Chapter 1

Introduction

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Chapter 1
Learning Targets of Chapter “Introduction”.

Apart from a motivational introduction, the chapter gives
a high-level overview over larger topics covered in the
lecture. They are treated hear just as a teaser and in less
depth compared to later but there is already technical
content.

KBS G
N

?@
e

Chapter 1
Outline of Chapter “Introduction”.

&

SNIVE
STnAS

Motivation

Data flow analysis
Constraint-based analysis
Type and effect systems

Algorithms

Section

Motivation

Chapter 1 “Introduction”

Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis: why and what?

= what
= static: at “compile time”
= analysis. deduction of program properties
= automatic/decidable
= formally, based on semantics

= why
= error catching

= catching common “stupid” errors without bothering the
user much

= spotting errors early

= certain similarities to model checking

= examples: type checking, uninitialized variables,
potential nil-pointer deref’s, unused code

= optimization: based on analysis, transform the “code"?,
such the the result is “better”
= examples: precalculation of results, optimized register
allocation ...
lsource code, intermediate code at various levels

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-5

The nature of static analysis

= compiler with differerent phases

= corresponding to Chomsky's hierarchy

= static = in principle: before run-time, but in praxis,
“context-free"

= since: run-time most often: undecidable

= static analysis as approximation

A

Lo
Ly
Lo

Ls

~

lexer Parser sa exec.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-6

Phases

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-7

Phases

lexer

tokens

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-7

Phases

lexer

tokens

parser

AST

opt.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-7

Phases

lexer

tokens

parser
AST

D’:_) opt.

IR

code gen. opt.

IR

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-7

Static analysis as approximation

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach
Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect

/ systems

Introduction

un iVe rse un Safe Annotated type systems
Annotated type
constructors
Effect systems
exact
Algorithms
safe overapprox. safe underapprox.

1-8

Optimal compiler?

Full employment theorem for compiler writers

It's a (mathematically proven!) fact that for any compiler,
there exists another one which beats it.

= slightly more than non-existence of optimal compiler or
undecidability of such a compiler
= theorem

= just states that there room for improvement is always
guaranteed
= does not say how! Finding a better one: undecidable

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-9

Section

Data flow analysis

Chapter 1 “Introduction”

Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

While-language

Static analysis
and all that

Martin Steffen

= simple, prototypical imperative language Targets & Outline
g

- “untyped” Motivation
= simple control structure: while, conditional, sequencing Genertremars

. Data fl lysi:
= simple data (numerals, booleans) ota fow analyss

A simplistic while-language

Equational approach

= abstract syntax # concrete syntax Contrin besd aprsh
= disambiguation when needed: (...), or { ...} or begin Sorsiaintbased
. end Control-flow analysis
Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-11

Labelling

= associate flow information

= labels
= elementary block = labelled item
= identify basic building blocks

= consistent/unique labelling

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-12

Abstract syntax

a == x|n|aop,a arithm. expressions
b == true|false | notb|bop,b|aop,a boolean expr.
S = x:=a|skip| S1;52 statements

if bthen Selse S | whilebdo S

Table: Abstract syntax

Abstract syntax

a == x|n|aop,a arithm. expressions
b == true|false | notb|bop,b|aop,a boolean expr.
S u= [x:=a]'|[skip]' | S1; 52 statements

if[b]' then Selse S | while[b])' do S

Table: Labelled abstract syntax

Example factorial

y:=x;z:= l;while y > ldo(z :=zx*y;y :=y—1);y:=0

= input variable: x

= output variable: z

ly := =]
[z :=1]%

while [y > 1]?

do([z 1=z x y]*; [y := y — 1]*);
[y :== 0]

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-14

CFG factorial

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis

A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-15

Factorial: reaching definitions analysis

= “definition” of z: assignment to x: z :=a
= better name: reaching assignment analysis

= first, simple example of data flow analysis

Reaching def’s

An assignment (= “definition”) [x := a)' may reach a
program point, if there exists an execution where x was /ast
assigned to at [, when the mentioned program point is
reached.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-16

Factorial: reaching definitions

= data of interest: tuples of variable x label (or node)
= note: distinguish between entry and exit of a node.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-17

Factorial: reaching assignments

= " points " in the program: entry and exit to elementary
blocks/labels

= 7. special label (not occurring otherwise), representing
entry to the program, i.e., (z,?) represents initial
(uninitialized) value of z

= full information: pair of “functions”
RD = (RDentrya RDem’t) (2)

= tabular form (array): see next slide

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-18

Factorial: reaching assignments table

RD exit

—~ o~ —~ —~

— N e

—~ = == —~
o O O O 1O
S D D D >
N N N N~—
AR S
8 8 8 8 8 8
S S N N N N

ISUESTER RN
((((
—~ = —~
— —
ISUIESY N
N— N—
—~ = ==
S S
S)
S e N e e N
~ = =< = = =
o oo oo
S S S S >

— e e e
N N N S s

e N e s

Reaching assignments: remarks

= elementary blocks of the form
= [b]: entry/exit information coincides
= [z := a]': entry/exit information (in general) different
= at program exit: (z,?), x is input variable
= table: “best” information = smallest sets:
= additional pairs in the table: still safe
= removing labels: unsafe
= note: still an approximation
= no real (= run time) data, no real execution, only data

flow
= approximate since

= in concrete runs: at each point in that run, there is
exactly one last assignment, not a set
= label represents (potentially infinitely many) runs
= e.g.: at program exit in concrete run: either (z,1) or
else (z,3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-20

Data flow analysis

= standard: representation of program as control flow
graph (aka flow graph)
= nodes: elementary blocks with labels (or basic block)
= edges: flow of control
= two approaches, both (especially here) quite similar

= equational approach
= constraint-based approach

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-21

From flow graphs to equations

= associate an equation system with the flow graph:
= describing the “flow of information”
= here:
= the information related to reaching assignments
= information imagined to flow forwards
= solutions of the equations
= describe safe approximations
= not unique, interest in the least (or largest) solution
= here: give back RD of equation (2) on slide 22

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-22

Equations for RD and factorial: intra-block

first type: local, intra-block™:
= flow through each individual block

= relating for each elementary block its exit with its entry

elementary block: [y := x]°

RDesit(0) = RDeniry (0) \{(y,1) | 1 € Lab} U{(y,0)}

(3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-23

Equations for RD and factorial: intra-block

first type: local, intra-block™:
= flow through each individual block

= relating for each elementary block its exit with its entry

elementary block: [y > 1]

RDesit(0) = RDeniry (0) \{(y,1) | 1 € Lab} U{(y,0)}

RDem't(Q) = RDentry(2)

(3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-23

Equations for RD and factorial: intra-block

first type: local, intra-block™: Static analysts
= flow through each individual block Martin Steffen

= relating for each elementary block its exit with its entry Targets & outiine

Motivation

all equations with RD,;; as “left-hand side” Generalremarks
Data flow analysis
A simplistic while-language

RD¢z:¢(0) RD entry (0) \{(y,0) | I € Lab} U {(y,0)} Constrin e aporonch
RDem't(l) = RDentry(l) \{() | le Lab} U {(Z» 1)} Constraint-based
RDesit(2) = RDentry(2) e o s
RDesit(3) = RDentry(B) \{(z,1) | I € Lab} U {(2,3)} Type and effect
RDegit(4) = RDentry(4) \{(y,0) |l € Lab} U{(y,4)} onn
RDem’t(5) = RDentTy(5) \{(ya l) ‘ le Lab} U {(y7 5)} 2::::::32“51%5
(3) e
Algorithms

1-23

Inter-block flow

second type: global, inter-block

flow between the elementary blocks, following the
control-flow edges

relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

initial block: mark variables as uninitialized

RDentry(l) = RDem’t (0) (4)
RDentry(?’) = RDezit<2)
RDentry(4) = RDem't (3)
RDentry(5) = RDezz’t<2)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-24

Inter-block flow

second type: global, inter-block

flow between the elementary blocks, following the
control-flow edges

relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

initial block: mark variables as uninitialized

Y
O
a
3
Iy
<
N N N N
w
— — —— — ~—
I
Y
O 0000
g
s .
P e I
//S_/_/

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-24

Inter-block flow

second type: global, inter-block

flow between the elementary blocks, following the
control-flow edges

relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

initial block: mark variables as uninitialized

Y
O
a
3
Iy
<
N N N N
w
— — —— — ~—
I
Y
O 0000
g
s .
P e I
//S_/_/

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis

istic while-language

approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-24

General scheme (for RD)

Intra = for assignments [z := a

RD ezt (1) = RDentry (1) \{(z,1") | I' € Lab}U{(z,1)}

(5)
= for other blocks [b]' (side-effect free)
RDexit(l) = RDentry(l) (6)
Inter
RDentryU) = U RDexit(l,) (7)

U=l
Initial [: label of the initial block (isolated entry)
RDeniry(l) = {(x,?) | is a program variable} (8)

The equation system as fix point

= RD example: solution to the equation system = 12 sets

RDentry(O)a DRI RDeacit(E))

i.e., the RDepiry(l), RDeyit (1) are the variables of the
equation system, of type: sets of pairs of the form (z,1)

= domain of the equation system:
= RD: the mentioned twelve-tuple of variables

= equation system understood as function F

Equations

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-26

The least solution

= Var, = variables “of interest” (i.e., occurring), Lab,:
labels of interest

= here Var, = {z,y, 2}, Lab, = {?,1,...,6}
F- (2Var*><Lab*)12 N (2Var*><Lab*)12 (9)

= domain (2Var«xLab:\12. hartially ordered pointwise:
RD C RD' iff Vi. RD; C RD, (10)

= complete lattice

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-27

Constraint-based approach

= next, for DFA: a simple variant of the equational
approach

= rearrangement of the entry-exit relationships

= instead of equations: inequations (sub-set instead of
set-equality)

= in more complex settings: constraints become more
complex, no split in exit- and entry-constraints

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-28

Factorial program: intra-block

elementary block: [y := x

RDexit (0)
RDexit (0)

constraints

]0

2 RDentry(O) \{(y> l) | ! € Lab}

2 {(y,0)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-29

Factorial program: intra-block constraints

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

elementary block: [y > 1] enralromars

Data flow analysis
A simplistic while-language

Equational approach

R D exit (2) 2 R D entry (2) Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-29

