
Chapter 1
Introduction

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Chapter 1
Learning Targets of Chapter “Introduction”.

Apart from a motivational introduction, the chapter gives
a high-level overview over larger topics covered in the
lecture. They are treated hear just as a teaser and in less
depth compared to later but there is already technical
content.

Chapter 1
Outline of Chapter “Introduction”.

Motivation

Data flow analysis

Constraint-based analysis

Type and effect systems

Algorithms

Section
Motivation

Chapter 1 “Introduction”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-5

Static analysis: why and what?
• what

• static: at “compile time”
• analysis: deduction of program properties

• automatic/decidable
• formally, based on semantics

• why
• error catching

• catching common “stupid” errors without bothering the
user much

• spotting errors early
• certain similarities to model checking
• examples: type checking, uninitialized variables,

potential nil-pointer deref’s, unused code
• optimization: based on analysis, transform the “code”1,

such the the result is “better”
• examples: precalculation of results, optimized register

allocation . . .
1source code, intermediate code at various levels

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-6

The nature of static analysis
• compiler with differerent phases
• corresponding to Chomsky’s hierarchy
• static = in principle: before run-time, but in praxis,

“context-free”
• since: run-time most often: undecidable
⇒ static analysis as approximation

L3

L2

L1

L0

lexer parser sa exec.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-7

Phases

lexer

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-7

Phases

lexer

parser

tokens

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-7

Phases

lexer

parser

tokens

SA opt.

AST

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-7

Phases

lexer

parser

tokens

SA opt.

AST

code gen. opt.

IR

IR

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-8

Static analysis as approximation

universe

exact
safe overapprox. safe underapprox.

unsafe

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-9

Optimal compiler?

Full employment theorem for compiler writers
It’s a (mathematically proven!) fact that for any compiler,
there exists another one which beats it.

• slightly more than non-existence of optimal compiler or
undecidability of such a compiler

• theorem
• just states that there room for improvement is always

guaranteed
• does not say how! Finding a better one: undecidable

Section
Data flow analysis

Chapter 1 “Introduction”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-11

While-language

• simple, prototypical imperative language
• “untyped”
• simple control structure: while, conditional, sequencing
• simple data (numerals, booleans)

• abstract syntax 6= concrete syntax
• disambiguation when needed: (. . .), or { . . . } or begin

. . . end

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-12

Labelling

• associate flow information
⇒ labels
• elementary block = labelled item
• identify basic building blocks
• consistent/unique labelling

Abstract syntax

a ::= x | n | a opa a arithm. expressions
b ::= true | false | not b | b opb b | a opr a boolean expr.
S ::= x := a | skip | S1;S2 statements

if b thenS elseS | while b doS

Table: Abstract syntax

Abstract syntax

a ::= x | n | a opa a arithm. expressions
b ::= true | false | not b | b opb b | a opr a boolean expr.
S ::= [x := a]l | [skip]l | S1;S2 statements

if[b]l thenS elseS | while[b]l doS

Table: Labelled abstract syntax

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-14

Example factorial

y := x; z := 1; while y > 1 do(z := z ∗ y; y := y− 1); y := 0

• input variable: x
• output variable: z

[y := x]0;
[z := 1]1;
while [y > 1]2
do([z := z ∗ y]3; [y := y − 1]4);
[y := 0]5

(1)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-15

CFG factorial

y:=x

z:=1

y>1

z:=z*y

y:=y-1

y:=0

true

false

l0

l1

l2

l3

l4

l5

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-16

Factorial: reaching definitions analysis

• “definition” of x: assignment to x: x := a

• better name: reaching assignment analysis
• first, simple example of data flow analysis

Reaching def’s
An assignment (= “definition”) [x := a]l may reach a
program point, if there exists an execution where x was last
assigned to at l, when the mentioned program point is
reached.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-17

Factorial: reaching definitions

y:=x

z:=1

y>1

z:=z*y

y:=y-1

y:=0

true

false

l0

l1

l2

l3

l4

l5

8

• data of interest: tuples of variable × label (or node)
• note: distinguish between entry and exit of a node.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-18

Factorial: reaching assignments

• “ points ” in the program: entry and exit to elementary
blocks/labels

• ?: special label (not occurring otherwise), representing
entry to the program, i.e., (x, ?) represents initial
(uninitialized) value of x

• full information: pair of “functions”

RD = (RDentry,RDexit) (2)

• tabular form (array): see next slide

Factorial: reaching assignments table

l RDentry RDexit
0 (x, ?), (y, ?), (z, ?) (x, ?), (y, 0), (z, ?)
1 (x, ?), (y, 0), (z, ?) (x, ?), (y, 0), (z, 1)
2 (x, ?), (y, 0), (y, 4), (z, 1), (z, 3) (x, ?), (y, 0), (y, 4), (z, 1), (z, 3)
3 (x, ?), (y, 0), (y, 4), (z, 1), (z, 3) (x, ?), (y, 0), (y, 4), (z, 3)
4 (x, ?), (y, 0), (y, 4), (z, 3) (x, ?), (y, 4), (z, 3)
5 (x, ?), (y, 0), (y, 4), (z, 1), (z, 3) (x, ?), (y, 5), (z, 1), (z, 3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-20

Reaching assignments: remarks

• elementary blocks of the form
• [b]l: entry/exit information coincides
• [x := a]l: entry/exit information (in general) different

• at program exit: (x, ?), x is input variable
• table: “best” information = smallest sets:

• additional pairs in the table: still safe
• removing labels: unsafe

• note: still an approximation
• no real (= run time) data, no real execution, only data

flow
• approximate since

• in concrete runs: at each point in that run, there is
exactly one last assignment, not a set

• label represents (potentially infinitely many) runs
• e.g.: at program exit in concrete run: either (z, 1) or

else (z, 3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-21

Data flow analysis

• standard: representation of program as control flow
graph (aka flow graph)

• nodes: elementary blocks with labels (or basic block)
• edges: flow of control

• two approaches, both (especially here) quite similar
• equational approach
• constraint-based approach

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-22

From flow graphs to equations

• associate an equation system with the flow graph:
• describing the “flow of information”
• here:

• the information related to reaching assignments
• information imagined to flow forwards

• solutions of the equations
• describe safe approximations
• not unique, interest in the least (or largest) solution
• here: give back RD of equation (2) on slide 22

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-23

Equations for RD and factorial: intra-block

first type: local, intra-block”:
• flow through each individual block
• relating for each elementary block its exit with its entry

elementary block: [y := x]0

RDexit(0) = RDentry(0) \{(y, l) | l ∈ Lab} ∪ {(y, 0)}

(3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-23

Equations for RD and factorial: intra-block

first type: local, intra-block”:
• flow through each individual block
• relating for each elementary block its exit with its entry

elementary block: [y > 1]2

RDexit(0) = RDentry(0) \{(y, l) | l ∈ Lab} ∪ {(y, 0)}

RDexit(2) = RDentry(2)

(3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-23

Equations for RD and factorial: intra-block

first type: local, intra-block”:
• flow through each individual block
• relating for each elementary block its exit with its entry

all equations with RDexit as “left-hand side”

RDexit(0) = RDentry(0) \{(y, l) | l ∈ Lab} ∪ {(y, 0)}
RDexit(1) = RDentry(1) \{(z, l) | l ∈ Lab} ∪ {(z, 1)}
RDexit(2) = RDentry(2)
RDexit(3) = RDentry(3) \{(z, l) | l ∈ Lab} ∪ {(z, 3)}
RDexit(4) = RDentry(4) \{(y, l) | l ∈ Lab} ∪ {(y, 4)}
RDexit(5) = RDentry(5) \{(y, l) | l ∈ Lab} ∪ {(y, 5)}

(3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-24

Inter-block flow
second type: global, inter-block

• flow between the elementary blocks, following the
control-flow edges

• relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

• initial block: mark variables as uninitialized

RDentry(1) = RDexit(0)

RDentry(3) = RDexit(2)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(2)

(4)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-24

Inter-block flow
second type: global, inter-block

• flow between the elementary blocks, following the
control-flow edges

• relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

• initial block: mark variables as uninitialized

RDentry(1) = RDexit(0)
RDentry(2) = RDexit(1) ∪ RDexit(4)
RDentry(3) = RDexit(2)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(2)

(4)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-24

Inter-block flow
second type: global, inter-block

• flow between the elementary blocks, following the
control-flow edges

• relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

• initial block: mark variables as uninitialized

RDentry(1) = RDexit(0)
RDentry(2) = RDexit(1) ∪ RDexit(4)
RDentry(3) = RDexit(2)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(2)

RDentry(0) = {(x, ?), (y, ?), (z, ?)}

(4)

General scheme (for RD)

Intra • for assignments [x := a]l

RDexit(l) = RDentry(l) \{(x, l′) | l′ ∈ Lab}∪{(x, l)}
(5)

• for other blocks [b]l (side-effect free)

RDexit(l) = RDentry(l) (6)

Inter

RDentry(l) =
⋃
l′→l

RDexit(l′) (7)

Initial l: label of the initial block (isolated entry)
RDentry(l) = {(x, ?) | x is a program variable} (8)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-26

The equation system as fix point

• RD example: solution to the equation system = 12 sets

RDentry(0), . . . ,RDexit(5)

• i.e., the RDentry(l),RDexit(l) are the variables of the
equation system, of type: sets of pairs of the form (x, l)

• domain of the equation system:
• ~RD: the mentioned twelve-tuple of variables
⇒ equation system understood as function F

Equations

~RD = F (~RD)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-27

The least solution

• Var∗ = variables “of interest” (i.e., occurring), Lab∗:
labels of interest

• here Var∗ = {x, y, z}, Lab∗ = {?, 1, . . . , 6}

F : (2Var∗×Lab∗)12 → (2Var∗×Lab∗)12 (9)

• domain (2Var∗×Lab∗)12: partially ordered pointwise:
~RD v ~RD′ iff ∀i. RDi ⊆ RD′i (10)

⇒ complete lattice

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-28

Constraint-based approach

• next, for DFA: a simple variant of the equational
approach

• rearrangement of the entry-exit relationships
• instead of equations: inequations (sub-set instead of

set-equality)
• in more complex settings: constraints become more

complex, no split in exit- and entry-constraints

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-29

Factorial program: intra-block constraints

elementary block: [y := x]0

RDexit(0) ⊇ RDentry(0) \{(y, l) | l ∈ Lab}
RDexit(0) ⊇ {(y, 0)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-29

