
Appendix 2 

 

Our process 

After a brief introduction in the lecture about deep neural networks and how they work, we                               

started working on the code to try and improve it. The existing code was a chatbot and our                                   

job was to improve the accuracy. As mentioned the lecture only gave a short brief of the task                                   

and that made the process a little confusing. Luckily our group had a few members with some                                 

skills in python so we managed to achieve some results. 

 

The Outcome 

● torch.sigmoid(x) gives a better result than F.sigmoid(x) at the second layer of 3. 0.057                           

-> 0.0548. It’s better, but still barely noticeable. 

● The amount of neurons gives a much better result. By just having two layers and                             

increasing the amount of neurons (to i.e 8192), the margin of error will be reduced to                               

0.03, even with just 300 steps. 

● More layers increases the time of how long the training takes rather drastically.                         

Especially with many neurons in each layer. It gives better results with for instance                           

three layers at 0.0548 and two layers at 0.072. 

 

Three layers with 256 neurons per layer and 3000 steps: 

 

Four layers with 256 neurons per layer and 3000 steps: 

 

   



Five layers with 256 neurons per layer and 3000 steps:  

 

Six layers with 256 neurons per layer and 3000 steps: 

 

 

The code for variable 1 (we can assume there is some errors): 

 

 



We have an error on the screenshot, the “num_classes” in self.fc5 needs to be changed to                               

256 in this scenario. As we discover later, we should incrementally increase the numbers for                             

each layer instead of having the same input and output in all of them. 

 

 

4096 neurons at two layers and 3000 steps: 

 

4096 neurons at two layers and 1000 steps: 

 

1024 neurons at two layers and 1000 steps: 

 

1024 neurons at three layers and 1000 steps (higher??): 

 

1024 neurons at six layers and 1000 steps (takes 10 minutes to run): 

 



At this point we realized that our code was wrong and needed increasing/decreasing                         

numbers in and out of each layer, as there’s no point processing the same data over and over                                   

with the same in and outs, as they will come to the same conclusion. 

 

A change done to the layers to see if that changes anything to the results: 

 

 

About the same. Just decreasing layers, from 4096 to 256: 

 

Much lower, just increasing layers from 256 to 4096: 

 

By increasing the numbers for each layer, so the first layer has 6 inputs and 256 outputs, the                                   

second layer has 256 in, 512 outs etc, we got better results.  

4 layers, layer 1: 6-12, 2: 12-24, 3: 24-48, 4: 48-num_classes (30):  



 

5 layers, same increments of increase, double outs of each layer, for a total of 96:  

 

6 layers, same increments, 192 out:  

 

To compare 2 layers with the same amount of neurons with 6 layers:  

 

Almost identical, which is confusing. 

 

Reflections 

We experienced this task as a little confusing because we had little previous knowledge                           

around the topic. We had to spend some time going through trial and error to get the results.                                   

This process was quite time consuming and we had to spend quite a lot of time doing                                 

independent research around the different aspects of the given code. It is however very                           

interesting to get some insight in machine learning and deep neural networks to see how they                               

work. This is a very interesting topic and we enjoyed working with it to the degree that we                                   

understood what we were doing.  

 

In addition most of the experimenting with numbers came under the #Variant1 part of the                             

code, as Variant 2 never really triggered, hence the group didn’t see the point in conducting                               

the same experiments there. 



 

We had a few interesting finds. Having more than two layers was pointless if the different                               

layers had the same in and outs, or decreasing in and outs. With the same numbers the next                                   

layer would just process the exact same data and get the same outcome, for an increased                               

cost of time. This led us to increase the numbers of each layer, which provided a better result,                                   

however the group struggled to see the point of several layers, when the last few                             

experiments showed that 2 layers with the same amount of neurons as the 6th layered                             

incremental increase, gave a better result. As an explanation this could be where Variant 2 of                               

the code triggered, which the group did not really check. Another explanation would be that                             

the group did something wrong when creating new layers, as more layers didn’t give a better                               

or “smarter” AI.  

 

 