Factorial program: intra-block constraints

all equations with RD . as left-hand side Static analysis

and all that

Martin Steffen

RD..i:(0) 2 RD entry(J\{(y,1) | | € Lab} Targ.ets.& Outline
RD exit (O) 2 { (} T:::?:z:s
RD¢zit(1) 2 RD emry()\{(z,1) | I € Lab} Data flow analysis
RDcsir(1) 2 {(2,1)} pim e
RD exit (2) 2 RD entry (2) Cum-im:umu approach
RDemt(S) 2 RD entry(3) \{(Z, l) ‘ le Lab} :r?;;tsri:mt_base‘j
RDewit(3) O {(2,3)} e
RDemt(4) > RD entTy() \{(y, l) | l e Lab} syys'::rra\: efect
RD exit (4) 2 { () } ::n:::::ype systems
RD@ZZt(5) > RD entry() \{(y, l) | le Lab} Annotated type
RDex(5) 2 169} -

1-29

Factorial program: inter-block constraints

cf. slide 30 ff.: inter-block equations:

RDentry(l)
RD entry (2)
RDentry (3)
RDentry (4)
RD ¢niry(5)

RD¢niry (0)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
-language

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-30

Factorial program: inter-block constraints

Static analysis

and all that
splitting of composed right-hand sides + using D instead of P
R D entry (1) 2 R D it (0) :':rf.etst.& Outline
RD entry (2) 2 RD exit (1) Gy
RDentry (2> 2 RDem't (4) Da-ta fl?w ?nalysis
RDentry(3) 2 RDegit(2) JZT;;:;;;"’""‘
RD@Tlt"’y (4) 2 RDewit (3) Constraint-based
RDentry (5) 2 RDe:m't (2) a:alylsjls g
Type and effect
RDentry(l) 2 {(l‘, 7), (y, ?), (Z ?)} systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-30

Least solution revisited

instead of F(RD) = RD
= clear: solution to the equation system = solution to the
constraint system

= important: least solutions coincides!

Pre-fixpoint

(11)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-31

Section

Constraint-based analysis

Chapter 1 “Introduction”

Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Control-flow analysis

Goal CFA

which elem. blocks lead to which other elem. blocks

= for while-language: immediate (labelled elem. blocks,
resp., graph)

= complex for: more advanced features, higher-order
languages, oo languages ...

= here: prototypical higher-order functional language
A-calculus

= formulated as constraint-based analysis

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-33

Simple example

let f = fn x
g =fny
h = fn z

in (f g)+ (f h)

+ + =

Xy
N < X
‘U.OI\)

= higher-order function f
= for simplicity: untyped
= local definitions via let-in

= interesting above: x 1

Goal (more specifically)

For each function application, which function may be
applied.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-34

Labelling

= more complex language = more complex labelling
= “elem. blocks” can be nested
= all syntactic constructs (expressions) are labelled

= consider:

Unlabelled abstract syntax

(fnx = x) (fny = vy)

= functional language: side-effect free
= no need to distinguish entry and exit of labelled blocks.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-35

Labelling

= more complex language = more complex labelling

= “elem. blocks” can be nested Setile el
and all that

= all syntactic constructs (expressions) are labelled _
Martin Steffen

= consider:
Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Full labelling

Type and effect
systems
Introduction

[fnz = [2]')? [fny = [y]°]*]°

Annotated type
constructors

Effect systems

= functional language: side-effect free Algorithms
= no need to distinguish entry and exit of labelled blocks. 135

Data of the analysis

Data of the analysis:
Pairs (C’, p) of mappings:

abstract cache: C(1): set of values/function abstractions,
the subexpression labelled [may evaluate to

abstract env.: p: values, may be bound to

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-36

The constraint system

= ignoring “let” here: three syntactic constructs =
three kinds of constraints

= relating C, p, and the program in form of subset
constraints (subsets, order-relation)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-37

The constraint system

= ignoring “let” here: three syntactic constructs =
three kinds of constraints

= relating C, p, and the program in form of subset
constraints (subsets, order-relation)

3 syntactic classes

= function abstraction: [fnz = z]'
= variables: [z]'

= application: [f g’

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-37

Constraint system for the small example

Labelled example

[[fna = [2]']? [fny = [P]°

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach
Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnz = [2]')? [fny = [y°]"]°

= function abstractions

—
Hh
B
N
=
@ =
—
N 1N

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnz = [2]')? [fny = [y°]"]°

= variables (occurrences of use)

>
<
~—
N 1N

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example
Labelled example

[[fnz = [2]')? [fny = [y°]" |°

= application: connecting function entry and (body) exit
with the argument

—~
i~
N—
N 1N
>
—
8
N—

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnz = [2]')? [fny = [y°]*]°

= application: connecting function entry and (body) exit
with the argument but:

= also [fny = [y]3]* is a candidate at 2! (according to
C(2))

C@) < px)
c@1) < C©)
C4) € i)
c3) c C(5)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Static analysis
and all that

Labelled example

Martin Steffen

Targets & Outline
[[fnz = [w]I]Q [fny = [y]3]4]5 Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

{thx=[]'} CCQ) = CM@) C p) Gorsan. s
{fnx=[2]'} CC(2) = C1) < C5) e

{fny = [y]?,} c 0(2) = 6(4) C If)(y) ;l;?lsptv:"a‘:d effect
{fny=[WPrcC@ = CB) < C»)

Annotated type systems

Annotated type
nstructors

Effect systems

Algorithms

1-38

The least (= best) solution

Static analysis
and all that

C’(l) — {fny = [y]g} Martin Steffen
0(2) — {fn Tr = [fl]’] 1} Targets & Outline
C3) = 0 o,
C) = {ftay= [y} .
C(5) = {tny=[y*} e
ﬁ(.’l‘) = {fny = [y]3} ::;;tsri:int-based
ﬁ(y) — @ Control-flow analysis
Type and effect
systems
One interesting bit here in the solution is: p(y) = 0: that Introduction
Annotated type systems
means, the variable y never evaluated, i.e., the function is Aonotated e
not applied at all. Effect systems
Algorithms

1-39

Section
Type and effect systems

Chapter 1 “Introduction”

Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Effects: Intro

= type system: “classical” static analysis:
t:T

= judgment: “term or program phrase has type 1"

= in general: context-sensitive judgments (remember
Chomsky . ..)

Judgement :

I'Ht:7

= I': assumption or context

= here: “non-standard” type systems: effects and
annotations

= natural setting: typed languages, here: trivial! setting

(while-language)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-41

“Trival” type system

= setting: while-language
= each statement maps: state to states

= 3. type of states

judgement

FS:¥—X%

= specified as a derivation system

= note: partial correctness assertion

(12)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-42

“Trival” type system: rules

Flz:=al': ¥ =% Ass
[skip]! : & — ¥ Skip

|—51:§]—>§] Sg:E—)Z

SEQ
}_51;5212%2

FS: X=X

WHILE
Fwhile[h)'doS: % — %

|—51:2—>Z "SgZ—)E
COND

F if[b)' then S; else Sy : ¥ — X

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

143

Types, effects, and annotations

annot. type system effect system

FS:% =X (13) FS:2 5% (14)

type and effect system (TES)

effect system + annotated type system

borderline fuzzy
annotated type system
= 3,: property of state (“X; C ")
= “abstract” properties: invariants, a variable is positive,
etc.
effect system
= ‘“statement S maps state to state, with (potential ...)
effect ¢"
= effect p: e.g.: errors, exceptions, file/resource access,

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems

Annotated type
constructors
Effect systems

Algorithms

1-44

Annotated type systems

= example again: reaching definitions for while-language

2 flavors
1. annotated base types: S : RD; — RDy
2. annotated type constructors: S : X R—XD>)y

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-45

RD with annotated base types
judgement
F.S:RD; — RD,

« RD C 2VarxLab
= auxiliary functions

= note: every S has one “initial” elementary block,
potentially more than one “at the end”

= nit(S): the (unique) label at the entry of S

= final(S): the set of labels at the exits of S

“meaning” of judgment S : RD; — RDy

“RD; is the set of var/label reaching the entry of S and RD,
the corresponding set at the exit(s) of S":

RD; =
RD, =

RD epiry (init(S))
U{RDesiz(1) | I € final(S)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-46

F[z:=a]' : RD = RD\{(z,l) | | € Lab} U {(z,1)}
I [skip)’ : RD — RD skip

|—511RD1—>RD2 I—SQRDQ—)RDd

SEQ
- Sl;SQ : RD1 — RD3

FsliRDlﬁRDg FSQ:RD:[‘)RDQ

IF
- if[b]' then S) else Sy : RD; — RD,
FS:RD — RD
WHILE
I while[b]'do S : RD — RD
S :RD| — RDj RD; C RD/ RD), C RD,

SuB

FSZRD1—>RD2

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors
Effect systems

Algorithms

1-47

Meaning of annotated judgments

“Meaning” of judgment S : RD; — RDa:

“RD; is the set of var/label reaching the entry of S and RD,
the corresponding set at the exit(s) of S":

RDi = RDeptry(init(S))
RDy = U{RDewil | I € final(S)}
= Be careful:

if[b]’ then S; else So

= more concretely
if[b) then [z := y]" else [y := z]®

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems

Annotated type
constructors
Effect systems

Algorithms

148

Meaning of annotated judgments

Once again: “Meaning” of judgment S : RD; — RDs:

“if RD; is a set of var/label reaching the entry of S, then
RD; is a corresponding set at the exit(s) of S":

if RD1 Q RDemTy(init(S))
then Vi € final(S). RDeyit(l) C RDy

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems

Annotated type
constructors
Effect systems

Algorithms

149

Derivation

[z:=1]": {?2,0,7.} = {?2,0,1} f3:{?,0,1} = RDgpu

[y :=]° : RDg — {?4,0,7.} f2:{%2,0,7:} = RDfinai

f : RD() — RDﬁnal
RDo = {?2,7y,?2} RDfna = {?2,5,1,3}

type sub-derivation for the rest f3 = while...;[y := 0]®
loop invariant

RDbody = {?:m 0, 47 1, 3}

Derivation

[z = ,]3 : RDbody — {?130347371}
[y = ,}4 : {?$,0,4,3} — {?$7473}

fbody : RDbody — {?aca4a 3}

SuB

fbody : RDbody — RDbody

fwhile : RDbody — RDbody
SUB

Juwhite : {72,0,1} — RDyogy [y := 0]° : RDpogy — RDj

f3 : {?J:707 1} — RDﬁnal

Annotated type constructors

= alternative approach of annotated type systems
= arrow constructor itself annotated
= annotion of —: flavor of effect system
= judgment
S: X E> by