Factorial program: intra-block constraints

elementary block: [y > 1]2

RDexit(2) ⊇ RDentry(2)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-29

Factorial program: intra-block constraints

all equations with RDexit as left-hand side

RDexit(0) ⊇ RDentry(0) \{(y, l) | l ∈ Lab}
RDexit(0) ⊇ {(y, 0)}
RDexit(1) ⊇ RDentry(1) \{(z, l) | l ∈ Lab}
RDexit(1) ⊇ {(z, 1)}
RDexit(2) ⊇ RDentry(2)
RDexit(3) ⊇ RDentry(3) \{(z, l) | l ∈ Lab}
RDexit(3) ⊇ {(z, 3)}
RDexit(4) ⊇ RDentry(4) \{(y, l) | l ∈ Lab}
RDexit(4) ⊇ {(y, 4)}
RDexit(5) ⊇ RDentry(5) \{(y, l) | l ∈ Lab}
RDexit(5) ⊇ {(y, 5)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-30

Factorial program: inter-block constraints

cf. slide 30 ff.: inter-block equations:

RDentry(1) = RDexit(0)
RDentry(2) = RDexit(1) ∪ RDexit(4)
RDentry(3) = RDexit(2)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(2)

RDentry(0) = {(x, ?), (y, ?), (z, ?)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-30

Factorial program: inter-block constraints

splitting of composed right-hand sides + using ⊇ instead of
=:

RDentry(1) ⊇ RDexit(0)
RDentry(2) ⊇ RDexit(1)
RDentry(2) ⊇ RDexit(4)
RDentry(3) ⊇ RDexit(2)
RDentry(4) ⊇ RDexit(3)
RDentry(5) ⊇ RDexit(2)

RDentry(1) ⊇ {(x, ?), (y, ?), (z, ?)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-31

Least solution revisited

instead of F (~RD) = ~RD
• clear: solution to the equation system ⇒ solution to the

constraint system
• important: least solutions coincides!

Pre-fixpoint

F (~RD) v ~RD (11)

Section
Constraint-based analysis

Chapter 1 “Introduction”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-33

Control-flow analysis

Goal CFA
which elem. blocks lead to which other elem. blocks

• for while-language: immediate (labelled elem. blocks,
resp., graph)

• complex for: more advanced features, higher-order
languages, oo languages . . .

• here: prototypical higher-order functional language
λ-calculus

• formulated as constraint-based analysis

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-34

Simple example

l e t f = f n x => x 1 ;
g = f n y => y + 2 ;
h = f n z => z + 3 ;

i n (f g) + (f h)

• higher-order function f
• for simplicity: untyped
• local definitions via let-in
• interesting above: x 1

Goal (more specifically)

For each function application, which function may be
applied.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-35

Labelling
• more complex language ⇒ more complex labelling
• “elem. blocks” can be nested
• all syntactic constructs (expressions) are labelled
• consider:

Unlabelled abstract syntax

(fnx⇒ x) (fn y ⇒ y)

Full labelling

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• functional language: side-effect free
⇒ no need to distinguish entry and exit of labelled blocks.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-35

Labelling
• more complex language ⇒ more complex labelling
• “elem. blocks” can be nested
• all syntactic constructs (expressions) are labelled
• consider:

Unlabelled abstract syntax

(fnx⇒ x) (fn y ⇒ y)

Full labelling

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• functional language: side-effect free
⇒ no need to distinguish entry and exit of labelled blocks.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-36

Data of the analysis

Data of the analysis:
Pairs (Ĉ, ρ̂) of mappings:
abstract cache: Ĉ(l): set of values/function abstractions,

the subexpression labelled l may evaluate to
abstract env.: ρ̂: values, x may be bound to

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-37

The constraint system

• ignoring “let” here: three syntactic constructs ⇒
three kinds of constraints

• relating Ĉ, ρ̂, and the program in form of subset
constraints (subsets, order-relation)

3 syntactic classes

• function abstraction: [fnx⇒ x]l

• variables: [x]l

• application: [f g]l

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-37

The constraint system

• ignoring “let” here: three syntactic constructs ⇒
three kinds of constraints

• relating Ĉ, ρ̂, and the program in form of subset
constraints (subsets, order-relation)

3 syntactic classes

• function abstraction: [fnx⇒ x]l

• variables: [x]l

• application: [f g]l

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• function abstractions

{fnx⇒ [x]1} ⊆ Ĉ(2)
{fn y ⇒ [y]3} ⊆ Ĉ(4)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• variables (occurrences of use)

ρ̂(x) ⊆ Ĉ(1)
ρ̂(y) ⊆ Ĉ(3)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• application: connecting function entry and (body) exit
with the argument

Ĉ(4) ⊆ ρ̂(x)
Ĉ(1) ⊆ Ĉ(5)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• application: connecting function entry and (body) exit
with the argument but:

• also [fn y ⇒ [y]3]4 is a candidate at 2! (according to
Ĉ(2))

Ĉ(4) ⊆ ρ̂(x)
Ĉ(1) ⊆ Ĉ(5)
Ĉ(4) ⊆ ρ̂(y)
Ĉ(3) ⊆ Ĉ(5)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-38

Constraint system for the small example

Labelled example

[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

{fnx⇒ [x]1} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(x)
{fnx⇒ [x]1} ⊆ Ĉ(2) ⇒ Ĉ(1) ⊆ Ĉ(5)
{fn y ⇒ [y]3} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(y)
{fn y ⇒ [y]3} ⊆ Ĉ(2) ⇒ Ĉ(3) ⊆ Ĉ(5)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-39

The least (= best) solution

Ĉ(1) = {fn y ⇒ [y]3}
Ĉ(2) = {fnx⇒ [x]1}
Ĉ(3) = ∅
Ĉ(4) = {fn y ⇒ [y]3}
Ĉ(5) = {fn y ⇒ [y]3}
ρ̂(x) = {fn y ⇒ [y]3}
ρ̂(y) = ∅

One interesting bit here in the solution is: ρ̂(y) = ∅: that
means, the variable y never evaluated, i.e., the function is
not applied at all.

Section
Type and effect systems

Chapter 1 “Introduction”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-41

Effects: Intro
• type system: “classical” static analysis:

t : T

• judgment: “term or program phrase has type T”
• in general: context-sensitive judgments (remember

Chomsky . . .)

Judgement :

Γ ` t : τ

• Γ: assumption or context
• here: “non-standard” type systems: effects and

annotations
• natural setting: typed languages, here: trivial! setting

(while-language)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-42

“Trival” type system

• setting: while-language
• each statement maps: state to states
• Σ: type of states

judgement

` S : Σ→ Σ (12)

• specified as a derivation system
• note: partial correctness assertion

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-43

“Trival” type system: rules

` [x := a]l : Σ→ Σ Ass

[skip]l : Σ→ Σ Skip

` S1 : Σ→ Σ S2 : Σ→ Σ
Seq

` S1;S2 : Σ→ Σ
‘

` S : Σ→ Σ
While

` while[b]l doS : Σ→ Σ

` S1 : Σ→ Σ ` S2 : Σ→ Σ
Cond

` if[b]l thenS1 elseS2 : Σ→ Σ

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-44

Types, effects, and annotations

annot. type system

` S : Σ1 → Σ2 (13)

effect system

` S : Σ ϕ→ Σ (14)

type and effect system (TES)
• effect system + annotated type system
• borderline fuzzy
• annotated type system

• Σi: property of state (“Σi ⊆ Σ”)
• “abstract” properties: invariants, a variable is positive,

etc.
• effect system

• “statement S maps state to state, with (potential . . .)
effect ϕ”

• effect ϕ: e.g.: errors, exceptions, file/resource access,
. . .

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-45

Annotated type systems

• example again: reaching definitions for while-language
• 2 flavors

1. annotated base types: S : RD1 → RD2

2. annotated type constructors: S : Σ X−→
RD

Σ

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-46

RD with annotated base types
judgement

` S : RD1 → RD2 (15)

• RD ⊆ 2Var×Lab

• auxiliary functions
• note: every S has one “initial” elementary block,

potentially more than one “at the end”
• init(S): the (unique) label at the entry of S
• final(S): the set of labels at the exits of S

“meaning” of judgment ` S : RD1 → RD2

“RD1 is the set of var/label reaching the entry of S and RD2
the corresponding set at the exit(s) of S”:

RD1 = RDentry(init(S))
RD2 = ⋃

{RDexit(l) | l ∈ final(S)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-47

` [x := a]l′ : RD → RD \{(x, l) | l ∈ Lab} ∪ {(x, l′)} ass

` [skip]l : RD → RD skip

` S1 : RD1 → RD2 ` S2 : RD2 → RD3
Seq

` S1;S2 : RD1 → RD3

` S1 : RD1 → RD2 ` S2 : RD1 → RD2
If

` if[b]l thenS1 elseS2 : RD1 → RD2

` S : RD → RD
While

` while[b]l doS : RD → RD

` S : RD′1 → RD′2 RD1 ⊆ RD′1 RD′2 ⊆ RD2
Sub

` S : RD1 → RD2

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-48

Meaning of annotated judgments

“Meaning” of judgment S : RD1 → RD2:
“RD1 is the set of var/label reaching the entry of S and RD2
the corresponding set at the exit(s) of S”:

RD1 = RDentry(init(S))
RD2 = ⋃

{RDexit l | l ∈ final(S)}

• Be careful:

if[b]l thenS1 elseS2

• more concretely
if[b]l then [x := y]l1 else [y := x]l2

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-49

Meaning of annotated judgments

Once again: “Meaning” of judgment S : RD1 → RD2:
“if RD1 is a set of var/label reaching the entry of S, then
RD2 is a corresponding set at the exit(s) of S”:

if RD1 ⊆ RDentry(init(S))
then ∀l ∈ final(S). RDexit(l) ⊆ RD2

Derivation

[y := x]0 : RD0 → {?x, 0, ?z}

[z := 1]1 : {?x, 0, ?z} → {?x, 0, 1} f3 : {?x, 0, 1} → RDfinal

f2 : {?x, 0, ?z} → RDfinal

f : RD0 → RDfinal

RD0 = {?x, ?y , ?z} RDfinal = {?x, 5, 1, 3}

type sub-derivation for the rest f3 = while . . . ; [y := 0]5
loop invariant

RDbody = {?x, 0, 4, 1, 3}

Derivation

[z :=]3 : RDbody → {?x, 0, 4, 3, �1}
[y :=]4 : {?x, 0, 4, 3} → {?x, 4, 3}

fbody : RDbody → {?x, 4, 3}
Sub

fbody : RDbody → RDbody

fwhile : RDbody → RDbody
Sub

fwhile : {?x, 0, 1} → RDbody [y := 0]5 : RDbody → RDfinal

f3 : {?x, 0, 1} → RDfinal

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-51

Annotated type constructors
• alternative approach of annotated type systems
• arrow constructor itself annotated
• annotion of →: flavor of effect system
• judgment

