 , also with an expected gain of 200 000/year

For Alternative A, risk premium is 2%

$$
N P V_{A}=\sum_{i=1}^{5} \frac{100000}{(1,12)^{i}}-0=360478
$$

For Alternative B, risk premium is 10%

$$
N P V_{B}=\sum_{i=1}^{5} \frac{200000}{(1,20)^{i}}-350000=248122
$$

With and without risk adjustment

	NPV without risk	NPV with risk
Alternative A	379079	360478
Alternative B	408157	248122

Clearly, how you determine the risk adjustment has a huge impact on the result

On applying NPV

To calculate the NPV for a set of options, you must be able to:

- Predict the cost of implementation
- Predict quantitative return
- Predict the timing of the return
- Assess the risk of each option

For any non-trivial development initiative, setting these values correctly is impossible - they are estimates. In addition, benefits might be hard or impossible to estimate numerically - in particular if they are related to safety or security.

On applying NPV

To calculate the NPV for a set of options, you must be able to:

- Predict the cost of implementation
- Predict quantitative return
- Predict the timing of the return
- Assess the risk of each option

For any non-trivial development initiative, setting

On the other hand, NPV has a strong communicative effect.

In a decision process, NPV is often presented together with a set of "non-quantatifiable" benefits for each of the options. these values correctly is impossible - they are estimates. In addition, benefits might be hard or impossible to estimate numerically - in particular if they are related to safety or security.

Estimating benefits: what are typical benefits?

- Quantifiable
- time saved
- "conversion rate" (interested vs purchasing customers)
- user satisfaction
- Non-quantifiable
- compliance to legal requirements
- increased safety or security

$\mathrm{UiO}:$ University of Oslo

Alternative	Description	Investment	NPV compared to «alternative sero»
«Alternative zero»	Proceed with the same system as today for 5 more years	1961 MNOK	0
Basic modernization	Minimal level of modernization to be able to extend the lifetime significantly	1961 MNOK	224 MNOK
Modern system portfolio	Includes basic modernization, but also a new self-service portal, more automization and further modernization	2394 MNOK	1245 MNOK
Transformative change	An extension of both basic modernization and modern system portolio - with higher levels of selfservice and automization	3136 MNOK	1369 MNOK

Source:
https://www.ntnu.no/documents/1261860271/1261975586/KS1+Modernisering+av+IKT+i+utlendi ngsforvaltningen+-+uten+vedlegg+150722.pdf (slightly adapted)

Bias

In a business case-analysis of a given set of options, it is surprisingly common to find that both the NPV and the nonquantifiable benefits are highest for the alternative most desired by the group analysing the options.
${ }^{1}$ For 22 billion, one can build three new hospitals the size of Østfold Kalnes Hospital. You can run Ahus for 5 years. With 22 billion, you can cover the salary costs of all GPs in Norway for over five years and there is no doubt that we need more GPs. One would think that before embarking on such a project, a thorough socio-economic analysis will be carried out to map the benefits of such a gigantic measure. Then one unfortunately has to think again.

In fact, two such analyses have been carried out by the Directorate for e-Health. I will take as my starting point the updated analysis, which is more pessimistic than the first, but which, somewhat depending on which calculation one looks at, still believes that this measure will generate 3-4 billion in socio-economic profits. In addition, there are non-quantified gains that are considered substantial. These are the quantified gains I am most critical of. II

Source: https://www.dn.no/innlegg/eric-navdal/helse/direktoratet-for-e-helse/samfunnsokonomien-i-den-nye-journallosningen/2-1-847344

Back to Goodumbrellas

B: Continue

Continue efforts, and assume experience reduces risk of further challenges

C: Outsource

Outsource the initiative - find a provider with proven success to give Umbrella Heaven the love it deserves