= annotation with RD (corresponding to the
post-condition from above) alone is not enough

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-51

Annotated type constructors

= alternative approach of annotated type systems
= arrow constructor itself annotated
= annotion of —: flavor of effect system

= judgment

= annotation with RD (corresponding to the
post-condition from above) alone is not enough

= also needed: the variables “being” changed

Intended meaning

“S maps states to states, where RD is the set of reaching
definitions, S may produce and X the set of var's S must
(= unavoidably) assign.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-51

SRR YRS SR AP YRELCND
RDl RD2

X1UXo
1=
RD; \ X2URD>

51;52 DY

Sy X5y Sy Ny
RD RD Ir

if[b]' then S) else Sy : X R—XD> z

WHILE

while[b]l doS: X RL)D> P

5;2%2 XCX' RD CRD
SuB

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-52

Effect systems

= this time: back to the functional language
= starting point: simple type system
= judgment:

I'ke:7

= T': type environment (or context), “mapping” from
variable to types

= types: bool, int, and 7 — T

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-53

Ix)=r1
I'Fax:7

ermbe:n
ABS

' fn,x=e:m -7

ke :m =1 I'key:mn

App
Fl—el €9 . T2

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-54

Effects: Call tracking analysis
Call tracking analysis:

Determine: for each subexpression: which function
abstractions may be applied, i.e., called, during the
subexpression’s evaluation.

= set of function names
annotate: function type with latent effect
= annotated types: 7: base types as before,
arrow types:
D (16)

= functions from 71 to 79, where in the execution,
functions from set ¢ are called.

Judgment

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

e bFe:Ta @
ABs

Theno=e:d "5 20

A

Fl—elzf'lﬁ)Tg::gpl T'kFes:7po

App
T'Feiex:TopUp Ups

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach
Constraint-based
analysis

Control-flow analysis
Type and effect
systems

Introduction

type systems
Annotated type
constructors

Effect systems

Algorithms

1-56

Call tracking: example

x:int {i} int - z:int {i} int:: 0

{ }

F (faxz = z) : (int {—>} int) — (int) int):: 0 F (fnyy=y):int {L} int :: 0

F (fnxz = z) (fayy = y) @ int {—> int:: {X}

Section
Algorithms

Chapter 1 “Introduction”

Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Chaotic iteration

= back to data flow/reaching def’s
= goal: solve

RD=F(RD) or RDC F(RD)

= F: monotone, finite domain

straightforward approach

init RDy = FO(0)

iterate RD,,,; = F(RD,,) = F""(0) until
stabilization

= approach to implement that: chaotic iteration
= non-deterministic stategy
= abbreviate:

—.

RD = (RDy,...,RDy)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-59

Chaotic iteration (for RD)

Input: equations for reaching defs
for the given program
Output: least solution: RD = (RDy,...,RD2)

Initialization:
RD;:=0;...;RD1p :=10
Iteration:
while RD; # F;(RDy,...,RDy2) for some j
do
RDJ' = Fj(RDl, ey RD12)

Chapter 2

Data flow analysis

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Chapter 2
Learning Targets of Chapter “Data flow analysis”.

various DFAs
monotone frameworks
operational semantics
foundations

special topics (SSA, context-sensitive analysis ...)

Chapter 2
Outline of Chapter “Data flow analysis”.

Intraprocedural analysis

Theoretical properties and semantics
Monotone frameworks

Equation solving

Interprocedural analysis

Section

Intraprocedural analysis

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

While language and control flow graph

Static analysis

= starting point: while language from the intro and all that

Martin Steffen

= labelled syntax (unique labels)

= labels = nodes of the cfg Targets & Outline
s . Intraprocedural

= initial and final labels analysis

= edges of a cfg: given by function flow el

Available expressions
Reaching definitions

Very busy expressions

3 functions (definition see script / book) Live v anaysi

Theoretical
L. properties and
1. mat Stmt — Lab semantics

Semantics
2 - ﬁna,l N St mt — 2Lab Intermezzo: Lattices

Monotone

3. ﬂow : Stmt — 2Lab><Lab frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Flow and reverse flow

Static analysis
and all that

Martin Steffen

Targets & Outline

labels(S) = init(S)U{l | (I,1") € flow(S)YU{l" | (I,1") € flow(S) Jntraprocedurai

= data flow analysis can be forward (like RD) or backward
= flow: for forward analyses

= for backward analyses: reverse flow flow®, simply invert
the edges

analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Program of interest

= S, program being analysed, top-level statement
= analogously Lab,, Var,, Blocks,
= trivial expression: a single variable or constant

= AExp,: non-trivial arithmetic sub-expr. of S,
analogous for AExp(a) and AExp(b).
= useful restrictions

= solated entries: (I, init(Sx)) ¢ flow(Sy)
= isolated exits Vil € final(Sy). (l1,l2) ¢ flow(Sy)
= label consistency

[B1]!, [Bs]' € blocks(S) then B = B
“l labels the block B"

= even better: wunique labelling

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Avoid recomputation: Available expressions

[z:=a+b%[y:=axb]'; while [y>a+b?
do ([a :=a+ 1%z :=a+b%)

= usage: avoid re-computation

Avoid recomputation: Available expressions

[#:=a+b]%[y:=axb'; while [y>a+ b?
do ([a :=a+ 1%z :=a+b%)

Goal

For each program point: which expressions must have
already been computed (and not later modified), on all paths
to the program point.

= usage: avoid re-computation

Available expressions: general

given as flow equations (not C-constraints, but not too
crucial, as we know already)

uniform representation of effect of basic blocks (=
intra-block flow)

2 ingredients of intra-block flow

kill: flow information “eliminated” passing through the
basic blocks

generate: flow information “generated new"” passing
through the basic blocks

later analyses: presented similarly

different analyses = different kind of flow information
+ different kill- and generate-functions

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Available expressions: types

= interested in sets of expressions: 2AEXP-

= generation and killing:

killag, genag : Blocks, — 2AFXP-

= analysis: pair of functions
AEentryv AEcui : Lab, — 2AEXP*

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Intra-block flow specification: Kill and
generate

Static analysis
and all that

Martin Steffen

Targets & Outline
kll lAE ([1‘ = CL] l) — Lr:;lz;::i':cedural
kil lAE ([Skl p] !) :?;:ve::::'ng the control
kll lAE ([b] l) = Available expressi

Reaching defi

Very busy ex
Live variable analysis

genAE ([‘%. = a‘] l) = Theoretical
genag([skip]') = Cemantics "

genne (') =

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

Intra-block flow specification: Kill and
generate

killag ([z :=a]))) = {
killag ([skip])) = 0
killag ([o)') = 0

genae ([x = a]’) {a’ € AExp(a) |z ¢ fv(a')}
genag ([skip]') 0
genag([b)') = AExp(b)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph
Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis

Flow equations: AE

split into
nodes: intra-block equations, using kill and generate

edges: inter-block equations, using flow

Flow equations for AE

N { 0 I = init(S,)

N{AEcz (") | (I',1) € flow(Ss)} otherwise

AEcsit(l) = AEentry(l) \ killag (BY) U genag (BY)

where B! € blocks(S.)

= note the “order” of kill and generate

Available expressions

= forward analysis (as RD)

= interest in Jargest solution (unlike RD)
= must analysis (as opposed to may)

= expression is available: if no path kills it

= remember: informal description of AE: expression
available on all paths (i.e., not killed on any)

= jllustration

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Example AE

[x:

a+0]%y:

axbll; while [y >a+b]?

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions

do ([a = a4+ 1]37 [$ =a + b]&zhingdeﬁnilions

busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Example AE

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Reaching definitions

= remember the intro

= here: the same analysis, but based on the new
definitions: kill, generate, flow ...

[z :=5]% [y := 1]';while[z > 1]? do([y := x*y]>; [z

z—1]")

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Reaching definitions

= remember the intro
= here: the same analysis, but based on the new
definitions: kill, generate, flow ...

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Reaching definitions: types

= interest in sets of tuples of var's and program points
i.e., labels:

gVar.xLabl | b0 Labi = Lab, + {7}

= generation and killing:

killrp, gengp : Blocks, — gVar. xLab]

= analysis: pair of mappings

?
RDentry7 RD.zi: : Lab, — 9Var. xLab,

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Reaching defs: kill and generate

Static analysis
and all that

Martin Steffen

ki”RD ([:1,‘ = a]l) — Targets & Outline
killrp ([Sklp]l) = ::lt;f;'::CEdmal

kil l RD ([b] l) = :?:Le:'nai::'ng the control

Available expressions

Reaching definitions

gengp ([z:=a]") = o v
genRD ([Sklp]l) — Theoret-ical
gengp (b)) = ikt

Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Reaching defs: kill and generate

killgp ([:= a]')

k’&'llRD([Skip]l)
killrp ([b]")

gengp ([z = a]l)
gengp ([skip]')
genRD([b]l)

{

U
0
0

= S

(z,7)}U
{(x,1') | B" is assgm. to z in S,}

(1)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

Flow equations: RD

split into
= intra-block equations, using kill and generate

= inter-block equations, using flow

Flow equations for RD
RDentry(l) -
RDezit(l) = RDentry(l) \ Killrp (B') U gengp (BY)

where B! € blocks(S,)

= same order of kill /generate

Flow equations: RD
split into

= intra-block equations, using kill and generate

= inter-block equations, using flow

Flow equations for RD

{(z,?) | z € fu(Ss)} [= init(Sy)
RDentry(1) = { U{RD¢zit (') | (I',1) € flow(Ss)} otherwise
RDegit(I) = RDenury(l) \ Killrp (B') U gengp (BY)

where B! € blocks(S.)

= same order of kill /generate

Very busy expressions

Definition (Very busy expression)

An expression is very busy at the exit of a label, if for all
paths from that label, the expression is used before any of its
variables is “redefined” (= overwritten).

= usage: expression “hoisting”

Goal

For each program point, which expressions are very busy at
the exit of that point.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Very busy expressions: types

= interested in: sets of expressions: 24EXP«

= generation and killing:

killyg, genyg : Blocks, — 2AFxP.