S : Σ −→
RD

Σ

• annotation with RD (corresponding to the
post-condition from above) alone is not enough

• also needed: the variables “being” changed

Intended meaning
“S maps states to states, where RD is the set of reaching
definitions, S may produce and X the set of var’s S must
(= unavoidably) assign.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-51

Annotated type constructors
• alternative approach of annotated type systems
• arrow constructor itself annotated
• annotion of →: flavor of effect system
• judgment

S : Σ X−→
RD

Σ

• annotation with RD (corresponding to the
post-condition from above) alone is not enough

• also needed: the variables “being” changed

Intended meaning
“S maps states to states, where RD is the set of reaching
definitions, S may produce and X the set of var’s S must
(= unavoidably) assign.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-52

[x := a]l : Σ {x}
−→
{(x,l)}

Σ Ass [skip]l : Σ ∅−→
∅

Σ Skip

S1 : Σ X1−→
RD1

Σ S2 : Σ X2−→
RD2

Σ
Seq

S1;S2 : Σ X1∪X2−→
RD1 \X2∪RD2

Σ

S1 : Σ X−→
RD

Σ S2 : Σ X−→
RD

Σ
If

if[b]l thenS1 elseS2 : Σ X−→
RD

Σ

S : Σ X−→
RD

Σ
While

while[b]l doS : Σ ∅−→
RD

Σ

S : Σ X′

−→
RD′

Σ X ⊆ X ′ RD′ ⊆ RD
Sub

S : Σ X−→
RD

Σ

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-53

Effect systems

• this time: back to the functional language
• starting point: simple type system
• judgment:

Γ ` e : τ

• Γ: type environment (or context), “mapping” from
variable to types

• types: bool, int, and τ → τ

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-54

Γ(x) = τ
Var

Γ ` x : τ

Γ, x:τ1 ` e : τ2
Abs

Γ ` fn πx⇒ e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
App

Γ ` e1 e2 : τ2

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-55

Effects: Call tracking analysis
Call tracking analysis:
Determine: for each subexpression: which function
abstractions may be applied, i.e., called, during the
subexpression’s evaluation.

⇒ set of function names
annotate: function type with latent effect

⇒ annotated types: τ̂ : base types as before,
arrow types:

τ̂1
ϕ→ τ̂2 (16)

• functions from τ1 to τ2, where in the execution,
functions from set ϕ are called.

Judgment

Γ̂ ` e : τ̂ :: ϕ (17)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-56

Γ̂(x) = τ̂
Var

Γ̂ ` x : τ̂ :: ∅

Γ, x:τ̂1 ` e : τ̂2 :: ϕ
Abs

Γ ` fnπx⇒ e : τ̂1
ϕ∪{π}→ τ̂2 :: ∅

Γ̂ ` e1 : τ̂1
ϕ→ τ̂2 :: ϕ1 Γ̂ ` e2 : τ̂1 :: ϕ2

App
Γ̂ ` e1 e2 : τ̂2 :: ϕ ∪ ϕ1 ∪ ϕ2

Call tracking: example

x:int {Y }→ int ` x:int {Y }→ int :: ∅

` (fnXx⇒ x) : (int {Y }→ int) {X}→ (int {Y }→ int) :: ∅ ` (fnY y ⇒ y) : int {Y }→ int :: ∅

` (fnXx⇒ x) (fnY y ⇒ y) : int {Y }→ int :: {X}

Section
Algorithms

Chapter 1 “Introduction”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation
General remarks

Data flow analysis
A simplistic while-language

Equational approach

Constraint-based approach

Constraint-based
analysis
Control-flow analysis

Type and effect
systems
Introduction

Annotated type systems

Annotated type
constructors

Effect systems

Algorithms

1-59

Chaotic iteration
• back to data flow/reaching def’s
• goal: solve

~RD = F (RD) or ~RD v F (~RD)

• F : monotone, finite domain

straightforward approach

init ~RD0 = F 0(∅)
iterate ~RDn+1 = F (~RDn) = Fn+1(∅) until

stabilization

• approach to implement that: chaotic iteration
• non-deterministic stategy
• abbreviate:
~RD = (RD1, . . . ,RD12)

Chaotic iteration (for RD)

I n p u t : e q u a t i o n s f o r r e a c h i n g d e f s
f o r th e g i v e n program

Output : l e a s t s o l u t i o n : ~RD = (RD1, . . . ,RD12)
−−

I n i t i a l i z a t i o n :
RD1 := ∅; . . . ; RD12 := ∅

I t e r a t i o n :
w h i l e RDj 6= Fj(RD1, . . . ,RD12) f o r some j
do

RDj := Fj(RD1, . . . ,RD12)

Chapter 2
Data flow analysis

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Chapter 2
Learning Targets of Chapter “Data flow analysis”.

various DFAs
monotone frameworks
operational semantics
foundations
special topics (SSA, context-sensitive analysis ...)

Chapter 2
Outline of Chapter “Data flow analysis”.

Intraprocedural analysis

Theoretical properties and semantics

Monotone frameworks

Equation solving

Interprocedural analysis

Section
Intraprocedural analysis

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-5

While language and control flow graph

• starting point: while language from the intro
• labelled syntax (unique labels)
• labels = nodes of the cfg
• initial and final labels
• edges of a cfg: given by function flow

3 functions (definition see script / book)

1. init : Stmt→ Lab
2. final : Stmt→ 2Lab

3. flow : Stmt→ 2Lab×Lab

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-6

Flow and reverse flow

labels(S) = init(S)∪{l | (l, l′) ∈ flow(S)}∪{l′ | (l, l′) ∈ flow(S)}

• data flow analysis can be forward (like RD) or backward
• flow: for forward analyses
• for backward analyses: reverse flow flowR, simply invert

the edges

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-7

Program of interest

• S∗: program being analysed, top-level statement
• analogously Lab∗, Var∗, Blocks∗
• trivial expression: a single variable or constant
• AExp∗: non-trivial arithmetic sub-expr. of S∗,

analogous for AExp(a) and AExp(b).
• useful restrictions

• isolated entries: (l, init(S∗)) /∈ flow(S∗)
• isolated exits ∀l1 ∈ final(S∗). (l1, l2) /∈ flow(S∗)
• label consistency

[B1]l, [B2]l ∈ blocks(S) then B1 = B2

“l labels the block B”
• even better: unique labelling

Avoid recomputation: Available expressions

[x := a+ b]0; [y := a ∗ b]1; while [y > a+ b]2
do ([a := a+ 1]3; [x := a+ b]4)

Goal
For each program point: which expressions must have
already been computed (and not later modified), on all paths
to the program point.

• usage: avoid re-computation

Avoid recomputation: Available expressions

[x := a+ b]0; [y := a ∗ b]1; while [y > a+ b]2
do ([a := a+ 1]3; [x := a+ b]4)

Goal
For each program point: which expressions must have
already been computed (and not later modified), on all paths
to the program point.

• usage: avoid re-computation

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-9

Available expressions: general

• given as flow equations (not ⊆-constraints, but not too
crucial, as we know already)

• uniform representation of effect of basic blocks (=
intra-block flow)

2 ingredients of intra-block flow

• kill: flow information “eliminated” passing through the
basic blocks

• generate: flow information “generated new” passing
through the basic blocks

• later analyses: presented similarly
• different analyses ⇒ different kind of flow information

+ different kill- and generate-functions

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-10

Available expressions: types

• interested in sets of expressions: 2AExp∗

• generation and killing:

killAE , genAE : Blocks∗ → 2AExp∗

• analysis: pair of functions
AEentry,AEexit : Lab∗ → 2AExp∗

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-11

Intra-block flow specification: Kill and
generate

killAE([x := a]l) =
killAE([skip]l) =

killAE([b]l) =

genAE([x := a]l) =
genAE([skip]l) =

genAE([b]l) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-11

Intra-block flow specification: Kill and
generate

killAE([x := a]l) = {a′ ∈ AExp∗ | x ∈ fv(a′)}
killAE([skip]l) = ∅

killAE([b]l) = ∅

genAE([x := a]l) = {a′ ∈ AExp(a) | x /∈ fv(a′)}
genAE([skip]l) = ∅

genAE([b]l) = AExp(b)

Flow equations: AE=

split into
nodes: intra-block equations, using kill and generate
edges: inter-block equations, using flow

Flow equations for AE

AEentry(l) =
{
∅ l = init(S∗)⋂
{AEexit(l′) | (l′, l) ∈ flow(S∗)} otherwise

AEexit(l) = AEentry(l) \ killAE(Bl) ∪ genAE(Bl)

where Bl ∈ blocks(S∗)
• note the “order” of kill and generate

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-13

Available expressions

• forward analysis (as RD)
• interest in largest solution (unlike RD)
⇒ must analysis (as opposed to may)
• expression is available: if no path kills it
• remember: informal description of AE: expression

available on all paths (i.e., not killed on any)
• illustration

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-14

Example AE

[x := a+ b]0; [y := a ∗ b]1; while [y > a+ b]2
do ([a := a+ 1]3; [x := a+ b]4)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-14

Example AE

x:=a+b

y:=a*b

y > a+b

a:=a+1

x:=a+b

true

false

l0

l1

l2

l3

l4

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-15

Reaching definitions

• remember the intro
• here: the same analysis, but based on the new

definitions: kill, generate, flow . . .

[x := 5]0; [y := 1]1; while[x > 1]2 do([y := x∗y]3; [x := x−1]4)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-15

Reaching definitions
• remember the intro
• here: the same analysis, but based on the new

definitions: kill, generate, flow . . .

x := 5

y := 1

x > 1

y := x*y

x := x-1

true

false

l0

l1

l2

l3

l4

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-16

Reaching definitions: types

• interest in sets of tuples of var’s and program points
i.e., labels:

2Var∗×Lab?
∗ where Lab?

∗ = Lab∗ + {?}

• generation and killing:
killRD , genRD : Blocks∗ → 2Var∗×Lab?

∗

• analysis: pair of mappings
RDentry,RDexit : Lab∗ → 2Var∗×Lab?

