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Chapter 1
Learning Targets of Chapter “Introduction”.

Apart from a motivational introduction, the chapter gives
a high-level overview over larger topics covered in the
lecture. They are treated hear just as a teaser and in less
depth compared to later but there is already technical
content.
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Static analysis: why and what?

= what
= static: at “compile time”
= analysis. deduction of program properties
= automatic/decidable
= formally, based on semantics

= why
= error catching

= catching common “stupid” errors without bothering the
user much

= spotting errors early

= certain similarities to model checking

= examples: type checking, uninitialized variables,
potential nil-pointer deref’s, unused code

= optimization: based on analysis, transform the “code"?,
such the the result is “better”
= examples: precalculation of results, optimized register
allocation ...
lsource code, intermediate code at various levels
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The nature of static analysis

= compiler with differerent phases

= corresponding to Chomsky's hierarchy

= static = in principle: before run-time, but in praxis,
“context-free"

= since: run-time most often: undecidable

= static analysis as approximation
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Phases
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Static analysis as approximation
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Optimal compiler?

Full employment theorem for compiler writers

It's a (mathematically proven!) fact that for any compiler,
there exists another one which beats it.

= slightly more than non-existence of optimal compiler or
undecidability of such a compiler
= theorem

= just states that there room for improvement is always
guaranteed
= does not say how! Finding a better one: undecidable
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Labelling

= associate flow information

= labels
= elementary block = labelled item
= identify basic building blocks

= consistent/unique labelling
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Abstract syntax

a == x|n|aop,a arithm. expressions
b == true|false | notb|bop,b|aop,a boolean expr.
S = x:=a|skip| S1;52 statements

if bthen Selse S | whilebdo S

Table: Abstract syntax



Abstract syntax

a == x|n|aop,a arithm. expressions
b == true|false | notb|bop,b|aop,a  boolean expr.
S u= [x:=a]'|[skip]' | S1; 52 statements

if[b]' then Selse S | while[b])' do S

Table: Labelled abstract syntax



Example factorial

y:=x;z:= l;while y > ldo(z :=zx*y;y :=y—1);y:=0

= input variable: x

= output variable: z

ly := =]
[z :=1]%

while [y > 1]?

do([z 1=z x y]*; [y := y — 1]*);
[y :== 0]
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CFG factorial
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Factorial: reaching definitions analysis

= “definition” of z: assignment to x: z :=a
= better name: reaching assignment analysis

= first, simple example of data flow analysis

Reaching def’s

An assignment (= “definition”) [x := a)' may reach a
program point, if there exists an execution where x was /ast
assigned to at [, when the mentioned program point is
reached.
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Factorial: reaching definitions

= data of interest: tuples of variable x label (or node)
= note: distinguish between entry and exit of a node.
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Factorial: reaching assignments

= " points " in the program: entry and exit to elementary
blocks/labels

= 7. special label (not occurring otherwise), representing
entry to the program, i.e., (z,?) represents initial
(uninitialized) value of z

= full information: pair of “functions”
RD = (RDentrya RDem’t) (2)

= tabular form (array): see next slide
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Factorial: reaching assignments table

RD exit
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Reaching assignments: remarks

= elementary blocks of the form
= [b]: entry/exit information coincides
= [z := a]': entry/exit information (in general) different
= at program exit: (z,?), x is input variable
= table: “best” information = smallest sets:
= additional pairs in the table: still safe
= removing labels: unsafe
= note: still an approximation
= no real (= run time) data, no real execution, only data

flow
= approximate since

= in concrete runs: at each point in that run, there is
exactly one last assignment, not a set
= label represents (potentially infinitely many) runs
= e.g.: at program exit in concrete run: either (z,1) or
else (z,3)
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Data flow analysis

= standard: representation of program as control flow
graph (aka flow graph)
= nodes: elementary blocks with labels (or basic block)
= edges: flow of control
= two approaches, both (especially here) quite similar

= equational approach
= constraint-based approach
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From flow graphs to equations

= associate an equation system with the flow graph:
= describing the “flow of information”
= here:
= the information related to reaching assignments
= information imagined to flow forwards
= solutions of the equations
= describe safe approximations
= not unique, interest in the least (or largest) solution
= here: give back RD of equation (2) on slide 22
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Equations for RD and factorial: intra-block

first type: local, intra-block™:
= flow through each individual block

= relating for each elementary block its exit with its entry

elementary block: [y := x]°

RDesit(0) = RDeniry (0) \{(y,1) | 1 € Lab} U{(y,0)}

(3)
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Equations for RD and factorial: intra-block

first type: local, intra-block™:
= flow through each individual block

= relating for each elementary block its exit with its entry

elementary block: [y > 1]

RDesit(0) = RDeniry (0) \{(y,1) | 1 € Lab} U{(y,0)}

RDem't(Q) = RDentry(2)

(3)
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Equations for RD and factorial: intra-block

first type: local, intra-block™: Static analysts
= flow through each individual block Martin Steffen

= relating for each elementary block its exit with its entry  Targets & outiine

Motivation

all equations with RD,;; as “left-hand side” Generalremarks
Data flow analysis
A simplistic while-language

RD¢z:¢(0) RD entry (0) \{(y,0) | I € Lab} U {(y,0)} Constrin e aporonch
RDem't(l) = RDentry(l) \{( ) | le Lab} U {(Z» 1)} Constraint-based
RDesit(2) = RDentry(2) e o s
RDesit(3) = RDentry(B) \{(z,1) | I € Lab} U {(2,3)} Type and effect
RDegit(4) = RDentry(4) \{(y,0) |l € Lab} U{(y,4)} onn
RDem’t(5) = RDentTy(5) \{(ya l) ‘ le Lab} U {(y7 5)} 2::::::32“51%5
(3) e
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Inter-block flow

second type: global, inter-block

flow between the elementary blocks, following the
control-flow edges

relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

initial block: mark variables as uninitialized

RDentry(l) = RDem’t (0) (4)
RDentry(?’) = RDezit<2)
RDentry(4) = RDem't (3)
RDentry(5) = RDezz’t<2)
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Inter-block flow

second type: global, inter-block

flow between the elementary blocks, following the
control-flow edges

relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

initial block: mark variables as uninitialized
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Inter-block flow

second type: global, inter-block

flow between the elementary blocks, following the
control-flow edges

relating the entry of each block with the exits of other
blocks, that are connected via an edge (exception: the
initial block has no incoming edge)

initial block: mark variables as uninitialized
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General scheme (for RD)

Intra = for assignments [z := a

RD ezt (1) = RDentry (1) \{(z,1") | I' € Lab}U{(z,1)}

(5)
= for other blocks [b]' (side-effect free)
RDexit(l) = RDentry(l) (6)
Inter
RDentryU) = U RDexit(l,) (7)

U=l
Initial [: label of the initial block (isolated entry)
RDeniry(l) = {(x,?) |  is a program variable}  (8)



The equation system as fix point

= RD example: solution to the equation system = 12 sets

RDentry(O)a DRI RDeacit(E))

i.e., the RDepiry(l), RDeyit (1) are the variables of the
equation system, of type: sets of pairs of the form (z,1)

= domain of the equation system:
= RD: the mentioned twelve-tuple of variables

= equation system understood as function F

Equations
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The least solution

= Var, = variables “of interest” (i.e., occurring), Lab,:
labels of interest

= here Var, = {z,y, 2}, Lab, = {?,1,...,6}
F- (2Var*><Lab*)12 N (2Var*><Lab*)12 (9)

= domain (2Var«xLab:\12. hartially ordered pointwise:
RD C RD' iff Vi. RD; C RD, (10)

= complete lattice
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Constraint-based approach

= next, for DFA: a simple variant of the equational
approach

= rearrangement of the entry-exit relationships

= instead of equations: inequations (sub-set instead of
set-equality)

= in more complex settings: constraints become more
complex, no split in exit- and entry-constraints
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Factorial program: intra-block

elementary block: [y := x

RDexit (0)
RDexit (0)

constraints

]0

2 RDentry(O) \{(y> l) | ! € Lab}

2 {(y,0)}
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Factorial program: intra-block constraints

Static analysis
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Factorial program: intra-block constraints

all equations with RD . as left-hand side Static analysis

and all that

Martin Steffen
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Factorial program: inter-block constraints

cf. slide 30 ff.: inter-block equations:

RDentry(l)
RD entry (2)
RDentry (3)
RDentry (4)
RD ¢niry(5)

RD¢niry (0)
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Factorial program: inter-block constraints

Static analysis

and all that
splitting of composed right-hand sides + using D instead of P
R D entry ( 1) 2 R D it (0) :':rf.etst.& Outline
RD entry (2) 2 RD exit ( 1) Gy
RDentry (2> 2 RDem't (4) Da-ta fl?w ?nalysis
RDentry(3) 2 RDegit(2) JZT;;:;;;"’""‘
RD@Tlt"’y (4) 2 RDewit (3) Constraint-based
RDentry (5) 2 RDe:m't (2) a:alylsjls g
Type and effect
RDentry(l) 2 {(l‘, 7), (y, ?), (Z ?)} systems
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Least solution revisited

instead of F(RD) = RD
= clear: solution to the equation system = solution to the
constraint system

= important: least solutions coincides!

Pre-fixpoint

(11)
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Control-flow analysis

Goal CFA

which elem. blocks lead to which other elem. blocks

= for while-language: immediate (labelled elem. blocks,
resp., graph)

= complex for: more advanced features, higher-order
languages, oo languages ...

= here: prototypical higher-order functional language
A-calculus

= formulated as constraint-based analysis
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Simple example

let f = fn x
g =fny
h = fn z

in (f g)+ (f h)

+ + =

Xy
N < X
‘U.OI\)

= higher-order function f
= for simplicity: untyped
= local definitions via let-in

= interesting above: x 1

Goal (more specifically)

For each function application, which function may be
applied.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms

1-34



Labelling

= more complex language = more complex labelling
= “elem. blocks” can be nested
= all syntactic constructs (expressions) are labelled

= consider:

Unlabelled abstract syntax

(fnx = x) (fny = vy)

= functional language: side-effect free
= no need to distinguish entry and exit of labelled blocks.