$\mathrm{UiO}:$ University of Oslo

| | A: Halt | B: Continue | C: Outsource |
| :--- | :--- | :--- | :--- | :--- |
| | Estimated yearly result | | |
| Year 1 | 0 | $-\$ 1,000,0000$ | $-\$ 3,000,000$ |
| Year 2 | 0 | $-\$ 500,000$ | $-\$ 500,000$ |
| Year 3 | 0 | $\$ 1,000,000$ | $\$ 1,000,000$ |
| Year 4 | 0 | $\$ 1,500,000$ | $\$ 1,500,000$ |
| Year 5 | 0 | $\$ 3,000,000$ | $\$ 3,000,000$ |
| | Risk adjustment and discounting rate - base rate | | |
| Risk adjustment | 0 | | |
| Discounting rate | 4% | $4 \%+30 \%=34 \%$ | $4 \%+10 \%=14 \%$ |

$\mathrm{UiO}:$ University of Oslo

	A: Halt	B: Continue	C: Outsource
Estimated yearly result			
Year 1	0	-\$1,000,0000	-\$3,000,000
Year 2	0	- \$500,000	-\$500,000
Year 3	0	\$1,000,000	\$1,000,000
Year 4	0	\$1,500,000	\$1,500,000
Year 5	0	\$3,000,000	\$3,000,000
Risk adjustment and discounting rate - base rate 4\%			
Risk adjustment	0	30\%	10\%
Discounting rate	4\%	$4 \%+30 \%=34 \%$	$4 \%+10 \%=14 \%$
Net Present Value			
	\$0	\$550,497	\$104,885

Brief example:
 Qualitative comparision

UiO: University of Oslo

The «plus/minus»-method

	K2 Order in own house	K10 Coordinated regional centers	K12 Order in the educational sector	K14 The knowledge center
Initial phase	5	10	10	15
Investment	50	100	70	125
Tax financial cost	10	20	15	30
Sum	65	130	95	170
Yearly mainenance	9	8	12	10
Rank cost	1	3	2	4
Reduced effort, consumers	+	++	++	+++
Reduced effort, data producers	0	++	+	++
Increased use of data	++	+++	+++	+++
Correct use of data	++	+++	+++	++++
Improved data protection	++	+++	+++	++++
Rank benefits	4	2	3	1
Risk	Low	Medium /high	Medium	High
Real options	High	Medium	High	Low
Overall evaluation	3	2	1	4

Adapted from https://www.regjeringen.no/contentassets/Off78b4f861b43e8a7e52d5f02dbbd34/sluttrapport-fremtidig-deling-av-data-1.1.pdf (in Norwegian) See also https://dfo.no/sites/defaultfiles/Fagomr\�\�der/Utredninger/Veileder-i-samfunnsokonomiske-analyser.pdf (in Norwegian), section 3.4.8

Summary

What are the key steps of problem solving/ identifying opportunities?

Iterate as needed

Step	Description	Note		
1.Understand the situation	Using available methods (could be interviews, document analysis, expert observation and external information sources), aim to achieve a clear picture of the current situation within the organization. - preferably including root cause-analysis	Try to understand the "whys" - including both internal competency, technical assets, and cultural factors		
2.Synthesize options	Based on analysis, present alternative actions. These can often be "concepts", e.g. an internally consistent set of work items	Strive to ensure the recipient feel that all the relevant options are considered		
3. Evaluate and	For each of the alternative actions/concepts (see step 2), propese	The level of detail in the evaluation is adapted		
recommendation			\quad according to situation	adsadvantages. Then present a
:---				

Little effort

intuitive response/"gut feeling"

Significant effort detailed alternative analysis

Examples of methods to evaluate:

- Business case
- The «plus/minus»-method

Summary

- No standard way of making choices
- For high impact decisions, little prior experience, less trust and/or shared perspective among decision makers: spending time to make a business case is often worthwile
- Business case is no exact science bias, experience and sometimes politics affects the result
- Pay sufficient attention to presenting your results