∗

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-17

Reaching defs: kill and generate

killRD([x := a]l) =
killRD([skip]l) =

killRD([b]l) =

genRD([x := a]l) =
genRD([skip]l) =

genRD([b]l) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-17

Reaching defs: kill and generate

killRD([x := a]l) = {(x, ?)}∪⋃
{(x, l′) | Bl′ is assgm. to x in S∗}

killRD([skip]l) = ∅
killRD([b]l) = ∅

genRD([x := a]l) = {(x, l)}
genRD([skip]l) = ∅

genRD([b]l) = ∅

Flow equations: RD=

split into

• intra-block equations, using kill and generate
• inter-block equations, using flow

Flow equations for RD

RDentry(l) =

RDexit(l) = RDentry(l) \ killRD(Bl) ∪ genRD(Bl)

where Bl ∈ blocks(S∗)
• same order of kill/generate

Flow equations: RD=

split into

• intra-block equations, using kill and generate
• inter-block equations, using flow

Flow equations for RD

RDentry(l) =
{
{(x, ?) | x ∈ fv(S∗)} l = init(S∗)⋃
{RDexit(l′) | (l′, l) ∈ flow(S∗)} otherwise

RDexit(l) = RDentry(l) \ killRD(Bl) ∪ genRD(Bl)

where Bl ∈ blocks(S∗)
• same order of kill/generate

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-19

Very busy expressions

if [a > b]1
then [x := b− a]2; [y := a− b]3
else [a := b− a]4; [x := a− b]5

Definition (Very busy expression)

An expression is very busy at the exit of a label, if for all
paths from that label, the expression is used before any of its
variables is “redefined” (= overwritten).

• usage: expression “hoisting”

Goal
For each program point, which expressions are very busy at
the exit of that point.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-20

Very busy expressions: types

• interested in: sets of expressions: 2AExp∗

• generation and killing:

killVB , genVB : Blocks∗ → 2AExp∗

• analysis: pair of mappings
VBentry,VBexit : Lab∗ → 2AExp∗

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-21

Very busy expr.: kill and generate

core of the intra-block flow specification

killVB([x := a]l) =
killVB([skip]l) =

killVB([b]l) =

genVB([x := a]l) =
genVB([skip]l) =

genVB([b]l) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-21

Very busy expr.: kill and generate

core of the intra-block flow specification

killVB([x := a]l) = {a′ ∈ AExp∗ | x ∈ fv(a′)}
killVB([skip]l) = ∅

killVB([b]l) = ∅

genVB([x := a]l) = AExp(a)
genVB([skip]l) = ∅

genVB([b]l) = AExp(b)

Flow equations.: VB=

split into
• intra-block equations, using kill/generate
• inter-block equations, using flow

however: everything works backwards now

Flow equations: VB

VBexit(l) =

VBentry(l) =

where Bl ∈ blocks(S∗)

Flow equations.: VB=

split into
• intra-block equations, using kill/generate
• inter-block equations, using flow

however: everything works backwards now

Flow equations: VB

VBexit(l) =
{
∅ l ∈ final(S∗)⋂
{VBentry(l′) | (l′, l) ∈ flowR(S∗)} otherwise

VBentry(l) = VBexit(l) \ killVB(Bl) ∪ genVB(Bl)

where Bl ∈ blocks(S∗)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-23

Example

a>b

x:=b-a

y:a-b

y:=b-a

x:=a-b

false true

l0

l1

l2

l3

l4

x>1

skip

x:=x+1

true

false

l0

l1

l2

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-24

When can var’s be “recycled”: Live variable
analysis

[x := 2]0; [y := 4]1; [x := 1]2;
(if[y > x]3 then [z := y]4 else [z := y ∗ y]5); [x := z]6

Live variable
A variable is live (at the exit of a label) if there exists a path
from the mentioned exit to the use of that variable which
does not assign to the variable (i.e., redefines its value)

Goal therefore
for each program point: which variables may be live at the
exit of that point.

• usage: register allocation

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-24

When can var’s be “recycled”: Live variable
analysis

[x := 2]0; [y := 4]1; [x := 1]2;
(if[y > x]3 then [z := y]4 else [z := y ∗ y]5); [x := z]6

Live variable
A variable is live (at the exit of a label) if there exists a path
from the mentioned exit to the use of that variable which
does not assign to the variable (i.e., redefines its value)

Goal therefore
for each program point: which variables may be live at the
exit of that point.

• usage: register allocation

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-25

Live variables: types

• interested in sets of variables 2Var∗

• generation and killing:

killLV , genLV : Blocks∗ → 2Var∗

• analysis: pair of functions
LVentry, LVexit : Lab∗ → 2Var∗

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-26

Live variables: kill and generate

killAE([x := a]l) =
killLV([skip]l) =

killLV([b]l) =

genLV([x := a]l) =
genLV([skip]l) =

genLV([b]l) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-26

Live variables: kill and generate

killAE([x := a]l) = {x}
killLV([skip]l) = ∅

killLV([b]l) = ∅

genLV([x := a]l) = fv(a)
genLV([skip]l) = ∅

genLV([b]l) = fv(b)

Flow equations LV=

split into

• intra-block equations, using kill/generate
• inter-block equations, using flow

however: everything works backwards now

Flow equations LV

LVexit(l) =

LVentry(l) =

where Bl ∈ blocks(S∗)

Flow equations LV=

split into

• intra-block equations, using kill/generate
• inter-block equations, using flow

however: everything works backwards now

Flow equations LV

LVexit(l) =
{
∅ l ∈ final(S∗)⋃
{LVentry(l′) | (l′, l) ∈ flowR(S∗)} otherwise

LVentry(l) = LVexit(l) \ killLV(Bl) ∪ genLV(Bl)

where Bl ∈ blocks(S∗)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-28

Example

(while [x > 1]l0 do [skip]l1); [x := x+ 1]l2

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-29

Looping example

x>1

skip

x:=x+1

true

false

l0

l1

l2

Section
Theoretical properties and seman-
tics

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-31

Relating programs with analyses

• analyses
• intended as (static) abstraction or overapprox. of real

program behavior
• so far: without real connection to programs

• soundness of the analysis: safe analysis
• but: behavior or semantics of programs not yet defined
• here: “easiest” semantics: operational
• more precisely: small-step SOS (structural operational

semantics)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-32

States, configs, and transitions

fixing some data types

• state σ : State = Var→ Z
• configuration: pair of statement × state or (terminal)

just a state

Transitions

〈S, σ〉 → σ́ or 〈S, σ〉 → 〈Ś, σ́〉

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-33

Semantics of expressions

[[]]A : AExp→ (State→ Z)
[[]]B : BExp→ (State→ B)

simplifying assumption: no errors

[[x]]Aσ = σ(x)
[[n]]Aσ = N (n)

[[a1 opa a2]]Aσ = [[a1]]Aσ opa [[a2]]Aσ

[[not b]]Bσ = ¬[[b]]Bσ
[[b1 opb b2]]Bσ = [[b1]]Bσ opb [[b2]]Bσ
[[a1 opr a2]]Bσ = [[a1]]Aσ opr [[a2]]Aσ

clearly:

∀x ∈ fv(a). σ1(x) = σ2(x) then [[a]]Aσ1 = [[a]]Aσ2

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-34

SOS

〈[x := a]l, σ〉 → σ[x 7→[[a]]Aσ] Ass 〈[skip]l, σ〉 → σ skip

〈S1, σ〉 → 〈Ś1, σ́〉
Seq1

〈S1;S2, σ〉 → 〈Ś1;S2, σ́〉

〈S1, σ〉 → σ́
Seq2

〈S1;S2, σ〉 → 〈S2, σ́〉

[[b]]Bσ = >
If1

〈if [b]l thenS1 elseS2, σ〉 → 〈S1, σ〉

[[b]]Bσ = >
While1

〈while [b]l doS, σ〉 → 〈S; while[b]l doS, σ〉

[[b]]Bσ = ⊥
While2

〈while [b]l doS, σ〉 → σ

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-35

Derivation sequences

• derivation sequence: “completed” execution:
• finite sequence: 〈S1, σ1〉, . . . , 〈Sn, σn〉, σn+1
• infinite sequence: 〈S1, σ1〉, . . . , 〈Si, σi〉, . . .

• note: labels do not influence the semantics
• CFG for the “rest” of the program only gets “smaller”

when running:

Lemma

1. 〈S, σ〉 → σ′, then final(S) = {init(S)}
2. Assume 〈S, σ〉 → 〈Ś, σ́〉, then

2.1 final(S) ⊇ {final(Ś)}
2.2 flow(S) ⊇ {flow(Ś)}
2.3 blocks(S) ⊇ blocks(Ś); if S is label consistent, then so

is Ś

Correctness of live analysis
• LV as example
• given as constraint system (not as equational system)

LV constraint system

LVexit(l) ⊇
{
∅ l ∈ final(S∗)⋃
{LVentry(l′) | (l′, l) ∈ flowR(S∗)} otherwise

LVentry(l) ⊇ LVexit(l) \ killLV(Bl) ∪ genLV(Bl)

liveentry, liveexit : Lab∗ → 2Var∗

“live solves constraint system LV⊆(S)”

live |= LV⊆(S)
(analogously for equations LV=(S))

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-37

Equational vs. constraint analysis

Lemma

1. If live |= LV=, then live |= LV⊆

2. The least solutions of live |= LV= and live |= LV⊆
coincide.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-38

Intermezzo: orders, lattices. etc.

as a reminder:

• partial order (L,v)
• upper bound l of Y ⊆ L:
• least upper bound (lub):

⊔
Y (or join)

• dually: lower bounds and greatest lower bounds:
d
Y

(or meet
• complete lattice L = (L,v) = (L,v,

d
,
⊔
,⊥,>): a

partially ordered set where meets and joins exist for all
subsets, furthermore > =

d
∅ and ⊥ = ⊔

∅.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-39

Fixpoints
given complete lattice L and monotone f : L→ L.

• fixpoint: f(l) = l

Fix(f) = {l | f(l) = l}

• f reductive at l, l is a pre-fixpoint of f : f(l) v l:

Red(f) = {l | f(l) v l}

• f extensive at l, l is a post-fixpoint of f : f(l) w l:

Ext(f) = {l | f(l) w l}

Define “lfp” / “gfp”

lfp(f) ,
l

Fix(f) and gfp(f) ,
⊔

Fix(f)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-40

Tarski’s theorem
Core
Perhaps core insight of the whole lattice/fixpoint business:
not only does the

d
of all pre-fixpoints uniquely exist (that’s

what the lattice is for), but —and that’s the trick— it’s a
pre-fixpoint itself (ultimately due to montonicity of f).