Static analysis
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Labelling

= more complex language = more complex labelling

= “elem. blocks” can be nested Setile el
and all that

= all syntactic constructs (expressions) are labelled _
Martin Steffen

= consider:
Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Full labelling

Type and effect
systems
Introduction

[ fnz = [2]')? [fny = [y]°]* ]°

Annotated type
constructors

Effect systems

= functional language: side-effect free Algorithms
= no need to distinguish entry and exit of labelled blocks. 135



Data of the analysis

Data of the analysis:
Pairs (C’, p) of mappings:

abstract cache: C(1): set of values/function abstractions,
the subexpression labelled [ may evaluate to

abstract env.: p: values,  may be bound to
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The constraint system

= ignoring “let” here: three syntactic constructs =
three kinds of constraints

= relating C, p, and the program in form of subset
constraints (subsets, order-relation)
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The constraint system

= ignoring “let” here: three syntactic constructs =
three kinds of constraints

= relating C, p, and the program in form of subset
constraints (subsets, order-relation)

3 syntactic classes

= function abstraction: [fnz = z]'
= variables: [z]'

= application: [f g’

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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Annotated type
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Effect systems
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Constraint system for the small example

Labelled example

[[fna = [2]']? [fny = [P ]°

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach
Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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Constraint system for the small example

Labelled example

[[fnz = [2]')? [fny = [y°]" ]°

= function abstractions

—
Hh
B
N
=
@ =
—
N 1N

Static analysis
and all that

Martin Steffen
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Motivation

General remarks
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A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
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Control-flow analysis
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Constraint system for the small example

Labelled example

[[fnz = [2]')? [fny = [y°]" ]°

= variables (occurrences of use)

>
<
~—
N 1N

Static analysis
and all that

Martin Steffen

Targets & Outline
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General remarks
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A simplistic while-language
Equational approach

Constraint-based approach
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Constraint system for the small example
Labelled example

[[fnz = [2]')? [fny = [y°]" |°

= application: connecting function entry and (body) exit
with the argument

—~
i~
N—
N 1N
>
—
8
N—

Static analysis
and all that
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Motivation
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Constraint system for the small example

Labelled example

[[fnz = [2]')? [fny = [y°]* ]°

= application: connecting function entry and (body) exit
with the argument but:

= also [fny = [y]3]* is a candidate at 2! (according to
C(2))

C@) < px)
c@1) < C©)
C4) € i)
c3) c C(5)

Static analysis
and all that
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Motivation
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Constraint system for the small example

Static analysis
and all that

Labelled example

Martin Steffen

Targets & Outline
[ [fnz = [w]I]Q [fny = [y]3]4 ]5 Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

{thx=[]'} CCQ) = CM@) C p) Gorsan. s
{fnx=[2]'} CC(2) = C1) < C5) e

{fny = [y]?,} c 0(2) = 6(4) C If)(y) ;l;?lsptv:"a‘:d effect
{fny=[WPrcC@ = CB) < C»)

Annotated type systems

Annotated type
nstructors

Effect systems
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The least (= best) solution

Static analysis
and all that

C’(l) — {fny = [y]g} Martin Steffen
0(2) — {fn Tr = [fl]’] 1} Targets & Outline
C3) = 0 o,
C) = {ftay= [y} .
C(5) = {tny=[y*} e
ﬁ(.’l‘) = {fny = [y]3} ::;;tsri:int-based
ﬁ(y) — @ Control-flow analysis
Type and effect
systems
One interesting bit here in the solution is: p(y) = 0: that Introduction
Annotated type systems
means, the variable y never evaluated, i.e., the function is Aonotated e
not applied at all. Effect systems
Algorithms
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Effects: Intro

= type system: “classical” static analysis:
t:T

= judgment: “term or program phrase has type 1"

= in general: context-sensitive judgments (remember
Chomsky . ..)

Judgement :

I'Ht:7

= I': assumption or context

= here: “non-standard” type systems: effects and
annotations

= natural setting: typed languages, here: trivial! setting

(while-language)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms
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“Trival” type system

= setting: while-language
= each statement maps: state to states

= 3. type of states

judgement

FS:¥—X%

= specified as a derivation system

= note: partial correctness assertion

(12)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems

Algorithms
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“Trival” type system: rules

Flz:=al': ¥ =%  Ass
[skip]! : & — ¥ Skip

|—51:§]—>§] Sg:E—)Z

SEQ
}_51;5212%2

FS: X=X

WHILE
Fwhile[h)'doS: % — %

|—51:2—>Z "SgZ—)E
COND

F if[b)' then S; else Sy : ¥ — X

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems
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Types, effects, and annotations

annot. type system effect system

FS:% =X (13) FS:2 5% (14)

type and effect system (TES)

effect system + annotated type system

borderline fuzzy
annotated type system
= 3,: property of state (“X; C ")
= “abstract” properties: invariants, a variable is positive,
etc.
effect system
= ‘“statement S maps state to state, with (potential ...)
effect ¢"
= effect p: e.g.: errors, exceptions, file/resource access,

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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Annotated type
constructors
Effect systems
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Annotated type systems

= example again: reaching definitions for while-language

2 flavors
1. annotated base types: S : RD; — RDy
2. annotated type constructors: S : X R—XD> )y

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems
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RD with annotated base types
judgement
F.S:RD; — RD,

« RD C 2VarxLab
= auxiliary functions

= note: every S has one “initial” elementary block,
potentially more than one “at the end”

= nit(S): the (unique) label at the entry of S

= final(S): the set of labels at the exits of S

“meaning” of judgment S : RD; — RDy

“RD; is the set of var/label reaching the entry of S and RD,
the corresponding set at the exit(s) of S":

RD; =
RD, =

RD epiry (init(S))
U{RDesiz(1) | I € final(S)}

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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constructors
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F[z:=a]' : RD = RD\{(z,l) | | € Lab} U {(z,1)}
I [skip)’ : RD — RD  skip

|—511RD1—>RD2 I—SQRDQ—)RDd

SEQ
- Sl;SQ : RD1 — RD3

FsliRDlﬁRDg FSQ:RD:[‘)RDQ

IF
- if[b]' then S) else Sy : RD; — RD,
FS:RD — RD
WHILE
I while[b]'do S : RD — RD
S :RD| — RDj RD; C RD/ RD), C RD,

SuB

FSZRD1—>RD2

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
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Control-flow analysis
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Effect systems
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Meaning of annotated judgments

“Meaning” of judgment S : RD; — RDa:

“RD; is the set of var/label reaching the entry of S and RD,
the corresponding set at the exit(s) of S":

RDi = RDeptry(init(S))
RDy = U{RDewil | I € final(S)}
= Be careful:

if[b]’ then S; else So

= more concretely
if[b) then [z := y]" else [y := z]®

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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Annotated type
constructors
Effect systems
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Meaning of annotated judgments

Once again: “Meaning” of judgment S : RD; — RDs:

“if RD; is a set of var/label reaching the entry of S, then
RD; is a corresponding set at the exit(s) of S":

if RD1 Q RDemTy(init(S))
then Vi € final(S). RDeyit(l) C RDy

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems

Annotated type
constructors
Effect systems

Algorithms

149



Derivation

[z:=1]": {?2,0,7.} = {?2,0,1} f3:{?,0,1} = RDgpu

[y :=]° : RDg — {?4,0,7.} f2:{%2,0,7:} = RDfinai

f : RD() — RDﬁnal
RDo = {?2,7y,?2} RDfna = {?2,5,1,3}

type sub-derivation for the rest f3 = while...;[y := 0]®
loop invariant

RDbody = {?:m 0, 47 1, 3}



Derivation

[z = ,]3 : RDbody — {?130347371}
[y = ,}4 : {?$,0,4,3} — {?$7473}

fbody : RDbody — {?aca4a 3}

SuB

fbody : RDbody — RDbody

fwhile : RDbody — RDbody
SUB

Juwhite : {72,0,1} — RDyogy [y := 0]° : RDpogy — RDj

f3 : {?J:707 1} — RDﬁnal



Annotated type constructors

= alternative approach of annotated type systems
= arrow constructor itself annotated
= annotion of —: flavor of effect system
= judgment
S: X E> by

= annotation with RD (corresponding to the
post-condition from above) alone is not enough

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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Effect systems
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Annotated type constructors

= alternative approach of annotated type systems
= arrow constructor itself annotated
= annotion of —: flavor of effect system

= judgment

= annotation with RD (corresponding to the
post-condition from above) alone is not enough

= also needed: the variables “being” changed

Intended meaning

“S maps states to states, where RD is the set of reaching
definitions, S may produce and X the set of var's S must
(= unavoidably) assign.

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors
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SRR YRS SR AP YRELCND
RDl RD2

X1UXo
1=
RD; \ X2URD>

51;52 DY

Sy X5y Sy Ny
RD RD Ir

if[b]' then S) else Sy : X R—XD> z

WHILE

while[b]l doS: X RL)D> P

5;2%2 XCX'  RD CRD
SuB
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Effect systems

= this time: back to the functional language
= starting point: simple type system
= judgment:

I'ke:7

= T': type environment (or context), “mapping” from
variable to types

= types: bool, int, and 7 — T

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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Effects: Call tracking analysis
Call tracking analysis:

Determine: for each subexpression: which function
abstractions may be applied, i.e., called, during the
subexpression’s evaluation.

= set of function names
annotate: function type with latent effect
= annotated types: 7: base types as before,
arrow types:
D (16)

= functions from 71 to 79, where in the execution,
functions from set ¢ are called.

