Appendix 2 - Machine learning task

We spent a lot of time initially trying to understand the code to figure out which numbers we
could manipulate in order to see any changes in the training of the chatbot. While the code
was not very descriptive, we found out that changes in the batch number and epoch values
seemed to have the biggest impact, while changing the “Dense” value in the model also had
some minor effects. Throughout this working with this task, we have been very confused by
the output values of the neural network’s training. We still don’t really have a good
understanding of what the loss and accuracy values actually mean and how they correlate to
how the bot responds to our input. The difference between val_loss and loss was also not
apparent. We ran into some issues where the script would randomly crash after no more
than 20 inputs from the user:

Chatbot:God, you're just like him! Just keep me locked away in the dark, so I can't experience anything for
myself

Human:You deserve it
Traceback (most recent call last):

File , line , in
category = getCategory(s)

File , line , in
token =

tokenizer.sequences_to_matrix(np.array([makeTextIntoNumbers(inputString),makeTextIntoNumbers(x_train_org[@])]))

File "C:\Users\erikm\anaconda3\1lib\site-packages\keras_preprocessing\text.py", line 415, in

if not seq:

The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

Chatbot crashing

As the chatbot replied with the movie lines, we were confused by whether it had any
correlation to what we wrote to the bot. At some point the replies indicated that the chatbot
had understood what was written by us, however we were quickly disappointed when the
next line seemed to be completely random. We are therefore left with the feeling that it
doesn't matter what we write to the chatbot.

Learning outcomes

It seems to take a very high amount of iterations for the chatbot to exhibit any form of
intelligence. We have not yet seen any signs of this. We change the batch size to 512 and
later to 1000, and change the epochs to 10000. Still the accuracy was 0.17 and the
interaction with the chatbot was confusing.

It's very hard to tell what actually makes a difference and what doesn’t. This might be
connected to using too few iterations. However we didn't find what we were supposed to
increase or do differently to get a better chatbot.

When we added a dropout to the model of 0.3 the accuracy number seemed to fluctuate up
and down a bit more. The number changed from 0.15 to 0.18 after every epoch. Without
dropout the accuracy was consistently 0.15 until it changes to 0.17.

val_accuracy: ©.0000e+00
Epoch 9995/10000
15ms/step 2.6 accuracy: @. val_loss:

Epoch 9996/16000
2/2 [15ms/step ;2. accuracy: 0.1722 - val_loss:
L ©.00002+00

Epoch 9997/16000

2/2 [15ms/step : 2.6192 - accuracy:

val_accuracy: ©.0060e+00

Epoch 9998/10000

2/2 15ms/step B B accuracy:

val_accuracy: ©.6060e+08

Epoch 9999/10000

2/2 [16ms/step 8 B accuracy: o. val_loss:

val_accuracy: ©.6000e+00

Epoch 16000/10000

2/2 [15ms/step 8 Bo accuracy: ©.1722 - val_loss:

val_accuracy: ©.0000e+00

Finished training

ready

WARNING: tensorflow:6 out of the last 11 calls to <function Model.make_predict_function.<locals>.predict_function

at ex00000186392E2CA0> triggered tf.function retracing. Tracing is expensive and the excessive number of

tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different

shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the

loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can

avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/tutorials/customization/

performancespython_or_tensor_args and https://waw.tensorflow.org/api_docs/python/tf/function for more details.
:\Users\erikm\Documents\Master UiO\IN5486\moviechatbot.py:92: VisibleDeprecationWarning: Creating an ndarray

from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or

shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
token =

tokenizer. sequences_to_matrix(np.array([makeTextIntoNunbers(inputString),makeTextIntoNumbers(x_train org[e])]))

Chatbot:Just once. Afterwards, I told him I didn't want to anymore. I wasn't ready. He got pissed. Then

broke up with me.

Human:What an asshole!
Traceback (m

File
category = getCategory(s)

File , line , in

token
tokenizer. sequences_to_matrix(np.array([makeTextIntoNumbers (inputString),makeTextIntoNumbers(x_train_org[0])]1))

File

if not seq:

High validation loss (12.4) after 10 000 epochs