Theorem
L: complete lattice, f : L→ L monotone.

lfp(f) ,
d

Red(f) ∈ Fix(f)
gfp(f) ,

⊔
Ext(f) ∈ Fix(f)

(18)

• Note: lfp (despite the name) is defined as glb of all
pre-fixpoints

• The theorem (more or less directly) implies lfp is the
least fixpoint

Fixpoint iteration
• often: iterate, approximate least fixed point from below

(fn(⊥))n:

⊥ v f(⊥) v f2(⊥) v . . .

• not assured that we “reach” the fixpoint (“within” ω)
⊥ v fn(⊥) v ⊔

n f
n(⊥) v lfp(f)

gfp(f) v
d
n f

n(>) v fn(>) v (>)

• additional requirement: continuity on f for all
ascending chains (ln)n

f(
⊔
n

(ln)) =
⊔

(f(ln))

• ascending chain condition (“stabilization”):
fn(⊥) = fn+1(⊥), i.e., lfp(f) = fn(⊥)

• descending chain condition: dually

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-42

Basic preservation results

Lemma (“Smaller” graph → less constraints)

Assume live |= LV⊆(S1). If flow(S1) ⊇ flow(S2) and
blocks(S1) ⊇ blocks(S2), then live |= LV⊆(S2).

Corollary (“subject reduction”)

If live |= LV⊆(S) and 〈S, σ〉 → 〈Ś, σ́〉, then live |= LV⊆(Ś)

Lemma (Flow)

Assume live |= LV⊆(S). If l→flow l′, then
liveexit(l) ⊇ liveentry(l′).

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-43

Correctness relation
• basic intuitition: only live variables influence the

program
• proof by induction
⇒

Correctness relation on states:
Given V = set of variables:

σ1 ∼V σ2 iff ∀x ∈ V.σ1(x) = σ2(x) (19)

〈S, σ1〉 〈S′, σ′1〉 . . . 〈S′′, σ′′1〉 σ′′′1

〈S, σ2〉 〈S′, σ′2〉 . . . 〈S′′, σ′′2〉 σ′′′2

∼V ∼V ′ ∼V ′′ ∼X(l)

Notation: N(l) = liveentry(l), X(l) = liveexit(l)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-44

Correctness (1)

Lemma (Preservation inter-block flow)

Assume live |= LV⊆. If σ1 ∼X(l) σ2 and l→flow l′, then
σ1 ∼N(l′) σ2.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-45

Correctness

Theorem (Correctness)

Assume live |= LV⊆(S).
• If 〈S, σ1〉 → 〈Ś, σ́1〉 and σ1 ∼N(init(S)) σ2, then there

exists σ́2 s.t. 〈S, σ2〉 → 〈Ś, σ́2〉 and σ́1 ∼N(init(Ś)) σ́2.
• If 〈S, σ1〉 → σ́1 and σ1 ∼N(init(S)) σ2, then there exists
σ́2 s.t. 〈S, σ2〉 → σ́2 and σ́1 ∼X(init(S)) σ́2.

〈S, σ1〉 〈Ś, σ́1〉

〈S, σ2〉 〈Ś, σ́2〉

∼N(init(S)) ∼N(init(Ś))

〈S, σ1〉 σ́1

〈S, σ2〉 σ́2

∼N(init(S)) ∼X(init(S))

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-46

Correctness (many steps)

Assume live |= LV⊆(S)
• If 〈S, σ1〉 →∗ 〈Ś, σ́1〉 and σ1 ∼N(init(S)) σ2, then there

exists σ́2 s.t. 〈S, σ2〉 →∗ 〈Ś, σ́2〉 and σ́1 ∼N(init(Ś)) σ́2.
• If 〈S, σ1〉 →∗ σ́1 and σ1 ∼N(init(S)) σ2, then there exists
σ́2 s.t. 〈S, σ2〉 →∗ σ́2 and σ́1 ∼X(l) σ́2 for some
l ∈ final(S).

Section
Monotone frameworks

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-48

Monotone framework: general pattern

Analysis◦(l) =
{
ι if l ∈ E⊔
{Analysis•(l′) | (l′, l) ∈ F} otherwise

Analysis•(l) = fl(Analysis◦(l))
(20)

•
⊔

: either
⋃

or
⋂

• F : either flow(S∗) or flowR(S∗).
• E: either {init(S∗)} or final(S∗)
• ι: either the initial or final information
• fl: transfer function for [B]l ∈ blocks(S∗).

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-49

Monotone frameworks
direction of flow:

• forward analysis:
• F = flow(S∗)
• Analysis◦ for entry and Analysis• for exits
• assumption: isolated entries

• backward analysis: dually
• F = flowR(S∗)
• Analysis◦ for exit and Analysis• for entry
• assumption: isolated exits

sort of solution

• may analysis
• properties for some path
• smallest solution

• must analysis
• properties of /all paths
• greatest solution

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-50

Analysis◦(l) = ιlE t
⊔
{Analysis•(l′) | (l′, l) ∈ F}

where ιlE =
{

ι if l ∈ E
⊥ if l /∈ E

Analysis•(l) = fl(Analysis◦(l))
(21)

where l t ⊥ = l

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-50

Basic definitions: property space

• property space L, often complete lattice
• combination operator:

⊔ : 2L → L, t: binary case
• ⊥ = ⊔

∅
• often: ascending chain condition (stabilization)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-51

Transfer functions

fl : L→ L

with l ∈ Lab∗
• associated with the blocks
• requirement: monotone
• F : monotone functions over L:

• containing all transfer functions
• containing identity
• closed under composition

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-52

Summary

• complete lattice L, ascending chain condition
• F monotone functions, closed as stated
• distributive framework

f(l1 t l2) = f(l1) t f(l2)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-53

The 4 classical examples

• for a label consistent program S∗, all are instances of a
monotone, distributive, framework:

• conditions:
• lattice of properties: immediate (subset/superset)
• ascending chain condition: finite set of syntactic entities
• closure conditions on F

• monotone
• closure under identity and composition

• distributivity: assured by using the kill- and
generate-formulation

Overview over the 4 examples

avail. epxr. reach. def’s very busy expr. live var’s
L 2AExp∗ 2Var∗×Lab?

∗ 2AExp∗ 2Var∗

v ⊇ ⊆ ⊇ ⊆⊔ ⋂ ⋃ ⋂ ⋃
⊥ AExp∗ ∅ AExp∗ ∅
ι ∅ {(x, ?) | x ∈ fv(S∗)} ∅ ∅
E {init(S∗)} {init(S∗)} final(S∗) final(S∗)
F flow(S∗) flow(S∗) flowR(S∗) flowR(S∗)
F {f : L→ L | ∃lk, lg. f(l) = (l \ lk) ∪ lg}
fl fl(l) = (l \ kill([B]l) ∪ gen([B]l)) where [B]l ∈ blocks(S∗)

Section
Equation solving

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-56

Solving the analyses

• given: set of equations (or constraints) over finite sets
of variables

• domain of variables: complete lattices + ascending
chain condition

• 2 solutions for the monotone frameworks
• MFP: “maximal fix point”
• MOP: “meet over all paths”

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-57

MFP

• terminology: historically “MFP” stands for maximal fix
point (not minimal)

• iterative worklist algorithm:
• central data structure: worklist
• list (or container/set) of pairs

• related to chaotic iteration

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-58

Chaotic iteration

I n p u t : e q u a t i o n s f o r r e a c h i n g d e f s
f o r th e g i v e n program

Output : l e a s t s o l u t i o n : ~RD = (RD1, . . . ,RD12)
−−

I n i t i a l i z a t i o n :
RD1 := ∅; . . . ; RD12 := ∅

I t e r a t i o n :
w h i l e RDj 6= Fj(RD1, . . . ,RD12) f o r some j
do

RDj := Fj(RD1, . . . ,RD12)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-59

Worklist algorithms

• fixpoint iteration algorithm
• general kind of algorithms, for DFA, CFA, . . .
• same for equational and /constraint systems
• “specialization” i.e., determinization of chaotic iteration
⇒ worklist: central data structure, “container” containing

“the work still to be done”
• for more details (different traversal strategies): see

Chap. 6 from [?]

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-60

WL-algo for DFA

• WL-algo for monotone frameworks
⇒ input: instance of monotone framework
• two central data structures

• worklist: /flow-edges yet to be (re-)considered:
1. removed when effect of transfer function has been

taken care of
2. (re-)added, when point 1 endangers satisfaction of

(in-)equations
• array to store the “current state” of Analysis◦

• one central control structure (after initialization): loop
until worklist empty

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-62

ML Code

l e t r e c s o l v e (wl1 : edge l i s t) : u n i t =
match wl1 with
| [] −> () (∗ wl done ∗)
| (l , l ') : : wl ' −>

l e t a n a p r e : va r l i s t = l o o k x (ana , l) (∗ e x t r a c t `` s t a t e s ∗)
and a n a p o s t : va r l i s t = l o o k x (ana , l ')
i n l e t a n a e x i t p r e : va r l i s t = f t r a n s (ana pre , l)
i n
i f not (s u b s e t (a n a e x i t p r e , a n a p o s t))
then

(e n t e r (ana , l ' , un ion (ana post , a n a e x i t p r e)) ;
l e t (new edges : edge l i s t) =

(l e t (p r e d s : node l i s t) = Flow . Graph . pred (l ')
i n L i s t . map (fun n −> (l ' , n)) p r e d s)

i n s o l v e (new edges @ wl ')
)

e l s e (∗ Noth ing to do he r e . ∗)
(s o l v e (wl '))

i n
s o l v e w l i n i t ;
fun (x : node) −> l o o k x (ana , x)

; ;

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-63

MFP: properties

Lemma
The algo

• terminates and
• calculates the least solution

Proof.