Judgment

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems
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Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach
Constraint-based
analysis

Control-flow analysis
Type and effect
systems

Introduction
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Call tracking: example

x:int {i} int - z:int {i} int:: 0

{ }

F (faxz = z) : (int {—>} int) — (int ) int):: 0 F (fnyy=y):int {L} int :: 0

F (fnxz = z) (fayy = y) @ int {—> int:: {X}
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Chaotic iteration

= back to data flow/reaching def’s
= goal: solve

RD=F(RD) or RDC F(RD)

= F: monotone, finite domain

straightforward approach

init RDy = FO(0)

iterate RD,,,; = F(RD,,) = F""(0) until
stabilization

= approach to implement that: chaotic iteration
= non-deterministic stategy
= abbreviate:

—.

RD = (RDy,...,RDy)

Static analysis
and all that

Martin Steffen

Targets & Outline

Motivation

General remarks

Data flow analysis
A simplistic while-language
Equational approach

Constraint-based approach

Constraint-based
analysis

Control-flow analysis

Type and effect
systems

Introduction

Annotated type systems
Annotated type
constructors

Effect systems
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Chaotic iteration (for RD)

Input: equations for reaching defs
for the given program
Output: least solution: RD = (RDy,...,RD2)

Initialization:
RD;:=0;...;RD1p :=10
Iteration:
while RD; # F;(RDy,...,RDy2) for some j
do
RDJ' = Fj(RDl, ey RD12)
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Chapter 2
Learning Targets of Chapter “Data flow analysis”.

various DFAs
monotone frameworks
operational semantics
foundations

special topics (SSA, context-sensitive analysis ...)



Chapter 2
Outline of Chapter “Data flow analysis”.

Intraprocedural analysis

Theoretical properties and semantics
Monotone frameworks

Equation solving

Interprocedural analysis
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While language and control flow graph

Static analysis

= starting point: while language from the intro and all that

Martin Steffen

= labelled syntax (unique labels)

= labels = nodes of the cfg Targets & Outline
s . Intraprocedural

= initial and final labels analysis

= edges of a cfg: given by function flow el

Available expressions
Reaching definitions

Very busy expressions

3 functions (definition see script / book) Live v anaysi

Theoretical
L. properties and
1. mat Stmt — Lab semantics

Semantics
2 - ﬁna,l N St mt — 2Lab Intermezzo: Lattices

Monotone

3. ﬂow : Stmt — 2Lab><Lab frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Flow and reverse flow

Static analysis
and all that

Martin Steffen

Targets & Outline

labels(S) = init(S)U{l | (I,1") € flow(S)YU{l" | (I,1") € flow(S) Jntraprocedurai

= data flow analysis can be forward (like RD) or backward
= flow: for forward analyses

= for backward analyses: reverse flow flow®, simply invert
the edges

analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Program of interest

= S, program being analysed, top-level statement
= analogously Lab,, Var,, Blocks,
= trivial expression: a single variable or constant

= AExp,: non-trivial arithmetic sub-expr. of S,
analogous for AExp(a) and AExp(b).
= useful restrictions

= solated entries: (I, init(Sx)) ¢ flow(Sy)
= isolated exits Vil € final(Sy). (l1,l2) ¢ flow(Sy)
= label consistency

[B1]!, [Bs]' € blocks(S) then B = B
“l labels the block B"

= even better: wunique labelling

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
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Avoid recomputation: Available expressions

[z:=a+b%[y:=axb]'; while [y>a+b?
do ([a :=a+ 1%z :=a+b%)

= usage: avoid re-computation



Avoid recomputation: Available expressions

[#:=a+b]%[y:=axb'; while [y>a+ b?
do ([a :=a+ 1%z :=a+b%)

Goal

For each program point: which expressions must have
already been computed (and not later modified), on all paths
to the program point.

= usage: avoid re-computation



Available expressions: general

given as flow equations (not C-constraints, but not too
crucial, as we know already)

uniform representation of effect of basic blocks (=
intra-block flow)

2 ingredients of intra-block flow

kill: flow information “eliminated” passing through the
basic blocks

generate: flow information “generated new"” passing
through the basic blocks

later analyses: presented similarly

different analyses = different kind of flow information
+ different kill- and generate-functions

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
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Available expressions: types

= interested in sets of expressions: 2AEXP-

= generation and killing:

killag, genag : Blocks, — 2AFXP-

= analysis: pair of functions
AEentryv AEcui : Lab, — 2AEXP*

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
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Intra-block flow specification: Kill and
generate

Static analysis
and all that

Martin Steffen

Targets & Outline
kll lAE ( [1‘ = CL] l ) — Lr:;lz;::i':cedural
kil lAE ( [Skl p] ! ) :?;:ve::::'ng the control
kll lAE ( [b] l) = Available expressi

Reaching defi

Very busy ex
Live variable analysis

genAE ( [‘%. = a‘] l) = Theoretical
genag([skip]') = Cemantics "

genne (') =

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural




Intra-block flow specification: Kill and
generate

killag ([z :=a]))) = {
killag ([skip])) = 0
killag ([o)') = 0

genae ([x = a]’) {a’ € AExp(a) |z ¢ fv(a')}
genag ([skip]') 0
genag([b)') = AExp(b)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph
Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics
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Flow equations: AE

split into
nodes: intra-block equations, using kill and generate

edges: inter-block equations, using flow

Flow equations for AE

N { 0 I = init(S,)

N{AEcz (") | (I',1) € flow(Ss)} otherwise

AEcsit(l) = AEentry(l) \ killag (BY) U genag (BY)

where B! € blocks(S.)

= note the “order” of kill and generate



Available expressions

= forward analysis (as RD)

= interest in Jargest solution (unlike RD)
= must analysis (as opposed to may)

= expression is available: if no path kills it

= remember: informal description of AE: expression
available on all paths (i.e., not killed on any)

= jllustration

Static analysis
and all that

Martin Steffen
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analysis
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Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
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Example AE

[x:

a+0]%y:

axbll; while [y >a+b]?

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions

do ([a = a4+ 1]37 [$ =a + b]&zhingdeﬁnilions

busy expressions

Live variable analysis
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Example AE

Static analysis
and all that

Martin Steffen
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Reaching definitions
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Reaching definitions

= remember the intro

= here: the same analysis, but based on the new
definitions: kill, generate, flow ...

[z :=5]% [y := 1]';while[z > 1]? do([y := x*y]>; [z

z—1]")

Static analysis
and all that

Martin Steffen
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Reaching definitions

= remember the intro
= here: the same analysis, but based on the new
definitions: kill, generate, flow ...
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Reaching definitions: types

= interest in sets of tuples of var's and program points
i.e., labels:

gVar.xLabl | b0 Labi = Lab, + {7}

= generation and killing:

killrp, gengp : Blocks, — gVar. xLab]

= analysis: pair of mappings

?
RDentry7 RD.zi: : Lab, — 9Var. xLab,
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Reaching defs: kill and generate

Static analysis
and all that

Martin Steffen

ki”RD ([:1,‘ = a]l) — Targets & Outline
killrp ([Sklp]l) = ::lt;f;'::CEdmal

kil l RD ( [b] l ) = :?:Le:'nai::'ng the control

Available expressions

Reaching definitions

gengp ([z:=a]") = o v
genRD ([Sklp]l) — Theoret-ical
gengp (b)) = ikt

Semantics
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Reaching defs: kill and generate

killgp ([ := a]')

k’&'llRD([Skip]l)
killrp ([b]")

gengp ([z = a]l)
gengp ([skip]')
genRD([b]l)

{

U
0
0

= S

(z,7)}U
{(x,1') | B" is assgm. to z in S,}

(1)}

Static analysis
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Flow equations: RD

split into
= intra-block equations, using kill and generate

= inter-block equations, using flow

Flow equations for RD
RDentry(l) -
RDezit(l) = RDentry(l) \ Killrp (B') U gengp (BY)

where B! € blocks(S,)

= same order of kill /generate



Flow equations: RD
split into

= intra-block equations, using kill and generate

= inter-block equations, using flow

Flow equations for RD

{(z,?) | z € fu(Ss)} [ = init(Sy)
RDentry(1) = { U{RD¢zit (') | (I',1) € flow(Ss)} otherwise
RDegit(I) = RDenury(l) \ Killrp (B') U gengp (BY)

where B! € blocks(S.)

= same order of kill /generate



Very busy expressions

Definition (Very busy expression)

An expression is very busy at the exit of a label, if for all
paths from that label, the expression is used before any of its
variables is “redefined” (= overwritten).

= usage: expression “hoisting”

Goal

For each program point, which expressions are very busy at
the exit of that point.
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Very busy expressions: types

= interested in: sets of expressions: 24EXP«

= generation and killing:

killyg, genyg : Blocks, — 2AFxP.

= analysis: pair of mappings
VBentryv VBeyit : Lab, — 2AEXP*
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Very busy expr.: kill and generate

Static analysis

and all that

core of the intra-block flow specification RS tefien
Targets & Outline

killyg ([x := a]l) = Intraprocedural

killys (jskip]!) = e e

. 1 flow graph

kll lVB ( [b] ) = Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

genVB ([x = a]l) Theoretical
genyp ([Sk|p]l) = properties and

semantics

genyp ([b]l) = .
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Very busy expr.: kill and generate

core of the intra-block flow specification

ki”VB([:I} ::a]l) = {
Eillyg ([skip])) = 0
killyg () = 0

a’ € AExp, |z € fu(d')}

genyg([z :=a)') = AExp(a)
genyg ([skip]") 0
genyg (b)) = AExp(b)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching defi

Very busy ex

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural




Flow equations.: VB

split into
= intra-block equations, using kill /generate
= inter-block equations, using flow

however: everything works backwards now

Flow equations: VB

VBea:it(l) =

VBentry(l) =
where B! € blocks(S,)



Flow equations.: VB

split into
= intra-block equations, using kill /generate
= inter-block equations, using flow

however: everything works backwards now

Flow equations: VB
VBeit(l) = 0 l € final(Sy)
et B {VBenry(') | (I',1) € flow®(S,)} otherwise
VBentry(l) = VBegit(l)\ Eillyg (BY) U genyg (BY)

where B! € blocks(S,)



Example

lo

false

y:a—-b

lo

a>b
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When can var’s be “recycled”: Live variable
analysis

[z = 2]% [y = 4]}; [z = 1%

(if[y > z]3then [z := y]* else [z := y x y)°); [z := 2]°

Goal therefore

for each program point: which variables may be live at the
exit of that point.