= analysis: pair of mappings
VBentryv VBeyit : Lab, — 2AEXP*

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Very busy expr.: kill and generate

Static analysis

and all that

core of the intra-block flow specification RS tefien
Targets & Outline

killyg ([x := a]l) = Intraprocedural

killys (jskip]!) = e e

. 1 flow graph

kll lVB ([b]) = Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

genVB ([x = a]l) Theoretical
genyp ([Sk|p]l) = properties and

semantics

genyp ([b]l) = .

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Very busy expr.: kill and generate

core of the intra-block flow specification

ki”VB([:I} ::a]l) = {
Eillyg ([skip])) = 0
killyg () = 0

a’ € AExp, |z € fu(d')}

genyg([z :=a)') = AExp(a)
genyg ([skip]") 0
genyg (b)) = AExp(b)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching defi

Very busy ex

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

Flow equations.: VB

split into
= intra-block equations, using kill /generate
= inter-block equations, using flow

however: everything works backwards now

Flow equations: VB

VBea:it(l) =

VBentry(l) =
where B! € blocks(S,)

Flow equations.: VB

split into
= intra-block equations, using kill /generate
= inter-block equations, using flow

however: everything works backwards now

Flow equations: VB
VBeit(l) = 0 l € final(Sy)
et B {VBenry(') | (I',1) € flow®(S,)} otherwise
VBentry(l) = VBegit(l)\ Eillyg (BY) U genyg (BY)

where B! € blocks(S,)

Example

lo

false

y:a—-b

lo

a>b

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

When can var’s be “recycled”: Live variable
analysis

[z = 2]% [y = 4]}; [z = 1%

(if[y > z]3then [z := y]* else [z := y x y)°); [z := 2]°

Goal therefore

for each program point: which variables may be live at the
exit of that point.

= usage: register allocation

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

When can var’s be “recycled”: Live variable
analysis

[z = 2]% [y = 4]}; [z = 1%
(if[y > z]3then [z := y]* else [z := y x y)°); [z := 2]°
Live variable

A variable is live (at the exit of a label) if there exists a path
from the mentioned exit to the use of that variable which
does not assign to the variable (i.e., redefines its value)

Goal therefore

for each program point: which variables may be live at the
exit of that point.

= usage: register allocation

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Live variables: types

Static analysis
and all that

Martin Steffen

= interested in sets of variables 2Var+ e 81 @

= generation and killing: Intraprocedural
analysis
kill - Block — 2Var* Determining the control
7 LV 5 genLV . ocC S* flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

= analysis: pair of functions Theoretical

V: properties and
Lventrya Lveacit : Lab* — 2 arx semantics

Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Live variables: kill and generate

Static analysis
and all that

Martin Steffen

klllAE([x = a]l) = Targets & Outline
killLV ([Skl p] l) = Lr:lt;g:::;:cedural

kil l LV ([b] !) = :?:Le:'nai::'ng the control

Available expressions

Reaching definitions

genpy ([z :=a]') = e b s
genLV ([Skl p] !) — Theoret-ical
genyy ([0 = ikt

Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Live variables: kill and generate

killpg ([2= a])) = {2}
k’illLv([Skip]l)
kil ((B]') = 0

Il
=

genyy ([z:=al') = fo(a)
genyy ([skip]’)
genyy ([b]") = fu(b)

—

Il
=

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions

Reaching defi

Very busy ex|

Live vari ysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

Flow equations LV

split into

= intra-block equations, using kill/generate

= inter-block equations, using flow
however: everything works backwards now

Flow equations LV

Lvemit(l) =

I-Ventry(l) =
where B! € blocks(S,)

Flow equations LV

split into

= intra-block equations, using kill /generate

= inter-block equations, using flow
however: everything works backwards now

Flow equations LV

B 0 [€ final(Sy)
Weo(l) = { UV eniry (1)) | (I, 1) € flow®(S,)} otherwise

Wentry(1) = Wegit(1) \ killpy (BY) U genyy (BY)

where B! € blocks(S.)

Example

(while [z > 1]% do [skip]"); [«

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Looping example

I

true

skip

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Section

Theoretical properties and seman-
tics

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Relating programs with analyses

Static analysis
and all that

= analyses Martin Steffen
= intended as (static) abstraction or overapprox. of real Targets & Outline
Program behavior Intraprocedural
= so far: without real connection to programs a;'a'ys_'? o
]) b :Le;r:::;‘ngt e control
= soundness of the analysis: safe analysis A e
Reaching definitions
= but: behavior or semantics of programs not yet defined Very busy expresions
Live variable analysis
b H ” H - ’
= here: “easiest” semantics: operational Theoretical
. . properties and
= more precisely: small-step SOS (structural operational semantics
Semantics
semantics) s
Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

States, configs, and transitions

Static analysis

and all that
fixing some data types Martin Steffen
= state o : State = Var — Z areetelecOutline
. . . . Intraprocedural
= configuration: pair of statement x state or (terminal) analysis
. Determining the control
just a state flow graph

Available expressions
Reaching definitions

Very busy expressions

Transitions e

Theoretical
properties and
(S,0) > 6 or (S,0)—(S,5) e

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Semantics of expressions

[.]*: AExp — (State — Z)
[.]°: BExp — (State — B)

simplifying assumption: no errors

[a1 op, a2

[not b]%

[b1 op,, bo]2
[a’l op, aQ]IU

5y

clearly:

Va € fu(a). o1(x)

o(x)

N(n)

= [a1]f op, [a2]

= -5
= [0]5 opy [b2]5
= [a]2 op, [ag]d

o9(x) then [(1];,41 = [a]j;‘2

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions

Very busy expressions
Live variable a

Theoretical

properties and

semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

SOS

([x == a)', o) = olz—[a]2] Ass ([skip]’, o) = & SKIP

(S1,0) = (51,6) (S1,0) = 6
SEQ1 SEQZ
(S1582,0) = (S1;52,0) (S1;82,0) = (S2,6)

IF1

WHILE;
(while [b]'do S, o) — (S;while[b]'do S, o)

b5 = L

WHILE,
(while [b]'do S,0) — o

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics

Sema

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Derivation sequences

“completed” execution:
= finite sequence: (S1,01),...,{(Sn,0n), Ont1
= infinite sequence: (S1,01),...,{(S;, 04),...

= note: labels do not influence the semantics

= derivation sequence:

= CFG for the "rest” of the program only gets “smaller”
when running:

Lemma

. (S,0) — o', then ﬁnal(S’) = {init(S)}
2. Assume (S,0) — (S,6),
2.1 final(S) D {final(S)
2.2 flow(S) 2 {flow(S)}
2.3 blocks(S) 2 blocks(S); if S is label consistent, then so

is S

then

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical

properties and

semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Correctness of live analysis
= LV as example

= given as constraint system (not as equational system)

LV constraint system

0 l € final(Sy)
LV eait (1) 2 { U{LV ety (1) | (I',1) € flow™(S,)} otherwise

WV entrg (1) 2 WVt (1) \ Killpy (BY) U genyy (BY)

liveentry, liveeyy : Laby, — g Var.

“live solves constraint system LV=(S)”

live = LVE(S)
(analogously for equations LV=(.9))

Equational vs. constraint analysis

Lemma

1. If live |= LV=, then live |= LVS

2. The least solutions of live = LV™
coincide.

and live |= LVS

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical

properties and

semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Intermezzo: orders, lattices. etc.

Static analysis
and all that

as a reminder: Martin Steffen

- partial Order (L7 E) Targets & Outline
[upper bound l of Y C L: Intraprocedural
- analysis
= least upper bound (lub): |]Y (or join) B e
Available expressions
= dually: lower bounds and greatest lower bounds: [1Y Reacing defnitions
Very busy expressions
(Or meet Live variable analysis
. . Theoretical
- Complete |att|Ce L = (L7 E) = (L7 ;7 |_|7 |_|7 J—7 T) a properties and
partially ordered set where meets and joins exist for all semantics
subsets, furthermore T =[]0 and L =|]0. I
Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Fixpoints
given complete lattice L and monotone f: L — L.
- ﬁXpOint: f(l) = l Static analysis
sz(f) _ {l | f(l) _ l} and all that

Martin Steffen

= f reductive at [, [is a pre-fixpoint of f: f(I) C I: Targets & Outline
Intraprocedural
analysis
Red(f) = {l | f(l) C l} PSR

Available expressions
Reaching definitions

Very busy expressions

= f extensive at [, | is a post-fixpoint of f: f(I) 3 I: e e
properties and
semantics

Ext(f)={l]| f() 31} Semanic
Define “Ifp” / “gfp” Framemorks

Equation solving

Interprocedural

ip(f) [| Fia(f) and gfp(f) £ | | Fiz(f)

Tarski’s theorem

Core

Perhaps core insight of the whole lattice/fixpoint business:
not only does the [] of all pre-fixpoints uniquely exist (that's
what the lattice is for), but —and that's the trick— it’s a
pre-fixpoint itself (ultimately due to montonicity of f).

Theorem

L: complete lattice, f : L — L monotone.

ifp(f) [1Red(f) € Fiz(f) (18)
gfp(f) L Ezt(f) € Fix(f)

L
L

= Note: Ifp (despite the name) is defined as glb of all
pre-fixpoints

= The theorem (more or less directly) implies Ifp is the
least fixpoint

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Fixpoint iteration
= often: iterate, approximate least fixed point from below
(f"(L)n
LCfL)CfA(DE...

= not assured that we “reach” the fixpoint (“within" w)

LML) EU MWL) B ifp(f)
afe(f) ET1, f*(T) Ef(T) E(T)

= additional requirement: continuity on f for all
ascending chains (I,,),

FL@) = L))

n

= ascending chain condition ("stabilization"):
frL) =) e Ufp(f) = £(L)

= descending chain condition: dually

Basic preservation results

Lemma (“Smaller” graph — less constraints)
Assume live |= LVE(Sy). If flow(S1) D flow(S2) and
blocks(S1) D blocks(Ss), then live = LVE(Ss).
Corollary (“subject reduction”)

If live |= LVE(S) and (S, o) — (S,6), then live = LVE(S)

Lemma (Flow)

Assume live = LVS(S). Ifl —gow I/, then
liveezit(l) D liveentry(l').