• termination: ascending chain condition & loop is
enlarging

• least FP:
• invariant: array always below Analysis◦
• at loop exit: array “solves” (in-)equations

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-64

Time complexity

• estimation of upper bound of number basic steps
• at most b different labels in E
• at most e ≥ b pairs in the flow F
• height of the lattice: at most h
• non-loop steps: O(b+ e)
• loop: at most h times addition to the WL

⇒

O(e · h) (22)

or ≤ O(b2h)

Section
Interprocedural analysis

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-66

Adding procedures

• so far: very simplified language:
• minimalistic imperative language
• reading and writing to variables plus
• simple controlflow, given as flow graph

• now: procedures: interprocedural analysis
• complications:

• calls/return (control flow)
• parameter passing (call-by-value vs. call-by-reference)
• scopes
• potential aliasing (with call-by-reference)
• higher-order functions/procedures

• here: top-level procedures, mutual recursion,
call-by-value parameter + call-by-result

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-67

Syntax
• beginD∗ S∗ end

D ::= proc p(valx, res y)
ln
isS

lx
end | D D

• procedure names p
• statements

S ::= . . . [call p(a, z)]lclr

• note: call statement with 2 labels
• statically scoped language, CBV parameter passing (1st

parameter), and CBN for second
• mutual recursion possible
• assumption: unique labelling, only declared procedures

are called, all procedures have different names.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-68

Example: Fibonacci

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-69

begin proc fib(val z, u, res v) is1

if [z < 3]2
then [v := u+ 1]3
else [call fib(z − 1, u, v)]45;

[call fib(z − 2, v, v)]67
end8;
[call fib(x, 0, y)]910

end

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-69

Block, labels, etc.

init([call p(a, z)]lclr) = lc
final([call p(a, z)]lclr) = {lr}

blocks([call p(a, z)]lclr) = {[call p(a, z)]lclr}
labels([call p(a, z)]lclr) = {lc, lr}

flow([call p(a, z)]lclr) =

• two new kinds of flows (written slightly different(!)):
calling and returning

• static dispatch only

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-69

Block, labels, etc.

init([call p(a, z)]lclr) = lc
final([call p(a, z)]lclr) = {lr}

blocks([call p(a, z)]lclr) = {[call p(a, z)]lclr}
labels([call p(a, z)]lclr) = {lc, lr}

flow([call p(a, z)]lclr) = {(lc; ln), (lx; lr)}

where proc p(valx, res y) isln S endlx is in D∗.

• two new kinds of flows (written slightly different(!)):
calling and returning

• static dispatch only

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-70

For procedure declaration

init(p) =
final(p) =

blocks(p) = ∪ blocks(S)
labels(p) =

flow(p) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-70

For procedure declaration

init(p) = ln
final(p) = {lx}

blocks(p) = {isln , endlx} ∪ blocks(S)
labels(p) = {ln, lx} ∪ labels(S)

flow(p) = {(ln, init(S))} ∪ flow(S) ∪ {(l, lx) | l ∈ final(S)}

“Standard” flow of complete program

not yet interprocedural flow (IF)

init∗ = init(S∗)
final∗ = final(S∗)

blocks∗ = ⋃
{blocks(p) | proc p(valx, res y) isln S endlx ∈ D∗}
∪blocks(S∗)

labels∗ = ⋃
{labels(p) | proc p(valx, res y) isln S endlx ∈ D∗}
∪labels(S∗)

flow∗ = ⋃
{flow(p) | proc p(valx, res y) isln S endlx ∈ D∗}
∪flow(S∗)

side remark: S∗: notation for complete program “of interest”

New kind of edges: Interprocedural flow
(IF)

• inter-procedural: from call-site to procedure, and back:
(lc; ln) and (lx; lr).

• more precise (= better) capture of flow
• abbreviation: IF for inter-flow∗ or inter-flowR

∗

IF

inter -flow∗ = {(lc, ln, lx, lr) | P∗ contains [call p(a, z)]lclr and
proc(valx, res y) isln S endlx

}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-73

Example: fibonacci flow

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-74

Semantics: stores, locations,. . .

• not only new syntax
• new semantical concept: local data!

• different “incarnations” of a variable ⇒ locations
• remember: σ ∈ State = Var∗ → Z

Representation of “memory”

ξ ∈ Loc locations
ρ ∈ Env = Var∗ → Loc environment
ς ∈ Store = Loc→fin Z store

• σ = ς ◦ ρ : total ⇒ ran(ρ) ⊆ dom(ς)
• top-level environment: ρ∗: all var’s are mapped to

unique locations (no aliasing !!!!)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-75

SOS steps

• steps relative to environment ρ

ρ `∗ 〈S, ς〉 → 〈Ś, ς́〉

or

ρ `∗ 〈S, ς〉 → ς́

• old rules needs to be adapted
• “global” environment ρ∗ (for global vars)

Call-rule

ξ1, ξ2 /∈ dom(ς)
proc p(valx, res y) isln S endlx ∈ D∗

ς́ =
Call

ρ `∗ 〈[call p(a, z)]lclr , ς〉 → 〈bind ρ∗[x 7→ ξ1][y 7→ ξ2] inS then z := y, ς́〉

Call-rule

ξ1, ξ2 /∈ dom(ς) v ∈ Z
proc p(valx, res y) isln S endlx ∈ D∗

ς́ = ς[ξ1 7→[[a]]Aς◦ρ][ξ2 7→ v]
Call

ρ `∗ 〈[call p(a, z)]lclr , ς〉 → 〈bind ρ∗[x 7→ ξ1][y 7→ ξ2] inS then z := y, ς́〉

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-77

Bind-construct

ρ́ `∗ 〈S, ς〉 → 〈Ś, ς́〉
Bind1

ρ `∗ 〈bind ρ́ inS then z := y, ς〉 →

ρ́ `∗ 〈S, ς〉 → ς́
Bind2

ρ `∗ 〈bind ρ́ inS then z := y, ς〉 →

• bind-syntax: “runtime syntax”
⇒ formulation of correctness must be adapted, too (Chap.

3)2

2Not covered in the lecture.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-77

Bind-construct

ρ́ `∗ 〈S, ς〉 → 〈Ś, ς́〉
Bind1

ρ `∗ 〈bind ρ́ inS then z := y, ς〉 → 〈bind ρ́ in Ś then z := y, ς́〉

ρ́ `∗ 〈S, ς〉 → ς́
Bind2

ρ `∗ 〈bind ρ́ inS then z := y, ς〉 → ς́[ρ(z) 7→ ς́(ρ́(y))]

• bind-syntax: “runtime syntax”
⇒ formulation of correctness must be adapted, too (Chap.

3)2

2Not covered in the lecture.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-78

Transfer function: Naive formulation

• first attempt
• assumptions:

• for each proc. call: 2 transfer functions: flc (call) and
flr (return)

• for each proc. definition: 2 transfer functions: fln
(enter) and flx (exit)

• given: mon. framework (L,F , F, E, ι, f)

Naive

• treat IF edges (lc; ln) and (lx; lr) as ordinary flow edges
(l1, l2)

• ignore parameter passing: transfer functions for proc.
calls and proc definitions are identity

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-79

Equation system (“naive” version”)

A•(l) = fl(A◦(l))
A◦(l) = ⊔

{A•(l′) | (l′, l) ∈ F or (l′; l) ∈ F} t ιlE

with

ιlE =
{
ι if l ∈ E
⊥ if l /∈ E

• analysis: safe
• unnecessarily imprecise, too abstract

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-80

Paths
• remember: “MFP”
• historically: MOP stands for meet over all paths
• here: dually mosty joins
• 2 “versions” of a path:

• path to entry of a block: blocks traversed from the
“extremal block” of the program, but not including it

• path to exit of a block

Paths

path◦(l) = {[l1, . . . ln−1] | li →flow li+1 ∧ ln = l ∧ l1 ∈ E}
path•(l) = {[l1, . . . ln] | li →flow li+1 ∧ ln = l ∧ l1 ∈ E}

• transfer function for paths ~l
f~l = fln ◦ . . . fl1 ◦ id

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-81

Meet over all paths

• paths:
• forward: paths from init block to entry of a block
• backwards: paths from exits of a block to a final block

• two versions for the MOP solution (for given l):
• up-to but not including l
• up-to including l

MOP

MOP◦(l) = ⊔
{f~l(ι) | ~l ∈ path◦(l)}

MOP•(l) = ⊔
{f~l(ι) | ~l ∈ path•(l)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-82

MOP vs. MFP

• MOP: can be undecidable
• MFP approximates MOP (“MFP w MOP”)

Lemma

MFP◦ w MOP◦ and MFP• w MOP• (23)

In case of a distributive framework

MFP◦ = MOP◦ and MFP• = MOP• (24)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-83

MVP

• take calls and returns (IF) serious
• restrict attention to valid (“possible”) paths
⇒ capture the nesting structure
• from MOP to MVP: “meet over all valid paths”
• complete path:

• appropriate call-nesting
• all calls are answered

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-84

Complete paths
• given P∗ = beginD∗ S∗ end
• CP l1,l2 : complete paths from l1 to l2
• generated by the following productions (l’s are the

terminals) (we assume forward analysis here)
• basically a context-free grammar

CP l,l −→ l

(l1, l2) ∈ F

CP l1,l3 −→ l1,CP l2,l3

(lc, ln, lx, lr) ∈ IF

CP lc,l −→ lc,CP ln,lx ,CP lr,l

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-85

Example: Fibonacci

• concrete grammar for fibonacci program:

CP9,10 −→ 9,CP1,8,CP10,10
CP10,10 −→ 10

CP1,8 −→ 1,CP2,8
CP2,8 −→ 2,CP3,8
CP2,8 −→ 2,CP4,8
CP3,8 −→ 3,CP8,8
CP8,8 −→ 8
CP4,8 −→ 4,CP1,8,CP5,8
CP5,8 −→ 5,CP6,8
CP6,8 −→ 6,CP1,8,CP7,8
CP7,8 −→ 7,CP8,8

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-86

Valid paths (context-free grammar)
Valid path (generated from non-terminal VP∗):

• start at extremal node (E),
• all proc exits have matching entries

l1 ∈ E l2 ∈ Lab∗

VP∗ −→ VP l1,l2
VP l,l −→ l

(l1, l2) ∈ F

VP l1,l3 −→ l1,VP l2,l3

(lc, ln, lx, lr) ∈ IF

VP lc,l −→ lc,CP ln,lx ,VP lr,l

(lc, ln, lx, lr) ∈ IF

VP lc,l −→ lc,VP ln,l

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-87

MVP

• adapt the definition of paths

vpath◦(l) = {[l1, . . . ln−1] | ln = l ∧ [l1, . . . , ln] valid}
vpath•(l) = {[l1, . . . ln] | ln = l ∧ [l1, . . . , ln] valid}

• MVP solution:

MVP◦(l) = ⊔
{f~l(ι) | ~l ∈ vpath◦(l)}

MVP•(l) = ⊔
{f~l(ι) | ~l ∈ vpath•(l)}

• but still: “meets over paths” is impractical

Fixpoint calculations
next: how to reconcile the path approach with MFP

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-88

Contexts
• MVP/MOP undecidable (but more precise than basic

MFP)
⇒ instead of MVP: “embellish” MFP

δ ∈ ∆ (25)

• δ: context information
• for instance: representing/recording of the path taken
⇒ “embellishment”: adding contexts

embellished monotone framework

(L̂, F̂ , F, E, ι̂, f̂)