= usage: register allocation
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When can var’s be “recycled”: Live variable
analysis

[z = 2]% [y = 4]}; [z = 1%
(if[y > z]3then [z := y]* else [z := y x y)°); [z := 2]°
Live variable

A variable is live (at the exit of a label) if there exists a path
from the mentioned exit to the use of that variable which
does not assign to the variable (i.e., redefines its value)

Goal therefore

for each program point: which variables may be live at the
exit of that point.

= usage: register allocation

Static analysis
and all that

Martin Steffen
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Live variables: types

Static analysis
and all that

Martin Steffen

= interested in sets of variables 2Var+ e 81 @

= generation and killing: Intraprocedural
analysis
kill - Block — 2Var* Determining the control
7 LV 5 genLV . ocC S* flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

= analysis: pair of functions Theoretical

V: properties and
Lventrya Lveacit : Lab* — 2 arx semantics
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Live variables: kill and generate

Static analysis
and all that

Martin Steffen

klllAE([x = a]l) = Targets & Outline
killLV ([Skl p] l) = Lr:lt;g:::;:cedural

kil l LV ( [b] ! ) = :?:Le:'nai::'ng the control

Available expressions

Reaching definitions

genpy ([z :=a]') = e b s
genLV ( [Skl p] ! ) — Theoret-ical
genyy ([0 = ikt

Semantics
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Live variables: kill and generate

killpg ([ 2= a])) = {2}
k’illLv([Skip]l)
kil ((B]') = 0

Il
=

genyy ([z:=al') = fo(a)
genyy ([skip]’)
genyy ([b]") = fu(b)

—

Il
=
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Flow equations LV

split into

= intra-block equations, using kill/generate

= inter-block equations, using flow
however: everything works backwards now

Flow equations LV

Lvemit(l) =

I-Ventry(l) =
where B! € blocks(S,)



Flow equations LV

split into

= intra-block equations, using kill /generate

= inter-block equations, using flow
however: everything works backwards now

Flow equations LV

B 0 [ € final(Sy)
Weo(l) = { UV eniry (1)) | (I, 1) € flow®(S,)}  otherwise

Wentry(1) = Wegit(1) \ killpy (BY) U genyy (BY)

where B! € blocks(S.)



Example

(while [z > 1]% do [skip]"); [«
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Looping example

I

true

skip
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Section

Theoretical properties and seman-
tics

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018


http://www.ifi.uio.no/~msteffen

Relating programs with analyses

Static analysis
and all that

= analyses Martin Steffen
= intended as (static) abstraction or overapprox. of real Targets & Outline
Program behavior Intraprocedural
= so far: without real connection to programs a;'a'ys_'? o
] ) b :Le;r:::;‘ngt e control
= soundness of the analysis: safe analysis A e
Reaching definitions
= but: behavior or semantics of programs not yet defined Very busy expresions
Live variable analysis
b H ” H - ’
= here: “easiest” semantics: operational Theoretical
. . properties and
= more precisely: small-step SOS (structural operational semantics
Semantics
semantics) s
Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
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Analysis



States, configs, and transitions

Static analysis

and all that
fixing some data types Martin Steffen
= state o : State = Var — Z areetelecOutline
. . . . Intraprocedural
= configuration: pair of statement x state or (terminal) analysis
. Determining the control
just a state flow graph

Available expressions
Reaching definitions

Very busy expressions

Transitions e

Theoretical
properties and
(S,0) > 6 or (S,0)—(S,5) e
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Semantics of expressions

[.]*: AExp — (State — Z)
[ .]°: BExp — (State — B)

simplifying assumption: no errors

[a1 op, a2

[not b]%

[b1 op,, bo]2
[a’l op, aQ]IU

5y

clearly:

Va € fu(a). o1(x)

o(x)

N(n)

= [a1]f op, [a2]

= -5
= [0]5 opy [b2]5
= [a]2 op, [ag]d

o9(x) then [(1];,41 = [a]j;‘2
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SOS

([x == a)', o) = olz—[a]2] Ass ([skip]’, o) = & SKIP

(S1,0) = (51,6) (S1,0) = 6
SEQ1 SEQZ
(S1582,0) = (S1;52,0) (S1;82,0) = (S2,6)

IF1

WHILE;
(while [b]'do S, o) — (S;while[b]'do S, o)

b5 = L

WHILE,
(while [b]'do S,0) — o
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Derivation sequences

“completed” execution:
= finite sequence: (S1,01),...,{(Sn,0n), Ont1
= infinite sequence: (S1,01),...,{(S;, 04),...

= note: labels do not influence the semantics

= derivation sequence:

= CFG for the "rest” of the program only gets “smaller”
when running:

Lemma

. (S,0) — o', then ﬁnal(S’) = {init(S)}
2. Assume (S,0) — (S,6),
2.1 final(S) D {final(S)
2.2 flow(S) 2 {flow(S)}
2.3 blocks(S) 2 blocks(S); if S is label consistent, then so

is S

then

Static analysis
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Correctness of live analysis
= LV as example

= given as constraint system (not as equational system)

LV constraint system

0 l € final(Sy)
LV eait (1) 2 { U{LV ety (1) | (I',1) € flow™(S,)} otherwise

WV entrg (1) 2 WVt (1) \ Killpy (BY) U genyy (BY)

liveentry, liveeyy : Laby, — g Var.

“live solves constraint system LV=(S)”

live = LVE(S)
(analogously for equations LV=(.9))



Equational vs. constraint analysis

Lemma

1. If live |= LV=, then live |= LVS

2. The least solutions of live = LV™
coincide.

and live |= LVS
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Intermezzo: orders, lattices. etc.

Static analysis
and all that

as a reminder: Martin Steffen

- partial Order (L7 E) Targets & Outline
[ upper bound l of Y C L: Intraprocedural
- analysis
= least upper bound (lub): | ]Y (or join) B e
Available expressions
= dually: lower bounds and greatest lower bounds: [ 1Y Reacing defnitions
Very busy expressions
(Or meet Live variable analysis
. . Theoretical
- Complete |att|Ce L = (L7 E) = (L7 ;7 |_|7 |_|7 J—7 T) a properties and
partially ordered set where meets and joins exist for all semantics
subsets, furthermore T =[]0 and L =|]0. I
Monotone
frameworks

Equation solving

Interprocedural

analysis
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Fixpoints
given complete lattice L and monotone f: L — L.
- ﬁXpOint: f(l) = l Static analysis
sz(f) _ {l | f(l) _ l} and all that

Martin Steffen

= f reductive at [, [ is a pre-fixpoint of f: f(I) C I: Targets & Outline
Intraprocedural
analysis
Red(f) = {l | f(l) C l} PSR

Available expressions
Reaching definitions

Very busy expressions

= f extensive at [, | is a post-fixpoint of f: f(I) 3 I: e e
properties and
semantics

Ext(f)={l]| f() 31} Semanic
Define “Ifp” / “gfp” Framemorks

Equation solving

Interprocedural

ip(f) [ | Fia(f) and  gfp(f) £ | | Fiz(f)




Tarski’s theorem

Core

Perhaps core insight of the whole lattice/fixpoint business:
not only does the [] of all pre-fixpoints uniquely exist (that's
what the lattice is for), but —and that's the trick— it’s a
pre-fixpoint itself (ultimately due to montonicity of f).

Theorem

L: complete lattice, f : L — L monotone.

ifp(f) [1Red(f) € Fiz(f) (18)
gfp(f) L Ezt(f) € Fix(f)

L
L

= Note: Ifp (despite the name) is defined as glb of all
pre-fixpoints

= The theorem (more or less directly) implies Ifp is the
least fixpoint

Static analysis
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Fixpoint iteration
= often: iterate, approximate least fixed point from below
(f"(L)n
LCfL)CfA(DE...

= not assured that we “reach” the fixpoint (“within" w)

LML) EU MWL) B ifp(f)
afe(f) ET1, f*(T) Ef(T) E(T)

= additional requirement: continuity on f for all
ascending chains (I,,),

FL@) = L))

n

= ascending chain condition ("stabilization"):
frL) =) e Ufp(f) = £(L)

= descending chain condition: dually



Basic preservation results

Lemma (“Smaller” graph — less constraints)
Assume live |= LVE(Sy). If flow(S1) D flow(S2) and
blocks(S1) D blocks(Ss), then live = LVE(Ss).
Corollary (“subject reduction”)

If live |= LVE(S) and (S, o) — (S,6), then live = LVE(S)

Lemma (Flow)

Assume live = LVS(S). Ifl —gow I/, then
liveezit(l) D liveentry(l').
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Correctness relation

= basic intuitition: only live variables influence the
program

= proof by induction

=

Correctness relation on states:

Given V = set of variables:

o1~y 09 iff Vo € V.O'l(.%') = 02(.%') (19)

(S,01) —— (5, 0%) (8", o)) —— of’
‘NV ‘NV’ ~yr
(S,09) —— (5, 0%) (8", o) —— ol

Notation: N(1) = liveeniy (1), X (1) = liveeyi(1)

~x ()
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Correctness (1)

Static analysis
and all that

Martin Steffen

Targets & Outline

i i Int dural
Lemma (Preservation inter-block flow) ntraprocedura

analysis

Determining the control

Assume live |= LVE. If 0y ~x@y o2 and | =gy I, then fow oo

Available expressions
Reaching definitions
~Y
01 ~N(") 02- R
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Correctness

Theorem (Correctness)
Assume live |= LVE(S).
= If <S, 0'1> — (S, O"1> and o ~N(init(S)) 92 then there
exists 6o s.t. (S, 02) — (S,62) and 61 ~ N(iit($)) 02

= If (S,01) — 61 and o0 ~N(init(S)) 02 then there exists
b9 S.t. <S (72) — 69 and &1 ~ X (init(S)) G9.