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Correctness relation

= basic intuitition: only live variables influence the
program

= proof by induction

=

Correctness relation on states:

Given V = set of variables:

o1~y 09 iff Vo € V.O'l(.%') = 02(.%') (19)

(S,01) —— (5, 0%) (8", o)) —— of’
‘NV ‘NV’ ~yr
(S,09) —— (5, 0%) (8", o) —— ol

Notation: N(1) = liveeniy (1), X (1) = liveeyi(1)

~x ()

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Correctness (1)

Static analysis
and all that

Martin Steffen

Targets & Outline

i i Int dural
Lemma (Preservation inter-block flow) ntraprocedura

analysis

Determining the control

Assume live |= LVE. If 0y ~x@y o2 and | =gy I, then fow oo

Available expressions
Reaching definitions
~Y
01 ~N(") 02- R

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Correctness

Theorem (Correctness)
Assume live |= LVE(S).
= If <S, 0'1> — (S, O"1> and o ~N(init(S)) 92 then there
exists 6o s.t. (S, 02) — (S,62) and 61 ~ N(iit($)) 02

= If (S,01) — 61 and o0 ~N(init(S)) 02 then there exists
b9 S.t. <S (72) — 69 and &1 ~ X (init(S)) G9.

(S,01) — <S &

~
=
~

<S7 01> ? é—l
~ N (init(S)) ~ N (init($)) ‘ ~N(init(S)) X (init(S))

(S, 09) » (S, 69) (S,09) > Gy

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Correctness (many steps)

Static analysis
and all that

Martin Steffen

Assume live): ng (S) Targets & Outline

Intraprocedural

= If <S, 01> —* <S,él> and o ~ N (init(S)) 02 then there s
exists 62 s.t. (S, a9) —* (S, 69) and 61 ~ i an Ga. Bt
25t (S,00) =7 (5, 62) and 61~y i) G2 BT

= If <S, Ul> —>* 6—1 and o1 NN(ZTLZt(S)) 09, then there exists Reaching definitions

Very busy expressions
G2 st. (S,02) =" 62 and 61 ~x(;) G2 for some U
Theoretical
l € ﬁnal(s) . properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Section

Monotone frameworks

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Monotone framework: general pattern

Static analysis

and all that
Martin Steffen
Analysis, (1) = { | flep
’ LI{ Analysis,(I') | (I',1) € F'} otherwise Iat'g“) “I'"e
Analysis,(1) = fi(Analysis, (1)) e

Determining the control
(20) o

Available expressions

= | |: either |J or N I
« F: either flow(S.) or flow®(S.). e
« E: either {init(S.)} or final(S,) emantics
= (. either the initial or final information e Lt
= f;: transfer function for [B]' € blocks(S.,). A

Equation solving

Interprocedural

Monotone frameworks

direction of flow:

= forward analysis:
= F = flow(S,)
= Analysis, for entry and Analysis, for exits
= assumption: isolated entries

= backward analysis: dually
- F = flow™(S,)
= Analysis, for exit and Analysis, for entry
= assumption: isolated exits

sort of solution

= may analysis
= properties for some path
= smallest solution

= must analysis

= properties of /all paths
= greatest solution

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics

Semantics

Analysis, (1) = 5 U){Analysis,(I') | (I',1) € F} s oo (T

l L |fl [E Monotone
Where LE = frameworks

1L ifl¢E
Analysis. (l) = fl (AnalySZ-SO (l)) Interprocedural
(21) analysis

Introduction

where [L =1 Semantics

Analysis

Equation solving

Basic definitions: property space

= property space L, often complete lattice
= combination operator: | |: 2% — L, LI: binary case
. L=1]0

= often: ascending chain condition (stabilization)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Transfer functions

Static analysis
and all that

Martin Steffen

fl:L—>L

Targets & Outline

Wlth l & :[;al')>|< Intrlapl:ucedural
analysis
. . Determining the control
= associated with the blocks CozrD
Available expressions
= requirement: monotone :w';gy‘”p
= F: monotone functions over L: tive variable analyss
.. . Theoretical
= containing all transfer functions properties and
= containing identity semantics
= closed under composition Intermezzos Lattces
Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Summary

= complete lattice L, ascending chain condition

= JF monotone functions, closed as stated

distributive framework

fliuly) = f(l) U f(l2)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

The 4 classical examples

= for a label consistent program S, all are instances of a
monotone, distributive, framework:

= conditions:

lattice of properties: immediate (subset/superset)
ascending chain condition: finite set of syntactic entities
closure conditions on F

® monotone

= closure under identity and composition
distributivity. assured by using the kill- and
generate-formulation

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Overview over the 4 examples

{f:L—L|3, 1, f(I)=(1\1lx) Uly}

avail. epxr. reach. def's very busy expr. | live var's
L 2AExp* 2Var* X Labz 2AExp* 2Var*
C 2 - 2 c
L N U N U
1| AExp, 0 AExp, 0
L 0 {(z,?) |z € fu(Si)} 0 0
E | {init(S:)} {init(Ss)} final(Sy) final(Sy)
F | flow(Sy) flow(Sy) fow™(S,) | Aow®(S,)
J—.'
Ji

fi(l) = (1\ kill([B])Y) U gen([B]")) where [B]' € blocks(S,)

Section

Equation solving

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Solving the analyses

= given: set of equations (or constraints) over finite sets
of variables

= domain of variables: complete lattices 4+ ascending
chain condition

= 2 solutions for the monotone frameworks

= MFP: “maximal fix point”
= MOP: “meet over all paths”

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

MFP

= terminology: historically "MFP" stands for maximal fix
point (not minimal)
= iterative worklist algorithm:
= central data structure: worklist
= list (or container/set) of pairs

= related to chaotic iteration

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Chaotic iteration

Static analysis

and all that

Input: equations for reaching defs WD Sl
for the given program Targets & Outline

Output: least solution: R_D:(RDl,...,RDlg) g szt

Determining the control
flow graph

Available expressions

Reaching definitions

Initialization : e —
RDl — @) o RD12 — @ Live variable analysis

. Theoretical
lteration : properties and

. . semantics

while RD] 7é Fj(RDl,...,RDlg) for some J Semantics

do Intermezzo: Lattices

Monotone

RDj = Fj(RDl, ey RDlg) frameworks
Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Worklist algorithms

= fixpoint iteration algorithm

= general kind of algorithms, for DFA, CFA, ...

= same for equational and /constraint systems

= ‘“specialization” i.e., determinization of chaotic iteration

= worklist: central data structure, “container” containing
“the work still to be done”

= for more details (different traversal strategies): see
Chap. 6 from [?]

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

WL-algo for DFA

= WL-algo for monotone frameworks

input: instance of monotone framework

U

= two central data structures
= worklist: /flow-edges yet to be (re-)considered:
1. removed when effect of transfer function has been
taken care of
2. (re-)added, when point 1 endangers satisfaction of
(in-)equations
= array to store the “current state” of Analysis,
= one central control structure (after initialization): loop
until worklist empty

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Input: (L, F,F,E,¢f)
output: MFP,, MFP,

Method: step 1:

initialization

W = nil;
for all (,I'YEF do W:=(1I'): W;
for all /€ F or € E do

step 2:

if /€ E then Analysis[l] :==.
else Analysis[l] .= L;

iteration

while W #nil do

step 3:

(I,I') := (f£st (head(W)), snd(head(W)));
W := tail WwW;
if fi(Analysis[l]) Z Analysis[l']
then Analysis[l'] := Analysis[l'] U f(Analysis[l]) ;
for all /" with (/,I”)€ F do
W=, 1"): W;
presenting the result:
for all /€ F or € E do
MFP. (1) := Analysis[l];
MFP. (1) := fi(Analysis|l])

ML Code

let rec solve (wll edge list)

match wll with
[1—=0

| (rr)ycowlt —
let ana_pre : var list
and ana_post : var list
in let ana_exitpre : var
in
if not (subset (ana-exitp
then

(enter (ana,l
let (new_edges
(let (preds

edge
node |

in List.map (fun n—> (1',n))

in solve (new_edges @

else
(solve (wl'))
in
solve wl_init;
fun (x: node) —> lookx (ana, x)

unit =

(x wl done x)

= lookx (ana,l) (% extract "' states
= lookx (ana,l")
list = f_trans(ana_pre,|)

re ,ana_post))

', union(ana_post,ana_exitpre));

list) =

ist) = Flow.Graph.pred (I"')
preds)

wl!

(* Nothing to do here. x)

*)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph
Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

MFP: properties

Lemma
The algo
= terminates and

= calculates the least solution

Proof.

= termination: ascending chain condition & loop is
enlarging
= least FP:

= invariant: array always below Analysis,
= at loop exit: array “solves” (in-)equations

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Time complexity

= estimation of upper bound of number basic steps
= at most b different labels in
= at most e > b pairs in the flow F'
= height of the lattice: at most h
= non-loop steps: O(b+ €)
= Joop: at most h times addition to the WL

O(e-h)
or < O(b?h)

(22)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Section

Interprocedural analysis

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Adding procedures

= so far: very simplified language:

minimalistic imperative language
reading and writing to variables plus
simple controlflow, given as flow graph

= now: procedures: interprocedural analysis

= complications:

calls/return (control flow)

parameter passing (call-by-value vs. call-by-reference)
scopes

potential aliasing (with call-by-reference)

higher-order functions/procedures

= here: top-level procedures, mutual recursion,
call-by-value parameter + call-by-result

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Syntax

= begin D, S, end
ln lz
D ::= procp(valz,resy)isSend | D D

= procedure names p
= statements

S = ... [callp(a, z)]éj
= note: call statement with 2 /labels

= statically scoped language, CBV parameter passing (1st
parameter), and CBN for second

= mutual recursion possible

= assumption: unique labelling, only declared procedures
are called, all procedures have different names.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Example: Fibonacci

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

begin proc fib(val z,u,resv) is
if [z < 3]
then [v:=u+1]3
else [callfib(z — 1,u,v)]s;
[call fib(z — 2,v,v)]$
end8;
[Call ﬁb(.T, an)ﬁ)o

end

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Block, labels, etc.

init([callp

final([callp

blocks([callp

labels([call p
(I

flow([callp

AAAAA
~— N N
e it e —t— o~
I 0303 03 030
~— — — '

{ir}
{[ca11 p(a, 2)];°}

{le: 1}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis

Block, labels, etc.

init([call p(a, Z)]gi)

final([call p(a, Z)]éi)

blocks([call p(a, Z)]fi)

labels([call p(a, z)]fi)

flow([call p(a, 2)])°)
(

le
{}
{[callp(a, 2)]i°}
{le, 1}

{(Ie; 1n), (Ix; 1)}

where proc p(valz,resy) is'" Send' is in D,.