• intra-procedural (no change of embellishment ∆)
• inter-procedural

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-89

Intra-procedural: basically unchanged

• this part: “independent” of ∆
• property lattice L̂ = ∆→ L
• mononote functions F̂
• transfer functions: pointwise

f̂l(l̂)(δ) = fl(l̂(δ)) (26)

• flow equations: “unchanged” for intra-proc. part
A•(l) = f̂l(A◦(l))
A◦(l) = ⊔

{A•(l′) | (l′, l) ∈ F or (l′; l) ∈ F)} t ι̂lE
(27)

• in equation for A•: except for labels l for proc. calls
(i.e., not lc and lr)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-90

Sign analysis (unembellished)

• Sign = {−, 0,+}, Lsign = 2Var∗→Sign

• abstract states σsign ∈ Lsign

• for expressions:
[[]]Asign : AExp→ (Var∗ → Sign)→ 2Sign

Transfer function for [x := a]l

f sign
l (Y) =

⋃
{φsign

l (σsign) | σsign ∈ Y } (28)

where Y ⊆ Var∗ → Sign and

φsign
l (σsign) = {σsign [x 7→ s] | s ∈ [[a]]Asign

σsign } (29)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-91

Sign analysis: embellished

L̂sign = ∆→ Lsign
= ∆→ 2Var∗→Sign ' 2∆×(Var∗→Sign)

(30)

Transfer function for [x := a]l

f̂ sign
l (Z) =

⋃
{{δ} × φsign

l (σsign) | (δ, σsign) ∈ Z} (31)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-92

Inter-procedural
• procedure definition proc(valx, res y) isln S endlx :

f̂ln , f̂lx : (∆→ L)→ (∆→ L) = id

• procedure call: (lc, ln, lx, lr) ∈ IF
• here: forward analysis
• call: 2 transfer functions/2 sets of equations, i.e., for all

(lc, ln, lx, lr) ∈ IF

2 transfer functions

1. for calls: f̂1
lc : (∆→ L)→ (∆→ L)

A•(lc) = f̂1
lc(A◦(lc)) (32)

1. for returns: f̂2
lc,lr : (∆→ L)× (∆→ L)→ (∆→ L)

A•(lr) = f̂2
lc,lr(A◦(lc), A◦(lr))) (33)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-93

Procedure call

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-94

Ignoring the call context

f̂2
lc,lr(l̂, l̂

′) = f̂2
lr(l̂
′)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-95

Merging call contexts

f̂2
lc,lr(l̂, l̂

′) = f̂2A
lc,lr(l̂) t f̂

2B
lc,lr(l̂

′)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-96

Context sensitivity

• IF-edges: allow to relate returns to matching calls
• context insensitive: proc-body analysed combining flow

information from all call-sites.
• contexts: used to distinguish different call-sites
⇒ context sensitive analysis ⇒ more precision + more

effort

In the following: 2 specializations:

1. control (“call strings”)
2. data

(combinations of course possible)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-97

Call strings

• context = path
• call-string = sequence of currently “active” calls
• concentrating on calls: flow-edges (lc, ln), where just lc

is recorded

∆ = Lab∗ call strings

• extremal value (from L̂ = ∆→ L)

ι̂(δ) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-97

Call strings

• context = path
• call-string = sequence of currently “active” calls
• concentrating on calls: flow-edges (lc, ln), where just lc

is recorded

∆ = Lab∗ call strings

• extremal value (from L̂ = ∆→ L)

ι̂(δ) =
{
ι if δ = ε
⊥ otherwise

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-98

Fibonacci flow

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-99

Fibonacci call strings

some call strings:

ε, [9], [9, 4], [9, 6], [9, 4, 4], [9, 4, 6], [9, 6, 4], [9, 6, 6], . . .

similar, but not same as valid paths

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-100

Transfer functions for call strings
• here: forward analysis
• 2 cases: define f̂1

lc
and f̂2

lc,lr

Transfer functions

• calls (basically: check that the path ends with lc):

f̂1
lc

(l̂)([δ, lc]) = f1
lc

(l̂(δ))
f̂1
lc

() = ⊥
(34)

• returns (basically: match return with (a same-level)
call)

f̂2
lc,lr

(l̂, l̂′)(δ) = f2
lc,lr

(l̂(δ), l̂′([δ, lc])) (35)

• rather “higher-order” way of connecting the flows, using
the call-strings as contexts

• connection between the arguments (via δ) of flc,lr
• given: underlying f1

lc
and f2

lc,lr
.

• Notation: [δ, lc]: concatenation of calls string
• l′: at procedure exit.

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-101

Sign analysis (continued)

• so far: “unconcrete”, i.e.,
• given some underlying analysis: how to make it

context-sensitive
• call-strings as context
• now: apply to some simple case: signs
• remember: L̂ ' 2∆×(Var∗→Sign) (see Eq. (30))
• before: standard embellished f̂Sign

l (with the help of
φSign
l)

• now: inter-procedural

Sign analysis: aux. functions φ

still unembellished
calls: abstract parameter-passing

φsign1
lc

(σsign) = {σsign[7→][7→] | s ∈ [[a]]Asign
σsign , }

returns (analogously)

φsign2
lc,lr

(σsign
1 , σsign

2) = {σsign
2 [7→]}

(formal params: x, y, where y is the result parameter, actual
parameter z)

• non-det “assignment” to y

• remember: operational semantics,

Sign analysis: aux. functions φ
still unembellished
calls: abstract parameter-passing

φsign1
lc

(σsign) = {σsign[x 7→ s][y 7→ s′] | s ∈ [[a]]Asign
σsign , s

′ ∈ {−, 0,+}}

returns (analogously)

φsign2
lc,lr

(σsign
1 , σsign

2) = {σsign
2 [x, y, z 7→σsign

1 (x), σsign
1 (y), σsign

2 (y)]}

(formal params: x, y, where y is the result parameter, actual
parameter z)

• non-det “assignment” to y

• remember: operational semantics,

Sign analysis

calls: abstract parameter-passing + glueing
calls-returns

f̂ sign1
lc

(Z) = ⋃
{{δ′} × φsign1

lc
(σsign) | (δ′, σsign) ∈ Z, δ′ =)}

Returns: analogously

f̂ sign2
lc,lr

(Z,Z ′) =
⋃
{{δ} × φsign2

lc,lr
(σsign

1 , σsign
2) | (δ, σsign

1) ∈ Z }

(formal params: x, y, actual parameter z)

Sign analysis

calls: abstract parameter-passing + glueing
calls-returns

f̂ sign1
lc

(Z) = ⋃
{{δ′} × φsign1

lc
(σsign) | (δ′, σsign) ∈ Z, δ′ = [δ, lc])}

Returns: analogously

f̂ sign2
lc,lr

(Z,Z ′) =
⋃
{{δ} × φsign2

lc,lr
(σsign

1 , σsign
2) | (δ, σsign

1) ∈ Z
(δ′, σsign

2) ∈ Z ′
δ′ = [δ, lc]

}

(formal params: x, y, actual parameter z)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-104

Call strings of bounded length

• recursion ⇒ call-strings of unbounded length
⇒ restrict the length

∆ = Lab≤k for some k ≥ 0

• for k = 0 context-insensitive (∆ = {ε})

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-105

Assumption sets

• alternative to call strings
• not tracking the path, but assumption about the state
• assume here: lattice

L = 2D

⇒ L̂ = ∆→ L ' 2∆×D

restrict to only the last call
dependency on data only ⇒

(large) assumption set context

∆ = 2D

• ι̂ = {({ι}, ι)} extremal value

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-106

Transfer functions

• calls

f̂1
lc

(Z) = ⋃
{{δ′} × φ1

lc
(d) | (δ, d) ∈ Z∧

δ′ =
}

where φ1
lc

: D → 2D

• note: new context δ′ for the procedure body
• “caller-callee” connection via the context (= data) δ
• return
f̂2
lc,lr

(Z,Z ′) = ⋃
{{δ} × φ2

lc,lr
(d, d′) | (δ, d) ∈ Z∧

(δ′, d′) ∈ Z ′∧
δ′ =

}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-106

Transfer functions

• calls

f̂1
lc

(Z) = ⋃
{{δ′} × φ1

lc
(d) | (δ, d) ∈ Z∧

δ′ = {d′′ | (δ, d′′) ∈ Z}
}

where φ1
lc

: D → 2D

• note: new context δ′ for the procedure body
• “caller-callee” connection via the context (= data) δ
• return
f̂2
lc,lr

(Z,Z ′) = ⋃
{{δ} × φ2

lc,lr
(d, d′) | (δ, d) ∈ Z∧

(δ′, d′) ∈ Z ′∧
δ′ = {d′′ | (δ, d′′) ∈ Z}

}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-107

Small assumption sets

• throw away even more information.

∆ = D

• instead of 2D ×D: now only D ×D.
• transfer functions simplified

• call

f̂1
lc

(Z) = ⋃
{{δ} × φ1

lc
(d) | (δ, d) ∈ Z }

• return
f̂2
lc,lr

(Z,Z ′) = ⋃
{{δ} × φ2

lc,lr
(d, d′) | (δ, d) ∈ Z∧

(δ, d′) ∈ Z ′
}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-108

Flow-(in-)sensitivity

• “execution order” influences result of the analysis:

S1;S2 vs. S2;S1

• flow in-sensitivity: order is irrelevant
• less precise (but “cheaper”)
• for instance: kill is empty
• sometimes useful in combination with inter-proc.

analysis

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-109

Set of assigned variables
• for procedure p: determine

IAV(p)

global variables that may be assigned to (also indirectly)
when p is called

• two aux. definitions (straightforwardly defined,
obviously flow-insensitive)

• AV(S): assigned variables in S
• CP(S): called procedures in S

IAV(p) = (AV(S) \{x}) ∪
⋃
{IAV(p′) | p′ ∈ CP (S)} (36)

where proc p(valx, res y) isln S endlx ∈ D∗
• CP ⇒ procedure call graph (which procedure calls

which one; see example)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-110

Example

begin proc fib(val z) is
if [z < 3]
then [call add(a)]
else [call fib(z − 1)];

[call fib(z − 2)]
end;
proc add(valu) is(y := y + 1;u := 0)
end
y := 0; [call fib(x)]

end

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-111

Example

add

fib

main∗

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
analysis
Introduction

Semantics

Analysis

Paths

Context-sensitive analysis

2-111

Example

add

fib

main∗

IAV(fib) = (∅ \{z}) ∪ IAV(fib) ∪ IAV(add)
IAV(add) = {y, u} \{u}

⇒ smallest solution

IAV(fib) = {y}

Chapter 3
Types and effect systems

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Chapter 3
Learning Targets of Chapter “Types and effect
systems”.

type systems
effects
functional languages
type inference and unification

Chapter 3
Outline of Chapter “Types and effect systems”.