(S,01) — <S &

~
=
~

<S7 01> ? é—l
~ N (init(S)) ~ N (init($)) ‘ ~N(init(S)) X (init(S))

(S, 09) » (S, 69) (S,09) > Gy
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Correctness (many steps)

Static analysis
and all that

Martin Steffen

Assume live ): ng (S) Targets & Outline

Intraprocedural

= If <S, 01> —* <S,él> and o ~ N (init(S)) 02 then there s
exists 62 s.t. (S, a9) —* (S, 69) and 61 ~ i an Ga. Bt
25t (S,00) =7 (5, 62) and 61~y i) G2 BT

= If <S, Ul> —>* 6—1 and o1 NN(ZTLZt(S)) 09, then there exists Reaching definitions

Very busy expressions
G2 st. (S,02) =" 62 and 61 ~x(;) G2 for some U
Theoretical
l € ﬁnal(s) . properties and
semantics
Semantics
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Section

Monotone frameworks

Chapter 2 “Data flow analysis”
Course “Static analysis and all that”
Martin Steffen
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Monotone framework: general pattern

Static analysis

and all that
Martin Steffen
Analysis, (1) = { | flep
’ LI{ Analysis,(I') | (I',1) € F'} otherwise Iat'g“ ) “I'"e
Analysis,(1) = fi(Analysis, (1)) e

Determining the control
(20) o

Available expressions

= | |: either |J or N I
« F: either flow(S.) or flow®(S.). e
« E: either {init(S.)} or final(S,) emantics
= (. either the initial or final information e Lt
= f;: transfer function for [B]' € blocks(S.,). A

Equation solving

Interprocedural




Monotone frameworks

direction of flow:

= forward analysis:
= F = flow(S,)
= Analysis, for entry and Analysis, for exits
= assumption: isolated entries

= backward analysis: dually
- F = flow™(S,)
= Analysis, for exit and Analysis, for entry
= assumption: isolated exits

sort of solution

= may analysis
= properties for some path
= smallest solution

= must analysis

= properties of /all paths
= greatest solution

Static analysis
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Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics

Semantics

Analysis, (1) = 5 U ){Analysis,(I') | (I',1) € F} s oo (T

l L |fl [ E Monotone
Where LE = frameworks

1L ifl¢E
Analysis. (l) = fl (AnalySZ-SO (l)) Interprocedural
(21) analysis

Introduction

where [ L =1 Semantics

Analysis

Equation solving



Basic definitions: property space

= property space L, often complete lattice
= combination operator: | |: 2% — L, LI: binary case
. L=1]0

= often: ascending chain condition (stabilization)
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Transfer functions

Static analysis
and all that

Martin Steffen

fl:L—>L

Targets & Outline

Wlth l & :[;al')>|< Intrlapl:ucedural
analysis
. . Determining the control
= associated with the blocks CozrD
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Summary

= complete lattice L, ascending chain condition

= JF monotone functions, closed as stated

distributive framework

fliuly) = f(l) U f(l2)
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The 4 classical examples

= for a label consistent program S, all are instances of a
monotone, distributive, framework:

= conditions:

lattice of properties: immediate (subset/superset)
ascending chain condition: finite set of syntactic entities
closure conditions on F

® monotone

= closure under identity and composition
distributivity. assured by using the kill- and
generate-formulation
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Overview over the 4 examples

{f:L—L|3, 1, f(I)=(1\1lx) Uly}

avail. epxr. reach. def's very busy expr. | live var's
L 2AExp* 2Var* X Labz 2AExp* 2Var*
C 2 - 2 c
L N U N U
1| AExp, 0 AExp, 0
L 0 {(z,?) |z € fu(Si)} 0 0
E | {init(S:)} {init(Ss)} final(Sy) final(Sy)
F | flow(Sy) flow(Sy) fow™(S,) | Aow®(S,)
J—.'
Ji

fi(l) = (1\ kill([B])Y) U gen([B]")) where [B]' € blocks(S,)
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Solving the analyses

= given: set of equations (or constraints) over finite sets
of variables

= domain of variables: complete lattices 4+ ascending
chain condition

= 2 solutions for the monotone frameworks

= MFP: “maximal fix point”
= MOP: “meet over all paths”
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MFP

= terminology: historically "MFP" stands for maximal fix
point (not minimal)
= iterative worklist algorithm:
= central data structure: worklist
= list (or container/set) of pairs

= related to chaotic iteration
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Chaotic iteration

Static analysis

and all that

Input: equations for reaching defs WD Sl
for the given program Targets & Outline

Output: least solution: R_D:(RDl,...,RDlg) g szt

Determining the control
flow graph

Available expressions

Reaching definitions

Initialization : e —
RDl — @) o RD12 — @ Live variable analysis

. Theoretical
lteration : properties and

. . semantics

while RD] 7é Fj(RDl,...,RDlg) for some J Semantics

do Intermezzo: Lattices

Monotone

RDj = Fj(RDl, ey RDlg) frameworks
Equation solving

Interprocedural

analysis
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Analysis



Worklist algorithms

= fixpoint iteration algorithm

= general kind of algorithms, for DFA, CFA, ...

= same for equational and /constraint systems

= ‘“specialization” i.e., determinization of chaotic iteration

= worklist: central data structure, “container” containing
“the work still to be done”

= for more details (different traversal strategies): see
Chap. 6 from [? ]
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WL-algo for DFA

= WL-algo for monotone frameworks

input: instance of monotone framework

U

= two central data structures
= worklist: /flow-edges yet to be (re-)considered:
1. removed when effect of transfer function has been
taken care of
2. (re-)added, when point 1 endangers satisfaction of
(in-)equations
= array to store the “current state” of Analysis,
= one central control structure (after initialization): loop
until worklist empty
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Input: (L, F,F,E,¢f)
output: MFP,, MFP,

Method: step 1:

initialization

W = nil;
for all (,I'YEF do W:=(1I'): W;
for all /€ F or € E do

step 2:

if /€ E then Analysis[l] :==.
else Analysis[l] .= L;

iteration

while W #nil do

step 3:

(I,I') := ( f£st (head(W)), snd(head(W)));
W := tail WwW;
if fi(Analysis[l]) Z Analysis[l']
then Analysis[l'] := Analysis[l'] U f(Analysis[l]) ;
for all /" with (/,I”)€ F do
W=, 1"): W;
presenting the result:
for all /€ F or € E do
MFP. (1) := Analysis[l];
MFP. (1) := fi(Analysis|l])



ML Code

let rec solve (wll edge list)

match wll with
[1—=0

| (rr)ycowlt —
let ana_pre : var list
and ana_post : var list
in let ana_exitpre : var
in
if not (subset (ana-exitp
then

(enter (ana,l
let (new_edges
(let (preds

edge
node |

in List.map (fun n—> (1',n))

in solve (new_edges @

else
(solve (wl'))
in
solve wl_init;
fun (x: node) —> lookx (ana, x)

unit =

(x wl done x)

= lookx (ana,l) (% extract "' states
= lookx (ana,l")
list = f_trans(ana_pre,|)

re ,ana_post))

', union(ana_post,ana_exitpre));

list) =

ist) = Flow.Graph.pred (I"')
preds)

wl!

(* Nothing to do here. x)

*)
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MFP: properties

Lemma
The algo
= terminates and

= calculates the least solution

Proof.

= termination: ascending chain condition & loop is
enlarging
= least FP:

= invariant: array always below Analysis,
= at loop exit: array “solves” (in-)equations
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Time complexity

= estimation of upper bound of number basic steps
= at most b different labels in
= at most e > b pairs in the flow F'
= height of the lattice: at most h
= non-loop steps: O(b+ €)
= Joop: at most h times addition to the WL

O(e-h)
or < O(b?h)

(22)
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Adding procedures

= so far: very simplified language:

minimalistic imperative language
reading and writing to variables plus
simple controlflow, given as flow graph

= now: procedures: interprocedural analysis

= complications:

calls/return (control flow)

parameter passing (call-by-value vs. call-by-reference)
scopes

potential aliasing (with call-by-reference)

higher-order functions/procedures

= here: top-level procedures, mutual recursion,
call-by-value parameter + call-by-result
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Syntax

= begin D, S, end
ln lz
D ::= procp(valz,resy)isSend | D D

= procedure names p
= statements

S = ... [callp(a, z)]éj
= note: call statement with 2 /labels

= statically scoped language, CBV parameter passing (1st
parameter), and CBN for second

= mutual recursion possible

= assumption: unique labelling, only declared procedures
are called, all procedures have different names.
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Example: Fibonacci
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begin proc fib(val z,u,resv) is
if [z < 3]
then [v:=u+1]3
else [callfib(z — 1,u,v)]s;
[call fib(z — 2,v,v)]$
end8;
[Call ﬁb(.T, an)ﬁ)o

end
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Block, labels, etc.

init([callp

final([callp

blocks([callp

labels([call p
(I

flow([callp

AAAAA
~— N N
e it e —t— o~
I 0303 03 030
~— — — '

{ir}
{[ca11 p(a, 2)];°}

{le: 1}
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Block, labels, etc.

init([call p(a, Z)]gi)

final([call p(a, Z)]éi)

blocks([call p(a, Z)]fi)

labels([call p(a, z)]fi)

flow([call p(a, 2)])°)
(

le
{}
{[callp(a, 2)]i°}
{le, 1}

{(Ie; 1n), (Ix; 1)}

where proc p(valz,resy) is'" Send' is in D,.