= two new kinds of flows (written slightly different(!)):

calling and returning

= static dispatch only

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions

Very busy expressions
Live variable a

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis

For procedure declaration

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

(p)
(p)

blocks(p) = U blocks(S) e e
() = Very busy expressions
(p)

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

For procedure declaration

(p) = I

() = {lz}

blocks(p) = {is', end=} U blocks(S)
(p) = A{ln, 1} Ulabels(S)
()

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

= {(In, nit(8))} U flow(S) U {(1, 1) | | € final(S)meorstica

properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving
Interprocedural

analysis
tion

“Standard” flow of complete program

not yet interprocedural flow (IF)

init, = init(Sy)
final, = final(Sy)
blocks, = |U{blocks(p)| procp(valz,resy)is» Send € D,}
Ublocks(Sy)
labels, = U{labels(p) | procp(valz,resy)is Send~ € D,}
Ulabels(Sy)
flow, = U{flow(p)| procp(valz,resy)is» Send= € D,}
Uflow(S)

side remark: S,: notation for complete program “of interest”

New kind of edges: Interprocedural flow

(IF)

= inter-procedural: from call-site to procedure, and back:
(Ie;1y) and (Ly;1,).
= more precise (= better) capture of flow

= abbreviation: [F for inter-flow, or inter-flow?

IF

inter-flow, = {(l¢yln, lz,1;) | Px contains [callp(a,2)]i¢ and

P

proc(valz,resy)is'" Send'

Example: fibonacci flow

Static analysis
and all that

Example: fibonacci flow Martin Steffen

Targets & Outline

Intraprocedural
analysis

<

3]
\ yes
[call fib(x,0,u)]5o

Determining the control
| flow graph
[call fib(z — 1,u,v)]3 srap

Available expressions
Reaching definitions
Very busy expressions

|

Live variable analysis

call fib(z — 2,v,v)]¢ R

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Semantics: stores, locations,. ..

= not only new syntax
= new semantical concept: local datal

= different “incarnations” of a variable = locations
= remember: ¢ € State = Var, — Z

Representation of “memory”

¢ € Loc locations
p € Env=Var, — Loc environment
¢ € Store=Loc —f, Z store

= og=g¢op: total = ran(p) C dom(s)

= top-level environment: p,: all var's are mapped to
unique locations (no aliasing !!!!)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

SOS steps

= steps relative to environment p
P (S,6) = (5,9)
or
p s (Sc) =<

= old rules needs to be adapted

= ‘“global” environment p, (for global vars)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Call-rule

&1,62 ¢ dom(s)

procp(valz,resy)isi” Sends € D,

&=
CALL

p Fi ([call p(a, z)]ér,g) — (bind pi[z— &][y~ &) in Sthenz :=y,<)

Call-rule

§1,62 & dom(s) veZ
procp(valz,resy)is!» Send!s € D,

¢ = sl =[ad,)[é2 — 0]
CALL

p . ([callp(a, 2)];°,s) — (bind pufz =&][y — &o] in S thenz := y,<)

Bind-construct

pFs (S6) = ($,<)

BIND;
pF. (bind pinSthenz :=y,s) —

ph(S6) =<

BINDs
p . (bind pin Sthenz :=y,¢) —

= bind-syntax: “runtime syntax”

= formulation of correctness must be adapted, too (Chap.
3)2

2Not covered in the lecture.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Bind-construct

p i (S,6) — (8,<)

pk, (bind pin S thenz :=y,<) — (bind fin S then z := y, <)

P (S6) =<

BiNDo
p . (bind pinSthenz 1=y, <) — <[p(2) = <(4(y))]

= bind-syntax: “runtime syntax”

= formulation of correctness must be adapted, too (Chap.

3)?

2Not covered in the lecture.

Static analysis
and all that

Martin Steffen

BINDi'argets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Transfer function: Naive formulation

= first attempt

Static analysis
ass tions and all that

" umptions:

p Martin Steffen

= for each proc. call: 2 transfer functions: f;_(call) and
fl X (retu rn) Targets & Outline
= for each proc. definition: 2 transfer functions: f; Intraprocedural
(enter) and f;, (exit) snabss

Determining the control
flow graph

= given: mon. framework (L, F,F,E ., f) usiabl exresions
Reaching definitions
Very busy expressions

Live variable analysis

Nalve Theoretical
properties and
= treat IF edges (I.;!y) and (I;1,) as ordinary flow edges semantics
(ll y l2) Intermezzo: Lattices
o . . Monotone
= [gnore parameter passing: transfer functions for proc. frameworks
calls and proc definitions are identity Equation solving
Interprocedural
analysis

Introduction
Semantics

Analysis

Equation system (“naive” version”)

Static analysis
and all that

Martin Steffen

A. (l) = ((l)) Targets & Outline
As(l) = WA | () € For (I'1) € FYud, Intraprocedural

analysis

Determining the control
flow graph

Available expressions
Reaching definitions

1 L |f l c E Very busy expressions

L = . Live variable analysis
E 1 ifi¢FE ”
Theoretical
properties and
semantics
= analysis: safe Semantics
Intermezzo: Lattices

= unnecessarily imprecise, too abstract Monotone

frameworks
Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Paths

= remember: “MFP"
= historically: MOP stands for meet over all paths
= here: dually mosty joins
= 2 “versions” of a path:
= path to entry of a block: blocks traversed from the

“extremal block” of the program, but not including it
= path to exit of a block

Paths
patho(l) = {[ll, . lnfl] | s — flow LiviNl,=1NL € E}
path,(l) = {[ll, - ln] | l; — flow li+1 ANl, =LAl € E}

= transfer function for paths I

fr=J, 0. fuoid

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Meet over all paths

= paths:

= forward: paths from init block to entry of a block
= backwards: paths from exits of a block to a final block

= two versions for the MOP solution (for given [):

= up-to but not including {
= up-to including [

MOP

MOP(l) =
MOP.(I) =

LA |
LI/ |

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

MOP vs. MFP

= MOP: can be undecidable
= MFP approximates MOP (“MFP 3 MOP")

Lemma

MFP, 3 MOP, and MFP, J MOP,

In case of a distributive framework

MFP, = MOP, and MFP, = MOP,

(23)

(24)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

MVP

= take calls and returns (IF) serious
= restrict attention to valid (“possible”) paths
= capture the nesting structure
= from MOP to MVP: “meet over all valid paths”

= complete path:

= appropriate call-nesting
= all calls are answered

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Complete paths

= given P, =begin D, S, end
= CPy, 1,: complete paths from /1 to Iy

= generated by the following productions (I's are the
terminals) (we assume forward analysis here)

= basically a context-free grammar

CPU — 1

(l1,l2) € F

CP11713 — ll, CPlz,ls

(o), 1p, 1) € IF

CPlc,l — lc, OP; Clel

'rLyl(D’

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Example: Fibonacci

= concrete grammar for fibonacci program:

CPy 10

LELLLLTLLELY

9, CP18, CP1o,10
10

1, CPQ}S

2, CP378

2, CPys

3, CPs.s

8

4, CPLg, CP5’8
5, CPg3

6, CP1g, CP7g
7, CP&g

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Valid paths (context-free grammar)

Valid path (generated from non-terminal VP,):

= start at extremal node (E),

= all proc exits have matching entries

lLeF lo € Lab,

VP, — VP, VPl —1

(I1,12) € F

Vpll,lg, — ll, VP12713

(leylnylayly) € IF (leyln, 1z, 1) € IF

Vplc,l — lc, CP[Vplr,l Vlel — lc, VPl

n 7lz ? n ;l

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

MVP

= adapt the definition of paths

vpathy (1) = {[l1,..
vpathe (1) = {[l1,..

o] [ln=1ATh,. .. 1] valid}
] | ln =LAl ..., 1] valid}

= MVP solution:

MVP() = L{fA0)
MVP() = LI{f{0)

= but still: “meets over paths” is impractical

Fixpoint calculations

next: how to reconcile the path approach with MFP

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Contexts

= MVP/MOP undecidable (but more precise than basic
M FP) Static analysis

= instead of MVP: “embellish” MFP] el et
Martin Steffen
QRSIAN (25)

Targets & Outline

Intraprocedural
analysis
= J: context information Detemiin the conol
= for instance: representing/recording of the path taken e

Reaching definitions

Very busy expressions

= “embellishment”: adding contexts Live variable analeis
Theoretical
embellished monotone framework properties and
Semantics
~ ,\ ~ Intermezzo: Lattices
(L7 7 f) Monotone
frameworks
Equation solving
= intra-procedural (no change of embellishment A) Interprocedural
= inter-procedural Introduction

Semantics

Analysis

Intra-procedural: basically unchanged

= this part: “independent” of A
= property lattice L=A>1L
= mononote functions F
= transfer functions: pointwise

fiD)(6) = fi(i(5)) (26)

= flow equations: “unchanged” for intra-proc. part
Adl) = fi(As(D))

A(D) = LA | (1) € For (I51) € F)} Uiy
(27)

= in equation for A,: except for labels [for proc. calls
(i.e., not I, and 1,.)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph
Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Sign analysis (unembellished)

= Sign ={—,0,+}, Lsign = 9 Var,—Sign
= abstract states 0*"9" € Ly,

= for expressions:
[JAs4n : AExp — (Var, — Sign) — 25i&n

Transfer function for [z := a]'

;o) = g o) | e vy (28)
where Y C Var, — Sign and

qbfign(asign) _ {O_sign[x'_) S] | s € [a]IAsign (29)

o sign

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Sign analysis: embellished

Static analysis
and all that

Martin Steffen

Lsign = A— Lsz’gn (30) Targets & Outline
= A — 2Var*—>Sign ~ 2A><(Var*—>Sign) Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Transfer function for [z := a]' A

Live variable analysis

Theoretical

properties and
. 5 . 0 semantics
fZSlg’n(Z) _ U{{a} % d);‘lgn(o_szgn) | (67 O_szgn) E Z} (31) Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Inter-procedural

= procedure definition proc(val x,resy)is'" S end's:
ﬁ7l,ﬁx:(A—>L)—>(A—>L):7;d

= procedure call: (I¢, 1,1z, 1) € IF

= here: forward analysis

= call: 2 transfer functions/2 sets of equations, i.e., for all
(leyln, Uz, 1) € IF

2 transfer functions

1. for calls: fllc (A—=>L)— (A= L)

Ao(le) = [, (Ao(lc)) (32)

1. for returns: j?QIC’lT (A—=>L)x(A—=L)— (A—=1L)

A

Ao(lr) = 214, (Ao (le), Ao(lr))) (33)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Procedure call

Static analysis
proc p(val x,res y) and all that
Martin Steffen

ol
o PRI g is” Targets & Outline
1.0
Intraprocedural
analysis

Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

T~ — [~
\‘\
\ . Theoretical
~ .
I T~ . properties and
N end* semantics
A o Semantics
2 i
f /ch(I Y) Intermezzo: Lattices
v Monotone

frameworks
Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Ignoring the call context

Static analysis

and all that
29 N W .
flal,‘ (l’l) — flr (l) Martin Steffen
proc p(val X, res y) Targets & Outline
Intraprocedural
analysis

Determining the control
flow graph

] fioy —
o

[call p(a, 2)]¢ /

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

A Theoretical
[caII p(a, z)]l, - proper:ies and
semantics
}\\ Semantics
le,lr —~ !