Type checking

Type inference

Section
Type checking

Chapter 3 “Types and effect systems”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-5

Introduction

• now: working with a
• typed language
• functional language Fun

• cf. the corresponding intro-section (annotated types)
• here: control-flow analysis (perhaps more). Remember

also the constraint based analysis/CFA in the intro

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-6

Syntax

e ::= c | x | fnπx⇒ e | funπf x⇒ e | e e terms
| if e then e else e | letx = e in e | e op e

Table: Abstract syntax

π ∈ Pnt program points
e ∈ Expr expressions
c ∈ Const constants

op ∈ Op operators
f, x ∈ Var variables

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-7

Examples

Example (Application)

(fnX x⇒ x) (fnY y ⇒ y)

Example

let g = (funF f x⇒ f(fnY y ⇒ y))
in g (fnZ x⇒ x)

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-8

Types
• Curry-style typing

τ ∈ Type types
Γ ∈ TEnv type environment

Types

τ ::= int | bool | τ → τ

• base types:
• bool and int
• standard constants and operators assumed

(true, 5,+,≤, . . .)
• each constant has a base type τc

• type environments (finite mappings)
Γ ::= [] | Γ, x:τ

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-9

Judgments and derivation system

Type judgments

Γ `UL e : τ (37)

• derivation system:
• Curry-style formulation
⇒ non-deterministic
• nonetheless: monomorphic let

• type reconstruction/type inference

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-10

Γ ` c : τc Con
Γ(x) = τ

Var
Γ ` x : τ

Γ ` e1 : τ1
op Γ ` e2 : τ2

op
Op

Γ ` e1 op e2 : τop

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-11

Γ, x:τ1 ` e : τ2
Fn

Γ ` fnπx⇒ e : τ1 → τ2

Γ, x:τ1, f :τ1 → τ2 ` e : τ2
Fun

Γ ` funπx⇒ e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
App

Γ ` e1 e2 : τ2

Γ ` e0 : bool Γ ` e1 : τ Γ ` e2 : τ
If

Γ ` if e0 then e1 else e2 : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2
Let

Γ ` letx = e1 in e2 : τ2

Section
Type inference

Chapter 3 “Types and effect systems”
Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-13

Inference algorithms

• take care of terminology
• so far: no algorithm! (price of laxness)
• foresight needed
• guessing wrong ⇒ backtracking (and we seriously don’t

want that)
⇒ required: mechanism to make

• tentative guesses
• refine guesses

• we start first: with the underlying system

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-14

Augmented types

fancy name for: “we have added type variables”

τ ∈ AType augmented types
α ∈ TVar type variables

τ ::= int | bool | τ → τ | α
α ::= ′a | ′b | . . .

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-15

Substitutions

Substitution (in general)

mapping from variables to “terms”

• “syntactic mapping” here:
• “terms” are (augmented) types
• variables: type variables

θ : TVar→fin AType

• considered as finite functions: we write dom(θ).
• ground substitution: mapping to ordinary types (no

variables)
• substitutions: lifted to types in the standard manner
• composition of substitutions: θ1 ◦ θ2 (or just θ2θ1)

Algorithm: basic idea

• instead of guessing type now ⇒ postpone the decision
⇒ use of type variables

replace:

Γ, x:τ1 ` e : τ2
Fn

Γ ` fnπx⇒ e : τ1 → τ2

by

Algorithm: basic idea

• instead of guessing type now ⇒ postpone the decision
⇒ use of type variables

Γ, x:α ` e : τ2
Fn

Γ ` fnπx⇒ e : α→ τ2

Algorithm: basic idea

• instead of guessing type now ⇒ postpone the decision
⇒ use of type variables

Γ, x:α ` e : τ2
Fn

Γ ` fnπx⇒ e : α→ τ2

• x:α when α is fresh (otherwise unused) means: type of
x is completely arbitrary.

• syntax-directed now?
• τ1: meta-variable for concrete types
• α: (still meta variable for) type variables

Algorithm: basic idea

• instead of guessing type now ⇒ postpone the decision
⇒ use of type variables

α’s completely arbitrary?
Consider body

e = x g

for fnπx⇒ e
⇒

Restriction on α here

• a function type: α = β → γ
• fit together with type of g ⇒ condition or constraint on

β

Algorithm: basic idea

• instead of guessing type now ⇒ postpone the decision
⇒ use of type variables

• judments “give back” not just the type, but also
“restrictions” on type variables.

• represented as constraint3

• ⇒
Γ ` e : (τ, C)

Under the assumptions Γ (which might “assign” to (program) vari-
ables: type variables), program e possesses type τ (again potentially
containing type variables) and imposes the restrictions ”embodied”
by C on the type variables.

3In the book, what is given back is a substitution instead.

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-17

Constraints

• generally:
• constraint(s) is a formula with free variables
• solving a constraint set: finding values for the variables

such that here formula becomes true (satisfiability)
. set of constraints = interpreted as ∧ (conjuction)

• more precisly here: (term) unification constraints
• notation τ1 =? τ2

• many other forms of “constraints” systems exists with
specialized solving techniques

• here: term unification

Constraint generation
T-Const

Γ ` c : (τc, ∅)
T-Var

Γ ` x : (Γ(x), id)

α fresh Γ, x:α ` e0 : (τ0, C0)
T-Fn

Γ ` fnπx⇒ e0 : (α→ τ0, C0)

α, α0 fresh Γ, f :α→ α0, x:α ` e0 : (τ0, C0) C1 = {τ0 =? α}
T-Fun

Γ ` funπf x⇒ e0 : (α→ τ0, C0, C1)

Γ ` e1 : (τ1, C1) Γ ` e2 : (τ2, C2) α fresh
C3 = {τ1 =? (τ2 → α)}

T-App
Γ ` e1 e2 : (α,C1, C2, C3)

Constraint generation

Γ ` e0 : (τ0, C0) Γ ` e1 : (τ1, C1) Γ ` e2 : (τ2, C2)
C4 = τ0 =? bool C5 = τ1 =? τ2

If
Γ ` if e0 then e1 else e2 : (τ2, C1, C2, C3, C4, C5)

Γ ` e1 : (τ1, C1) Γ, x:τ1 ` e2 : (τ2, C2)
Let

Γ ` letx = e1 in e2 : (τ2, C1, C1)

Γ ` e1 : (τ1, C1) Γ ` e2 : (τ2, C2)
C = {τ1 =? τ1

op, τ2 =? τ2
op} Op

Γ ` e1 op e2 : (τop, C1, C2, C)

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-19

Unification

• “classical” algorithm ([1])
• many applications (theorem proving, Prolog etc.)
• definition: substitution

Unifier
A unifier of two types τ1 and τ2: a substitution θ such that

θ(τ1) = θ(τ2)

• unfication problem given τ1 and τ2, determine a unifier
for them, if it exists

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-20

Ordering substitution (and unifiers)

• better formulation of unfication problem: given τ1 and
τ2, determine the best = most general unifier for them
(if they are unifiable).

• solve unification constraint τ1 =? τ2

• easy generalizable to constraints: θ |= C

Ordering: “less general”, “more specific”
θ1 . θ2 if θ1 = θθ2 (for some θ)

• most-general-unifier of two types = “the” least upper
bound of all unifiers

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-21

Unification algorithm for underlying types

U(int, int)) = id
U(bool, bool)) = id

U(τ1 → τ2, τ
′
1 → τ ′2) = let θ1 = U(τ1, τ

′
1)

θ2 = U(θ1τ2, θ1τ
′
2)

in θ2 ◦ θ1

U(τ, α) =


[α 7→ τ] if α does not occur in τ

or if α = τ
fail else

U(α, τ) = symmetrically
U(τ1, τ2) = fail in all other cases

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-22

1-phase Type inference algorithm

• formulated here as rule system
• immediate correspondence to a recursive function:

W(Γ, e) = (τ, θ)

instead of
Γ ` e : (τ, θ)

• not 2-phase, giving back a set of unification constraints
C

T-Const
Γ ` c : (τc, id)

T-Var
Γ ` x : (Γ(x), id)

α fresh Γ, x:α ` e0 : (τ0, θ0)
T-Fn

Γ ` fnπx⇒ e0 : (θ0α→ τ0, θ0)

α, α0 fresh Γ, f :α→ α0, x:α ` e0 : (τ0, θ0) θ1 = U(τ0, θ0α0)
T-Fun

Γ ` funπf x⇒ e0 : (θ1θ0α→ θ1(τ0), θ1 ◦ θ0)

Γ ` e1 : (τ1, θ1) θ1Γ ` e2 : (τ2, θ2) α fresh θ3 = U(θ2τ1, τ2 → α)
T-App

Γ ` e1 e2 : (θ3α, θ3θ2θ1)

Γ ` e0 : (τ0, θ0) θ0Γ ` e1 : (τ1, θ1) θ1θ0Γ ` e2 : (τ2, θ2)
θ3 = U(θ2θ0τ0, bool) θ4 = U(θ3τ2, θ3θ2τ1)

If
Γ ` if e0 then e1 else e2 : (θ4θ3τ2, θ4θ3θ2θ1θ0)

Γ ` e1 : (τ1, θ1) θ1Γ, x:τ1 ` e2 : (τ2, θ2)
Let

Γ ` letx = e1 in e2 : (τ2, θ2θ1)

Γ ` e1 : (τ1, θ1) θ2Γ ` e2 : (τ2, θ2)
θ3 = U(θ2τ1, τ

1
op) θ3 = U(θ3τ2, τ

2
op)

Op
Γ ` e1 op e2 : (τop, θ4θ3θ2θ1)

Static analysis
and all that

Martin Steffen

Targets & Outline

Type checking

Type inference
Type inference problem

Unification

3-24

“Classic” type inference
• we did not look at the full well-known

Hindley-Damas-Milner type inference algorithm
• missing here: polymorphic let
• monomoprhic let: “almost useless” polymorphism
• Note the fine line

• polymorphic let: yes
• polymorphic functions as function arguments: no!

the classical type “inference” algo

• higher-order functions,
• polymorphic functions,
• but no “higher-order polymorphic functions”

• dropping the last restriction: type inference undecidable
• no type variables in the underlying type system (the

“specification”), the type inference algo does
• types (with variables) and type schemes ∀α.τ

Chapter 4
References

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018

http://www.ifi.uio.no/~msteffen

Static analysis
and all that

Martin Steffen

4-2

References I

Bibliography

[1] Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12:23–41.

	Introduction
	Data flow analysis
	Types and effect systems
	References