= two new kinds of flows (written slightly different(!)):

calling and returning

= static dispatch only
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For procedure declaration
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For procedure declaration

(p) = I

() = {lz}

blocks(p) = {is', end=} U blocks(S)
(p) = A{ln, 1} Ulabels(S)
()
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“Standard” flow of complete program

not yet interprocedural flow (IF)

init, = init(Sy)
final, = final(Sy)
blocks, = |U{blocks(p)| procp(valz,resy)is» Send € D,}
Ublocks(Sy)
labels, = U{labels(p) | procp(valz,resy)is Send~ € D,}
Ulabels(Sy)
flow, = U{flow(p)| procp(valz,resy)is» Send= € D,}
Uflow(S)

side remark: S,: notation for complete program “of interest”



New kind of edges: Interprocedural flow

(IF)

= inter-procedural: from call-site to procedure, and back:
(Ie;1y) and (Ly;1,).
= more precise (= better) capture of flow

= abbreviation: [F for inter-flow, or inter-flow?

IF

inter-flow, = {(l¢yln, lz,1;) | Px contains [callp(a,2)]i¢ and

P

proc(valz,resy)is'" Send'



Example: fibonacci flow

Static analysis
and all that

Example: fibonacci flow Martin Steffen
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[call fib(x,0,u)]5o

Determining the control
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Semantics: stores, locations,. ..

= not only new syntax
= new semantical concept: local datal

= different “incarnations” of a variable = locations
= remember: ¢ € State = Var, — Z

Representation of “memory”

¢ € Loc locations
p € Env=Var, — Loc environment
¢ € Store=Loc —f, Z store

= og=g¢op: total = ran(p) C dom(s)

= top-level environment: p,: all var's are mapped to
unique locations (no aliasing !!!!)
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SOS steps

= steps relative to environment p
P (S,6) = (5,9)
or
p s (Sc) =<

= old rules needs to be adapted

= ‘“global” environment p, (for global vars)
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Call-rule

&1,62 ¢ dom(s)

procp(valz,resy)isi” Sends € D,

&=
CALL

p Fi ([call p(a, z)]ér,g) — (bind pi[z— & ][y~ &) in Sthenz :=y,<)




Call-rule

§1,62 & dom(s)  veZ
procp(valz,resy)is!» Send!s € D,

¢ = sl =[ad,)[é2 — 0]
CALL

p . ([callp(a, 2)];°,s) — (bind pufz =& ][y — &o] in S thenz := y,<)




Bind-construct

pFs (S6) = ($,<)

BIND;
pF. (bind pinSthenz :=y,s) —

ph(S6) =<

BINDs
p . (bind pin Sthenz :=y,¢) —

= bind-syntax: “runtime syntax”

= formulation of correctness must be adapted, too (Chap.
3)2

2Not covered in the lecture.
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Bind-construct

p i (S,6) — (8,<)

pk, (bind pin S thenz :=y,<) — (bind fin S then z := y, <)

P (S6) =<

BiNDo
p . (bind pinSthenz 1=y, <) — <[p(2) = <(4(y))]

= bind-syntax: “runtime syntax”

= formulation of correctness must be adapted, too (Chap.

3)?

2Not covered in the lecture.
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Transfer function: Naive formulation

= first attempt

Static analysis
ass tions and all that

" umptions:

p Martin Steffen

= for each proc. call: 2 transfer functions: f;_(call) and
fl X (retu rn) Targets & Outline
= for each proc. definition: 2 transfer functions: f; Intraprocedural
(enter) and f;, (exit) snabss

Determining the control
flow graph

= given: mon. framework (L, F,F,E ., f) usiabl exresions
Reaching definitions
Very busy expressions

Live variable analysis

Nalve Theoretical
properties and
= treat IF edges (I.;!y) and (I;1,) as ordinary flow edges semantics
(ll y l2) Intermezzo: Lattices
o . . Monotone
= [gnore parameter passing: transfer functions for proc. frameworks
calls and proc definitions are identity Equation solving
Interprocedural
analysis

Introduction
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Equation system (“naive” version”)
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Paths

= remember: “MFP"
= historically: MOP stands for meet over all paths
= here: dually mosty joins
= 2 “versions” of a path:
= path to entry of a block: blocks traversed from the

“extremal block” of the program, but not including it
= path to exit of a block

Paths
patho(l) = {[ll, . lnfl] | s — flow LiviNl,=1NL € E}
path,(l) = {[ll, - ln] | l; — flow li+1 ANl, =LAl € E}

= transfer function for paths I

fr=J, 0. fuoid
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Meet over all paths

= paths:

= forward: paths from init block to entry of a block
= backwards: paths from exits of a block to a final block

= two versions for the MOP solution (for given [):

= up-to but not including {
= up-to including [

MOP

MOP(l) =
MOP.(I) =

LA |
LI/ |
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MOP vs. MFP

= MOP: can be undecidable
= MFP approximates MOP (“MFP 3 MOP")

Lemma

MFP, 3 MOP, and MFP, J MOP,

In case of a distributive framework

MFP, = MOP, and MFP, = MOP,

(23)

(24)
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MVP

= take calls and returns (IF) serious
= restrict attention to valid (“possible”) paths
= capture the nesting structure
= from MOP to MVP: “meet over all valid paths”

= complete path:

= appropriate call-nesting
= all calls are answered
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Complete paths

= given P, =begin D, S, end
= CPy, 1,: complete paths from /1 to Iy

= generated by the following productions (I's are the
terminals) (we assume forward analysis here)

= basically a context-free grammar

CPU — 1

(l1,l2) € F

CP11713 — ll, CPlz,ls

(o), 1p, 1) € IF

CPlc,l — lc, OP; Clel

'rLyl(D’
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Example: Fibonacci

= concrete grammar for fibonacci program:

CPy 10

LELLLLTLLELY

9, CP18, CP1o,10
10

1, CPQ}S

2, CP378

2, CPys

3, CPs.s

8

4, CPLg, CP5’8
5, CPg3

6, CP1g, CP7g
7, CP&g
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Valid paths (context-free grammar)

Valid path (generated from non-terminal VP,):

= start at extremal node (E),

= all proc exits have matching entries

lLeF lo € Lab,

VP, — VP, VPl —1

(I1,12) € F

Vpll,lg, — ll, VP12713

(leylnylayly) € IF (leyln, 1z, 1) € IF

Vplc,l — lc, CP[ Vplr,l Vlel — lc, VPl

n 7lz ? n ;l
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MVP

= adapt the definition of paths

vpathy (1) = {[l1,..
vpathe (1) = {[l1,..

o] [ln=1ATh,. .. 1] valid}
] | ln =LAl ..., 1] valid}

= MVP solution:

MVP() = L{fA0)
MVP() = LI{f{0)

= but still: “meets over paths” is impractical

Fixpoint calculations

next: how to reconcile the path approach with MFP
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Contexts

= MVP/MOP undecidable (but more precise than basic
M FP) Static analysis

= instead of MVP: “embellish” MFP ] el et
Martin Steffen
QRSIAN (25)

Targets & Outline

Intraprocedural
analysis
= J: context information Detemiin the conol
= for instance: representing/recording of the path taken e

Reaching definitions

Very busy expressions

= “embellishment”: adding contexts Live variable analeis
Theoretical
embellished monotone framework properties and
Semantics
~ ,\ ~ Intermezzo: Lattices
(L7 7 f) Monotone
frameworks
Equation solving
= intra-procedural (no change of embellishment A) Interprocedural
= inter-procedural Introduction

Semantics

Analysis



Intra-procedural: basically unchanged

= this part: “independent” of A
= property lattice L=A>1L
= mononote functions F
= transfer functions: pointwise

fiD)(6) = fi(i(5)) (26)

= flow equations: “unchanged” for intra-proc. part
Adl) = fi(As(D))

A(D) = LA | (1) € For (I51) € F)} Uiy
(27)

= in equation for A,: except for labels [ for proc. calls
(i.e., not I, and 1,.)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis
Determining the control
flow graph
Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Sign analysis (unembellished)

= Sign ={—,0,+}, Lsign = 9 Var,—Sign
= abstract states 0*"9" € Ly,

= for expressions:
[JAs4n : AExp — (Var, — Sign) — 25i&n

Transfer function for [z := a]'

;o) = g o) | e vy (28)
where Y C Var, — Sign and

qbfign(asign) _ {O_sign[x'_) S] | s € [a]IAsign (29)

o sign

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural
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Introduction
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Analysis



Sign analysis: embellished

Static analysis
and all that

Martin Steffen

Lsign = A— Lsz’gn (30) Targets & Outline
= A — 2Var*—>Sign ~ 2A><(Var*—>Sign) Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Transfer function for [z := a]' A

Live variable analysis

Theoretical

properties and
. 5 . 0 semantics
fZSlg’n(Z) _ U{{a} % d);‘lgn(o_szgn) | (67 O_szgn) E Z} (31) Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Inter-procedural

= procedure definition proc(val x,resy)is'" S end's:
ﬁ7l,ﬁx:(A—>L)—>(A—>L):7;d

= procedure call: (I¢, 1,1z, 1) € IF

= here: forward analysis

= call: 2 transfer functions/2 sets of equations, i.e., for all
(leyln, Uz, 1) € IF

2 transfer functions

1. for calls: fllc (A—=>L)— (A= L)

Ao(le) = [, (Ao(lc)) (32)

1. for returns: j?QIC’lT (A—=>L)x(A—=L)— (A—=1L)

A

Ao(lr) = 214, (Ao (le), Ao(lr))) (33)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics
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Procedure call

Static analysis
proc p(val x,res y) and all that
Martin Steffen

ol
o PRI g is” Targets & Outline
1.0
Intraprocedural
analysis

Determining the control
flow graph

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

T~ — [~
\‘\
\ . Theoretical
~ .
I T~ . properties and
N end* semantics
A o Semantics
2 i
f /ch(I Y ) Intermezzo: Lattices
v Monotone

frameworks
Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Ignoring the call context

Static analysis

and all that
29 N W .
flal,‘ (l’l ) — flr (l ) Martin Steffen
proc p(val X, res y) Targets & Outline
Intraprocedural
analysis

Determining the control
flow graph

] fioy —
o

[call p(a, 2)]¢ /

Available expressions

Reaching definitions

Very busy expressions

Live variable analysis

A Theoretical
[caII p(a, z)]l, - proper:ies and
semantics
}\\ Semantics
le,lr —~ !