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Merging call contexts

Static analysis
and all that
A A

fi,lr (l, l/) — ﬁ?cﬁr ([) L fA‘QC,B;T (Z’) Martin Steffen

Targets & Outline
proc p(val x, res y)

Intraprocedural

analysis
_ ialn -
Y A - IS Determining the control
f /c(/) o flow graph
///
-

Available expressions

—>

- Reaching definitions

[call p(a, z)] e
. r Live variable analysis
%
L Theoretical

[caII p(, Z)],f l properties and

~—

Aé':B\\ semantics

f; ~)
Io,lr ~_ endlx Semantics
Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Context sensitivity

= |F-edges: allow to relate returns to matching calls

= context insensitive: proc-body analysed combining flow
information from all call-sites.

= contexts: used to distinguish different call-sites

= context sensitive analysis = more precision + more
effort

In the following: 2 specializations:

1. control (“call strings")
2. data

(combinations of course possible)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Call strings

= context = path
= call-string = sequence of currently “active” calls

= concentrating on calls: flow-edges (I, l,), where just [.
is recorded

A = Lab* call strings

= extremal value (from L = A — L)
(o

~—

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Call strings

= context = path

= call-string = sequence of currently “active” calls

= concentrating on calls: flow-edges (I, 1), where just [.
is recorded

A = Lab* call strings

« extremal value (from L = A — L)

¢t ifd=c¢€
1 otherwise

05) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Fibonacci flow

Static analysis
and all that

Example: fibonacci flow Martin Steffen

Targets & Outline

Intraprocedural
analysis
\ Determining the control
flow graph
[call fib(z,0,9)]7, p— Available expressions

Reaching definitions
Very busy expressions

|

Live variable analysis

Theoretical
properties and
semantics

Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Fibonacci call strings

some call strings:

e,19],19,4],19,6],19,4,4], 9, 4,6],[9,6,4],[9,6,6], . ..

similar, but not same as valid paths

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Transfer functions for call strings

= here: forward analysis
= 2 cases: define fllc and fli I,

Transfer functions

= calls (basically: check that the path ends with [.):

A A

LD = fLU6) (34)
i) = 1
= returns (basically: match return with (a same-level)
call)
i G0) = [, 00T ([LD)) (39)

= rather “higher-order” way of connecting the flows, using
the call-strings as contexts

= connection between the arguments (via 9) of f_;.

= given: underlying fllc and flzc,lr'

re 1 1 - ~ .-

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Sign analysis (continued)

Static analysis
and all that

[" -
= SO far: unconcrete , 1.e., Martin Steffen
= given some underlying analysis: how to make it Targets & Outline
context-sensitive Intraprocedural
. analysis
= call-strings as context BT
flow graph

Available expressions

= now: apply to some simple case: signs

Reaching definitions

N : Very busy expressions
= remember: L ~ 2AX(Var*_)Slgn) (See Eq (30)) Live variable analysis
. +Si . Th ical
= before: standard embellished f;>'#" (with the help of properties and
Sign semantics
¢l) Semantics

Intermezzo: Lattices

= now: inter-procedural

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Sign analysis: aux. functions ¢

still unembellished

calls: abstract parameter-passing

G (o) = {o"][] | s € alju

@ o sign)
returns (analogously)

M7 a3) = o[-])

(formal params: x,y, where y is the result parameter, actual
parameter z)

= non-det “assignment” to y

= remember: operational semantics,

Sign analysis: aux. functions ¢
still unembellished

calls: abstract parameter-passing

(ot = {o sy 8] | s € [, o € {-,0,+1)

osign »

returns (analogously)

Y27 o5 = {03 @y, 2 07 (2), 07" (y), 05 ()]}

(formal params: x,y, where y is the result parameter, actual
parameter z)

= non-det “assignment” to y

= remember: operational semantics,

Sign analysis

calls: abstract parameter-passing + glueing
calls-returns

foml(z) = U} x 59" (o%im) | (8, 0%9m) € Z,8' =)}
Returns: analogously

i2(2,2) = UL} x 679201, 05" | (6,05 € 7 }

l(n r

(formal params: z,y, actual parameter z)

Sign analysis

calls: abstract parameter-passing + glueing
calls-returns

fml(z) = UL} x o™ (0%im) | (8, 0%m) € 2,8 = [5,1.])}

Returns: analogously

2,2 = U0} < 67920103 | (3,01 e Z)
(&', 059™) e Z'
& =1[5,1.]

(formal params: z,y, actual parameter z)

Call strings of bounded length

Static analysis
and all that

Martin Steffen

i H T & Outli
= recursion = call-strings of unbounded length areets & Outline

. Intraprocedural
—> restrict the |ength analys.is
< ftl)::f:::;'"g the control
A = Lab~ for some k > 0 Avalble expressions

Reaching definitions
Very busy expressions

Live variable analysis

= for k = 0 context-insensitive (A = {€}) Theoretical

properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Assumption sets

= alternative to call strings
= not tracking the path, but assumption about the state
= assume here: lattice
L=2P
— L=A—L~28xD
restrict to only the last call

dependency on data only =

(large) assumption set context
A=2P

= i ={({t},t)} extremal value

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Transfer functions

Static analysis

. Ca”S and all that

Martin Steffen

L2y = U x L) | (5,d) € ZA } i

(5’ — Intraprocedural
analysis

Determining the control

Where ('bllc . D —> 2D flow graph

Available expressions
= note: new context ¢ for the procedure body Rp LD

Very busy expressions

Live variable analysis

= ‘“caller-callee” connection via the context (= data) ¢

Theoretical
properties and

= return semantics

Semantics

fRo(z2.z") = U{{o} x ¢}, (d,d)| (5.d)eZn }
((5/, d,) G Z,/\ Monotone
5, _ frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Transfer functions

= Ca”S Static analysis
and all that

Martin Steffen

fLZ) = U} < oL@ | (6,d) € Zn } o T sOuine
(5/ — {d” ’ ((5, d//> S Z} analy':is

1. D Available expressions
Where d)lc ‘ D — 2 Reaching definitions

Very busy expressions

= note: new context & for the procedure body Live variabl anlysi
= “caller-callee” connection via the context (= data) & e

semantics

= return Semantics

Intermezzo: Lattices

£0,(2.2) = U8} x o}, (d.d) | (6.d) € Zn el
(5/7 d/) c Z//\ frameworks
5/ — {d/l ‘ (6’ d//) € Z}Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Small assumption sets

= throw away even more information.

A=D

= instead of 2 x D: now only D x D.
= transfer functions simplified
= call

fl2z) = Uleyxel@)] (6.d)eZ}

= return

f2,(2.2") = U} x ¢}, (d.d) | (5,d) € ZA }
(60,d') ez’

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Flow-(in-)sensitivity

Static analysis
and all that

= ‘“execution order” influences result of the analysis: Wiartin Steffen

Targets & Outline
S1;59 vs. S9: 51
Intraprocedural
analysis
Determining the control
flow graph
= flow in-sensitivity: order is irrelevant hatable exresions
eaching definitions
Very busy expressions

= less precise (but “cheaper”)

Live variable analysis

= for instance: kill is empty Theoretical

properties and
semantics

= sometimes useful in combination with inter-proc. .
analysis Intemzzo: Lattces

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Set of assigned variables

= for procedure p: determine
1AV (p)

global variables that may be assigned to (also indirectly)
when p is called

= two aux. definitions (straightforwardly defined,
obviously flow-insensitive)

= AV(S): assigned variables in S
= CP(S): called procedures in S

IAV(p) = (AV(S) \{z}) U J{IAV(Y) | »' € CP(S)} (36)

where proc p(val z, resy) is'» Send™ € D,

= CP = procedure call graph (which procedure calls
which one; see example)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Example

Static analysis
and all that

Martin Steffen

begin proc fib(valz)is

if [Z < 3] Targets & Outline
then [calladd(a)] ::;;l::ced"ra'

[
else [call ﬁb(z — 1)] ; E:Le;:::‘ngmuomml
[call fib(z — 2)] "

Very busy expressions

end; Live variable analysis
procadd(valu)is(y :=y+ 1;u:=0) Theoretical

properties and

end semantics
y = 0; [call fib(z)] Semantic

Intermezzo: Lattices
end Monotone

frameworks
Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Example

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Example

IAV(fib) = (0\{z}) UIAV(fib) UIAV(add)
IAV(add) = {y,u}\{u}

= smallest solution

IAV(fib) = {y}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis

Chapter 3

Types and effect systems

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Chapter 3

Learning Targets of Chapter “Types and effect
systems”.

type systems
effects
functional languages

type inference and unification

Chapter 3
Outline of Chapter “Types and effect systems”.