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Merging call contexts

Static analysis
and all that
A A

fi,lr (l, l/) — ﬁ?cﬁr ([) L fA‘QC,B;T (Z’) Martin Steffen

Targets & Outline
proc p(val x, res y)

Intraprocedural

analysis
_ ialn -
Y A - IS Determining the control
f /c( /) o flow graph
///
-

Available expressions

—>

- Reaching definitions

[call p(a, z)] e
. r Live variable analysis
%
L Theoretical

[caII p(, Z)],f l properties and

~—

Aé':B\\ semantics

f; ~ )
Io,lr ~_ endlx Semantics
Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Context sensitivity

= |F-edges: allow to relate returns to matching calls

= context insensitive: proc-body analysed combining flow
information from all call-sites.

= contexts: used to distinguish different call-sites

= context sensitive analysis = more precision + more
effort

In the following: 2 specializations:

1. control (“call strings")
2. data

(combinations of course possible)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Call strings

= context = path
= call-string = sequence of currently “active” calls

= concentrating on calls: flow-edges (I, l,), where just [.
is recorded

A = Lab* call strings

= extremal value (from L = A — L)
(o

~—

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics
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Monotone
frameworks

Equation solving
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Call strings

= context = path

= call-string = sequence of currently “active” calls

= concentrating on calls: flow-edges (I, 1), where just [.
is recorded

A = Lab* call strings

« extremal value (from L = A — L)

¢t ifd=c¢€
1 otherwise

05) =

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Fibonacci flow

Static analysis
and all that

Example: fibonacci flow Martin Steffen

Targets & Outline

Intraprocedural
analysis
\ Determining the control
flow graph
[call fib(z,0,9)]7, p— Available expressions

Reaching definitions
Very busy expressions

|

Live variable analysis

Theoretical
properties and
semantics

Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Fibonacci call strings

some call strings:

e,19],19,4],19,6],19,4,4], 9, 4,6],[9,6,4],[9,6,6], . ..

similar, but not same as valid paths

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
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Transfer functions for call strings

= here: forward analysis
= 2 cases: define fllc and fli I,

Transfer functions

= calls (basically: check that the path ends with [.):

A A

LD = fLU6) (34)
i) = 1
= returns (basically: match return with (a same-level)
call)
i G0) = [, 00T ([ LD))  (39)

= rather “higher-order” way of connecting the flows, using
the call-strings as contexts

= connection between the arguments (via 9) of f_;.

= given: underlying fllc and flzc,lr'

re 1 1 - ~ .-

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Sign analysis (continued)

Static analysis
and all that

[ " -
= SO far: unconcrete , 1.e., Martin Steffen
= given some underlying analysis: how to make it Targets & Outline
context-sensitive Intraprocedural
. analysis
= call-strings as context BT
flow graph

Available expressions

= now: apply to some simple case: signs

Reaching definitions

N : Very busy expressions
= remember: L ~ 2AX(Var*_)Slgn) (See Eq (30)) Live variable analysis
. +Si . Th ical
= before: standard embellished f;>'#" (with the help of properties and
Sign semantics
¢l ) Semantics

Intermezzo: Lattices

= now: inter-procedural

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Sign analysis: aux. functions ¢

still unembellished

calls: abstract parameter-passing

G (o) = {o" ][] | s € alju

@ o sign )
returns (analogously)

M7 a3 ) = o[- ])

(formal params: x,y, where y is the result parameter, actual
parameter z)

= non-det “assignment” to y

= remember: operational semantics,



Sign analysis: aux. functions ¢
still unembellished

calls: abstract parameter-passing

(ot = {o sy 8] | s € [, o € {-,0,+1)

osign »

returns (analogously)

Y27 o5 = {03 @y, 2 07 (2), 07" (y), 05 ()]}

(formal params: x,y, where y is the result parameter, actual
parameter z)

= non-det “assignment” to y

= remember: operational semantics,



Sign analysis

calls: abstract parameter-passing + glueing
calls-returns

foml(z) = U} x 59" (o%im) | (8, 0%9m) € Z,8' =)}
Returns: analogously

i2(2,2) = UL} x 679201, 05" | (6,05 € 7 }

l(n r

(formal params: z,y, actual parameter z)



Sign analysis

calls: abstract parameter-passing + glueing
calls-returns

fml(z) = UL} x o™ (0%im) | (8, 0%m) € 2,8 = [5,1.])}

Returns: analogously

2,2 = U0} < 67920103 | (3,01 e Z )
(&', 059™) e Z'
& =1[5,1.]

(formal params: z,y, actual parameter z)



Call strings of bounded length

Static analysis
and all that

Martin Steffen

i H T & Outli
= recursion = call-strings of unbounded length areets & Outline

. Intraprocedural
—> restrict the |ength analys.is
< ftl)::f:::;'"g the control
A = Lab~ for some k > 0 Avalble expressions

Reaching definitions
Very busy expressions

Live variable analysis

= for k = 0 context-insensitive (A = {€}) Theoretical

properties and
semantics
Semantics

Intermezzo: Lattices

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Assumption sets

= alternative to call strings
= not tracking the path, but assumption about the state
= assume here: lattice
L=2P
— L=A—L~28xD
restrict to only the last call

dependency on data only =

(large) assumption set context
A=2P

= i ={({t},t)} extremal value

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics
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Transfer functions

Static analysis

. Ca”S and all that

Martin Steffen

L2y = U x L) | (5,d) € ZA } i

(5’ — Intraprocedural
analysis

Determining the control

Where ('bllc . D —> 2D flow graph

Available expressions
= note: new context ¢ for the procedure body Rp LD

Very busy expressions

Live variable analysis

= ‘“caller-callee” connection via the context (= data) ¢

Theoretical
properties and

= return semantics

Semantics

fRo(z2.z") = U{{o} x ¢}, (d,d)| (5.d)eZn }
((5/, d,) G Z,/\ Monotone
5, _ frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Transfer functions

= Ca”S Static analysis
and all that

Martin Steffen

fLZ) = U} < oL@ | (6,d) € Zn } o T sOuine
(5/ — {d” ’ ((5, d//> S Z} analy':is

1. D Available expressions
Where d)lc ‘ D — 2 Reaching definitions

Very busy expressions

= note: new context & for the procedure body Live variabl anlysi
= “caller-callee” connection via the context (= data) & e

semantics

= return Semantics

Intermezzo: Lattices

£0,(2.2) = U8} x o}, (d.d) | (6.d) € Zn el
(5/7 d/) c Z//\ frameworks
5/ — {d/l ‘ (6’ d//) € Z}Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Small assumption sets

= throw away even more information.

A=D

= instead of 2 x D: now only D x D.
= transfer functions simplified
= call

fl2z) = Uleyxel@) ] (6.d)eZ}

= return

f2,(2.2") = U} x ¢}, (d.d) | (5,d) € ZA }
(60,d') ez’

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics
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Monotone
frameworks

Equation solving
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Introduction
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Flow-(in-)sensitivity

Static analysis
and all that

= ‘“execution order” influences result of the analysis: Wiartin Steffen

Targets & Outline
S1;59 vs. S9: 51
Intraprocedural
analysis
Determining the control
flow graph
= flow in-sensitivity: order is irrelevant hatable exresions
eaching definitions
Very busy expressions

= less precise (but “cheaper”)

Live variable analysis

= for instance: kill is empty Theoretical

properties and
semantics

= sometimes useful in combination with inter-proc. .
analysis Intemzzo: Lattces

Monotone
frameworks

Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Set of assigned variables

= for procedure p: determine
1AV (p)

global variables that may be assigned to (also indirectly)
when p is called

= two aux. definitions (straightforwardly defined,
obviously flow-insensitive)

= AV(S): assigned variables in S
= CP(S): called procedures in S

IAV(p) = (AV(S) \{z}) U J{IAV(Y) | »' € CP(S)} (36)

where proc p(val z, resy) is'» Send™ € D,

= CP = procedure call graph (which procedure calls
which one; see example)

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
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Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
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Example

Static analysis
and all that

Martin Steffen

begin proc fib(valz)is

if [Z < 3] Targets & Outline
then [calladd(a)] ::;;l::ced"ra'

[
else [call ﬁb(z — 1)] ; E:Le;:::‘ngmuomml
[call fib(z — 2)] "

Very busy expressions

end; Live variable analysis
procadd(valu)is(y :=y+ 1;u:=0) Theoretical

properties and

end semantics
y = 0; [call fib(z)] Semantic

Intermezzo: Lattices
end Monotone

frameworks
Equation solving

Interprocedural

analysis
Introduction
Semantics

Analysis



Example

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
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Semantics
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Example

IAV(fib) = (0\{z}) UIAV(fib) UIAV(add)
IAV(add) = {y,u}\{u}

= smallest solution

IAV(fib) = {y}

Static analysis
and all that

Martin Steffen

Targets & Outline

Intraprocedural
analysis

Determining the control
flow graph

Available expressions
Reaching definitions
Very busy expressions

Live variable analysis

Theoretical
properties and
semantics
Semantics
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Chapter 3

Types and effect systems

Course “Static analysis and all that”
Martin Steffen
IN5440 / autum 2018


http://www.ifi.uio.no/~msteffen

Chapter 3

Learning Targets of Chapter “Types and effect
systems”.

type systems
effects
functional languages

type inference and unification



Chapter 3
Outline of Chapter “Types and effect systems”.

Type checking

Type inference



Section
Type checking

Chapter 3 “Types and effect systems”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018


http://www.ifi.uio.no/~msteffen

Introduction

Static analysis
and all that

Martin Steffen

= now: working with a Targets & Outline
T hecking
n typed |anguage ype f:1ec ing
= functional language Fun Type inference

Type inference problem

Unification

= cf. the corresponding intro-section (annotated types)

= here: control-flow analysis (perhaps more). Remember
also the constraint based analysis/CFA in the intro



Syntax

Static analysis
and all that

Martin Steffen
e = clx| fo;x=e| fun,fax=elee terms

| ifetheneelsee| letz =cine|eope Targets & Outline

Type checking

Type inference

Table: Abstract syntax et
m € Pnt program points
e € Expr expressions
¢ € Const constants
op € Op operators
f,x € Var variables



Examples

Static analysis
and all that

Example (Application) Martin Steffen
Targets & Outline

T hecking
(an T = l’) (fny Yy = y) ype checking

Type inference

Type inference problem

Unification

Example

letg = (funp fz= f(fayy=y))
in g (fnzx = x)



Types

= Curry-style typing

Static analysis
and all that

T € Type types ot St
I' € TEnv type environment

Targets & Outline
Type checking

Types

Type inference
Type inference problem

Unification

T z=int | bool | T — T

= base types:
= bool and int
= standard constants and operators assumed

(true,5,+,<,...)
= each constant has a base type 7,

= type environments (finite mappings)

L= |,z 38



Judgments and derivation system

Type judgments

Fl—ULG:T

= derivation system:

= Curry-style formulation
= non-deterministic
= nonetheless: monomorphic let

= type reconstruction/type inference

Static analysis
and all that

Martin Steffen

Targets & Outline

(37) Type checking
Type inference

Type inference problem

Unification

3-9



Static analysis
and all that

Martin Steffen

F(Z’) =T Targets & Outline
r I_ €:Te Con — VAR Type checking
'Fa:7 Type inference
Type inference problem
P |_ 61 : Tolp P |_ 62 : /7—02p Unification

I'ejopes: Top




Lo be:m D, frm > mbe:m St Al
FN FUN and all that
F F fnﬂx = e . 1 — D) F '7 funﬂl' = e: 1 — To Martin Steffen

Targets & Outline
I'te:m — 7 I'tey:m

Type checking

APP Type inference
'+ €1 €2 1 T2 Type inference problem

Unification

I't e : bool I'ke 7 I'key:r

Ir
I' ifepthene; elsees : 7T

I'Fe :m IembFe:m

LET
'k letxz=e1iney : 7

3-11



Section

Type inference

Chapter 3 “Types and effect systems”
Course “Static analysis and all that”
Martin Steffen

IN5440 / autum 2018


http://www.ifi.uio.no/~msteffen

Inference algorithms

Static analysis
and all that

= take care of terminology Martin Steffen

= so far: no algorithm! (price of laxness) Targets & Outline

= foresight needed Type checking

Type inference

= guessing wrong = backtracking (and we seriously don't R
want that) Unification

= required: mechanism to make

= tentative guesses
= refine guesses

= we start first: with the underlying system



Augmented types

Static analysis
and all that

Martin Steffen

fancy name for: "we have added type variables” Targets & Outline
Type checking
7 € AType augmented types Type inference
. Type inference problem
a € TVar  type variables Unicaton
T == int|bool | T =T |«
a == 'a|’p]...

3-14



Substitutions

Substitution (in general)

mapping from variables to “terms”

= ‘“syntactic mapping” here:
= “terms” are (augmented) types
= variables: type variables

¢ : TVar —5, AType

= considered as finite functions: we write dom(6).

= ground substitution: mapping to ordinary types (no
variables)
= substitutions: lifted to types in the standard manner

= composition of substitutions: 61 o 05 (or just 626;)

Static analysis
and all that

Martin Steffen

Targets & Outline
Type checking

Type inference
Type inference problem

Unification



Algorithm: basic idea

= instead of guessing type now =- postpone the decision

= use of type variables
replace:

NembFe:n
Fn

't fa,z=e:m > n




Algorithm: basic idea

= instead of guessing type now = postpone the decision

= use of type variables

Iz:atke:n
Fn

'k fnz=e:a—n




Algorithm: basic idea

= instead of guessing type now = postpone the decision

= use of type variables

INz:atke:n
Fn

't fn,z=e:a—m

= x:a when « is fresh (otherwise unused) means: type of
x is completely arbitrary.

= syntax-directed now?

= T1: meta-variable for concrete types

=« (still meta variable for) type variables



Algorithm: basic idea

= instead of guessing type now = postpone the decision

= use of type variables
a's completely arbitrary?
Consider body
e=2xyg

for fn,x = ¢
=

Restriction on o here

= a function type: a = — v
= fit together with type of g = condition or constraint on

B



Algorithm: basic idea

= instead of guessing type now = postpone the decision
= use of type variables

= judments “give back” not just the type, but also
“restrictions” on type variables.
= represented as constraint?
. =
I'ke:(r,C)

Under the assumptions I' (which might “assign” to (program) vari-
ables: type variables), program e possesses type 7 (again potentially
containing type variables) and imposes the restrictions "embodied”

by C on the type variables.

%In the book, what is given back is a substitution instead.



Constraints

= generally:

= constraint(s) is a formula with free variables
= solving a constraint set: finding values for the variables
such that here formula becomes true (satisfiability)

. set of constraints = interpreted as A (conjuction)
= more precisly here: (term) unification constraints
= notation 7 =’ Ty

= many other forms of “constraints” systems exists with
specialized solving techniques

= here: term unification

Static analysis
and all that

Martin Steffen

Targets & Outline
Type checking

Type inference
Type inference problem

Unification

3-17



Constraint generation

T-ConstT T-VAR
I'ke:(r,0) I'ta: (T(x),id)

o fresh T, z:akeq: (10,Co)
T-FN

Tk fn.x = ¢ : (o — 70,Ch)

a,aq fresh T, f:a — ag, z:a b e 2 (19,Co) Cp = {19 =" a}
T-FuN

'k fun,f = ep: (o — 70,Co, C1)

F|—€12(T1701) F"CQI(TQ,CQ) « fresh

Cs={n="(m—a
=1 ( )} T-App

I F €1 €2 (Oé,Cl,CQ,Cg)




Constraint generation

F"@()I(T07CO) Fl_eli(Tl,Cl) F"égZ(TQ,CQ)

04:7'0 =7 bool 05:7'1 =" T2
Ir

't if eg theney elsees : (19,Ch, Co, C3,Cy, Cs)

I‘Fel . (Tl,Cl) F,.T:T1F€2:(7—2,Cg)

LET
I'kletx =ejines : (12,C1,Ch)
Fl—ell(Tl,Cl) Fl—egl(Tg,CQ)
C={n="10mn="15 Op

I'Fejopes: (1op, C1,C2,C)




Unification

Static analysis

= ‘“classical” algorithm ([1]) and all that
. . . Martin Steffen
= many applications (theorem proving, Prolog etc.) o

Co e Targets & Outli
= definition: substitution et & TuEne
Type checking

Unifiel’ Type inference

Type inference problem

Unification

A unifier of two types 71 and 79: a substitution 6 such that

(1) = 6(72)

= unfication problem given 11 and 79, determine a unifier
for them, if it exists



Ordering substitution (and unifiers)

= better formulation of unfication problem: given 71 and
To, determine the best = most general unifier for them
(if they are unifiable).

e . . ?
= solve unification constraint 7 =" ™

= easy generalizable to constraints: 6 = C

Ordering: “less general”, “more specific”

01 < 0 if 61 = 005 (for some 0)

= most-general-unifier of two types = “the" least upper
bound of all unifiers

Static analysis
and all that

Martin Steffen

Targets & Outline
Type checking

Type inference
Type inference problem

Unification



Unification algorithm for underlying types

U(int,int))
Z/{(bool bool))
U(T1 — T2, T] — T)

U(r, )

U(a,T)
Z/[(Tl,’rz)

Static analysis
and all that

Martin Steffen
id
7 d Targets & Outline
let 6, = U(Tl,T{)
Oy = U(0172,0175)
in 02 o} 91

Type checking

Type inference
Type inference
Unification

e problem

[+ 7] if a does not occur in T
orifa=r7
fail else

symmetrically
fail in all other cases
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1-phase Type inference algorithm

Static analysis
and all that

Martin Steffen
= formulated here as rule system

Targets & Outline

= immediate correspondence to a recursive function:
Type checking

W(F, 6) = (7', 0) Type inference
Type inference problem

Unification

instead of
I'kFe:(r,0)

= not 2-phase, giving back a set of unification constraints
c
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T-CoONST T-VAR
It c: (7,1id) 'tz (I(x),id)

o fresh I,z eg : (10,00)
T-FN

'k fn,z = e€q: (900& — 7'0,90)

a,ap fresh T, fra — ap, z:abeq : (10,00) 61 = U(70,000)

T-FunN
'+ funﬂf T = €. (0190(1 — 91(7’0), 010 90)

I‘I—el : (71701) 011—"—622(7'2,92) o fresh 93 :L{(0271,7'2—>a)
T-App

'k €1 €9 (930&, 939201)




'k €p - (7’0,90) 90F [ ey : (71,91) 9160F + €9 (T2,92)

93 = u(9290T07 bOOl) 64 = Z/{(037'2, 93027’1) I
F

I'Fif egthene; elsees : (94937‘2, 9493926‘190)

Fl—el : (7’1,91) 91F,IL‘ZT1|—622<7’2,92)

LET
I'kletx =e¢;iney: (7’2,9291)

FFelz(ﬁ,@l) QQFFGQZ(TQ,QQ)

93 = u(ale, Tolp) 93 = u(937—27 To2p) OP

'k €10peg . (Top, 94939291)




“Classic” type inference

= we did not look at the full well-known
Hindley-Damas-Milner type inference algorithm
= missing here: polymorphic let
= monomoprhic let: “almost useless” polymorphism
= Note the fine line
= polymorphic let: yes
= polymorphic functions as function arguments: no!

the classical type “inference” algo

= higher-order functions,
= polymorphic functions,

= but no “higher-order polymorphic functions”

= dropping the last restriction: type inference undecidable

= no type variables in the underlying type system (the
“specification”), the type inference algo does

= types (with variables) and type schemes V.1

Static analysis
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Targets & Outline
Type checking

Type inference
Type inference problem

Unification
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