Type checking

Type inference

Section
Type checking

Chapter 3 “Types and effect systems”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Introduction

Static analysis
and all that

Martin Steffen

= now: working with a Targets & Outline
T hecking
n typed |anguage ype f:1ec ing
= functional language Fun Type inference

Type inference problem

Unification

= cf. the corresponding intro-section (annotated types)

= here: control-flow analysis (perhaps more). Remember
also the constraint based analysis/CFA in the intro

Syntax

Static analysis
and all that

Martin Steffen
e = clx| fo;x=e| fun,fax=elee terms

| ifetheneelsee| letz =cine|eope Targets & Outline

Type checking

Type inference

Table: Abstract syntax et
m € Pnt program points
e € Expr expressions
¢ € Const constants
op € Op operators
f,x € Var variables

Examples

Static analysis
and all that

Example (Application) Martin Steffen
Targets & Outline

T hecking
(an T = l’) (fny Yy = y) ype checking

Type inference

Type inference problem

Unification

Example

letg = (funp fz= f(fayy=y))
in g (fnzx = x)

Types

= Curry-style typing

Static analysis
and all that

T € Type types ot St
I' € TEnv type environment

Targets & Outline
Type checking

Types

Type inference
Type inference problem

Unification

T z=int | bool | T — T

= base types:
= bool and int
= standard constants and operators assumed

(true,5,+,<,...)
= each constant has a base type 7,

= type environments (finite mappings)

L= |,z 38

Judgments and derivation system

Type judgments

Fl—ULG:T

= derivation system:

= Curry-style formulation
= non-deterministic
= nonetheless: monomorphic let

= type reconstruction/type inference

Static analysis
and all that

Martin Steffen

Targets & Outline

(37) Type checking
Type inference

Type inference problem

Unification

3-9

Static analysis
and all that

Martin Steffen

F(Z’) =T Targets & Outline
r I_ €:Te Con — VAR Type checking
'Fa:7 Type inference
Type inference problem
P |_ 61 : Tolp P |_ 62 : /7—02p Unification

I'ejopes: Top

Lo be:m D, frm > mbe:m St Al
FN FUN and all that
F F fnﬂx = e . 1 — D) F '7 funﬂl' = e: 1 — To Martin Steffen

Targets & Outline
I'te:m — 7 I'tey:m

Type checking

APP Type inference
'+ €1 €2 1 T2 Type inference problem

Unification

I't e : bool I'ke 7 I'key:r

Ir
I' ifepthene; elsees : 7T

I'Fe :m IembFe:m

LET
'k letxz=e1iney : 7

3-11

Section

Type inference

Chapter 3 “Types and effect systems”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Inference algorithms

Static analysis
and all that

= take care of terminology Martin Steffen

= so far: no algorithm! (price of laxness) Targets & Outline

= foresight needed Type checking

Type inference

= guessing wrong = backtracking (and we seriously don't R
want that) Unification

= required: mechanism to make

= tentative guesses
= refine guesses

= we start first: with the underlying system

Augmented types

Static analysis
and all that

Martin Steffen

fancy name for: "we have added type variables” Targets & Outline
Type checking
7 € AType augmented types Type inference
. Type inference problem
a € TVar type variables Unicaton
T == int|bool | T =T |«
a == 'a|’p]...

3-14

Substitutions

Substitution (in general)

mapping from variables to “terms”

= ‘“syntactic mapping” here:
= “terms” are (augmented) types
= variables: type variables

¢ : TVar —5, AType

= considered as finite functions: we write dom(6).

= ground substitution: mapping to ordinary types (no
variables)
= substitutions: lifted to types in the standard manner

= composition of substitutions: 61 o 05 (or just 626;)

Static analysis
and all that

Martin Steffen

Targets & Outline
Type checking

Type inference
Type inference problem

Unification

Algorithm: basic idea

= instead of guessing type now =- postpone the decision

= use of type variables
replace:

NembFe:n
Fn

't fa,z=e:m > n

Algorithm: basic idea

= instead of guessing type now = postpone the decision

= use of type variables

Iz:atke:n
Fn

'k fnz=e:a—n

Algorithm: basic idea

= instead of guessing type now = postpone the decision

= use of type variables

INz:atke:n
Fn

't fn,z=e:a—m

= x:a when « is fresh (otherwise unused) means: type of
x is completely arbitrary.

= syntax-directed now?

= T1: meta-variable for concrete types

=« (still meta variable for) type variables

Algorithm: basic idea

= instead of guessing type now = postpone the decision

= use of type variables
a's completely arbitrary?
Consider body
e=2xyg

for fn,x = ¢
=

Restriction on o here

= a function type: a = — v
= fit together with type of g = condition or constraint on

B

Algorithm: basic idea

= instead of guessing type now = postpone the decision
= use of type variables

= judments “give back” not just the type, but also
“restrictions” on type variables.
= represented as constraint?
. =
I'ke:(r,C)

Under the assumptions I' (which might “assign” to (program) vari-
ables: type variables), program e possesses type 7 (again potentially
containing type variables) and imposes the restrictions "embodied”

by C on the type variables.

%In the book, what is given back is a substitution instead.

Constraints

= generally:

= constraint(s) is a formula with free variables
= solving a constraint set: finding values for the variables
such that here formula becomes true (satisfiability)

. set of constraints = interpreted as A (conjuction)
= more precisly here: (term) unification constraints
= notation 7 =’ Ty

= many other forms of “constraints” systems exists with
specialized solving techniques

= here: term unification

Static analysis
and all that

Martin Steffen

Targets & Outline
Type checking

Type inference
Type inference problem

Unification

3-17

Constraint generation

T-ConstT T-VAR
I'ke:(r,0) I'ta: (T(x),id)

o fresh T, z:akeq: (10,Co)
T-FN

Tk fn.x = ¢ : (o — 70,Ch)

a,aq fresh T, f:a — ag, z:a b e 2 (19,Co) Cp = {19 =" a}
T-FuN

'k fun,f = ep: (o — 70,Co, C1)

F|—€12(T1701) F"CQI(TQ,CQ) « fresh

Cs={n="(m—a
=1 ()} T-App

I F €1 €2 (Oé,Cl,CQ,Cg)

Constraint generation

F"@()I(T07CO) Fl_eli(Tl,Cl) F"égZ(TQ,CQ)

04:7'0 =7 bool 05:7'1 =" T2
Ir

't if eg theney elsees : (19,Ch, Co, C3,Cy, Cs)

I‘Fel . (Tl,Cl) F,.T:T1F€2:(7—2,Cg)

LET
I'kletx =ejines : (12,C1,Ch)
Fl—ell(Tl,Cl) Fl—egl(Tg,CQ)
C={n="10mn="15 Op

I'Fejopes: (1op, C1,C2,C)

Unification

Static analysis

= ‘“classical” algorithm ([1]) and all that
. . . Martin Steffen
= many applications (theorem proving, Prolog etc.) o

Co e Targets & Outli
= definition: substitution et & TuEne
Type checking

Unifiel’ Type inference

Type inference problem

Unification

A unifier of two types 71 and 79: a substitution 6 such that

(1) = 6(72)

= unfication problem given 11 and 79, determine a unifier
for them, if it exists

Ordering substitution (and unifiers)

= better formulation of unfication problem: given 71 and
To, determine the best = most general unifier for them
(if they are unifiable).

e . . ?
= solve unification constraint 7 =" ™

= easy generalizable to constraints: 6 = C

Ordering: “less general”, “more specific”

01 < 0 if 61 = 005 (for some 0)

= most-general-unifier of two types = “the" least upper
bound of all unifiers

Static analysis
and all that

Martin Steffen

Targets & Outline
Type checking

Type inference
Type inference problem

Unification

Unification algorithm for underlying types

U(int,int))
Z/{(bool bool))
U(T1 — T2, T] — T)

U(r,)

U(a,T)
Z/[(Tl,’rz)

Static analysis
and all that

Martin Steffen
id
7 d Targets & Outline
let 6, = U(Tl,T{)
Oy = U(0172,0175)
in 02 o} 91

Type checking

Type inference
Type inference
Unification

e problem

[+ 7] if a does not occur in T
orifa=r7
fail else

symmetrically
fail in all other cases

3-21

1-phase Type inference algorithm

Static analysis
and all that

Martin Steffen
= formulated here as rule system

Targets & Outline

= immediate correspondence to a recursive function:
Type checking

W(F, 6) = (7', 0) Type inference
Type inference problem

Unification

instead of
I'kFe:(r,0)

= not 2-phase, giving back a set of unification constraints
c

3-22

T-CoONST T-VAR
It c: (7,1id) 'tz (I(x),id)

o fresh I,z eg : (10,00)
T-FN

'k fn,z = e€q: (900& — 7'0,90)

a,ap fresh T, fra — ap, z:abeq : (10,00) 61 = U(70,000)

T-FunN
'+ funﬂf T = €. (0190(1 — 91(7’0), 010 90)

I‘I—el : (71701) 011—"—622(7'2,92) o fresh 93 :L{(0271,7'2—>a)
T-App

'k €1 €9 (930&, 939201)

'k €p - (7’0,90) 90F [ey : (71,91) 9160F + €9 (T2,92)

93 = u(9290T07 bOOl) 64 = Z/{(037'2, 93027’1) I
F

I'Fif egthene; elsees : (94937‘2, 9493926‘190)

Fl—el : (7’1,91) 91F,IL‘ZT1|—622<7’2,92)

LET
I'kletx =e¢;iney: (7’2,9291)

FFelz(ﬁ,@l) QQFFGQZ(TQ,QQ)

93 = u(ale, Tolp) 93 = u(937—27 To2p) OP

'k €10peg . (Top, 94939291)

“Classic” type inference

= we did not look at the full well-known
Hindley-Damas-Milner type inference algorithm
= missing here: polymorphic let
= monomoprhic let: “almost useless” polymorphism
= Note the fine line
= polymorphic let: yes
= polymorphic functions as function arguments: no!

the classical type “inference” algo

= higher-order functions,
= polymorphic functions,

= but no “higher-order polymorphic functions”

= dropping the last restriction: type inference undecidable

= no type variables in the underlying type system (the
“specification”), the type inference algo does

= types (with variables) and type schemes V.1

Static analysis
and all that

Martin Steffen

Targets & Outline
Type checking

Type inference
Type inference problem

Unification

3-24

Chapter 4

References

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

References |

Static analysis
and all that

Martin Steffen

Bibliography

[1] Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12:23-41.

42

	Introduction
	Data flow analysis
	Types and effect systems
	References

