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 UNIVERSITY OF OSLO 

 

 Faculty of Mathematics and Natural Sciences 
 

 

Exam: IN5520 / IN9520 – Digital image analysis           

Date: Wednesday December 9, 2019 

Exam hours:       09.00-13.00 (4 hours) 

Number of pages:       7  pages of sketches to a solution  

Enclosures: Nne 

Allowed aid:                 Calculator  

   

 

 Read the entire exercise text before you start solving the exercises. Please 

check that the exam paper is complete. If you lack information in the exam 

text or think that some information is missing, you may make your own 

assumptions, as long as they are not contradictory to the “spirit” of the 

exercise. In such a case, you should make it clear what assumptions you 

have made. 

 

 You should spend your time in such a manner that you get to answer all exercises. 

If you get stuck on one question, move on to the next question. 

 

 There are 5 exercises. They are weighted proportional to the number of sub-questions. 

 

 Your answers should be short, typically a few sentences and / or a sketch  

should be sufficient. 

 

 Do not give just a numerical answer, but demonstrate your reasoning. 

 

 

Good luck!! 
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Exercise 1: Texture Analysis 
 

Assume that you are given a gray level image of size MxN pixels with b bits per pixel. 

 

a) Describe how a normalized Gray Level Coccurrence Matrix (GLCM) is computed,  

and which parameters this involves.  
Answer: Textbook stuff!  

Eventual re-quantization of the input gray level image from G =2b-1 to L gray levels should be motivated. 

4 elements should be mentioned: 

1. Initialize matrix of GxG (or LxL) with 0’s.  

2. Go through all MxN pixels where pixel pair of gray levels i and j a distance d pixels apart in 

direction θ are inside image, and add 1 at position (i,j) in GLCM. 

3. Finally, normalize by integer sum of matrix entries. 

4. Parameters: G (or eventually L),d, θ (or Δx,Δy). 

 

b) For a given inter-pixel distance and direction, how do we make the normalized GLCM 

symmetrical about the matrix diagonal without double counting?  
Answer: The GLCM in the opposite direction of θ is the transpose of the GLCM in the direction θ. 

So we have P (d,θ+π) = [P(d,θ)]T  - see slide 38 of lecture 2. 

Thus, double counting is avoided by adding the transpose of the 

GLCM to the GLCM before normalizing. 

If both have been normalized, divide the sum by 2. 

c) Assume that we have accumulated a normalized 

symmetrical GLCM for a given inter-pixel 

distance and direction. 

Give the expression for a GLCM feature that  

has a weighting function equal to zero along the 

diagonal (i = j), and increases quadratically away 

from the diagonal, as illustrated for G=15. 

Answer: 

 
What will the effect of this weight function be, and 

what kind of images will get a high feature value? 
Answer: It will favor contributions from P(i, j) away from the diagonal (i ≠ j), i.e., give higher values for 

images with high local contrast. 

d) How can we find what fraction of pixel pairs at the given inter-pixel distance and direction 

in the image that have an absolute difference | i-j | ≥ D gray levels, while both i and j are in 

the upper ¼ of the gray scale? Please illustrate! 
Answer: Matrix elements on the diagonal will all represent pixel pairs with no gray level difference.  

Matrix elements that are one cell away from the diagonal (along I or j-direction) represent pixel pairs with a 

difference of only one gray level.  So, the sum of all elements from D cells away from the diagonal (along i 

and j-axis) into the corners of the matrix will represent the fraction of pixel pairs having a difference of D 

gray levels or more. In yellow for D=2.Restricted to upper ¼ of gray scale: sum only outside dark grey. 

 J = 0 J = 1 J = 2 J = 3 

I = 0 I – j = 0 | I – j | = 1  | I – j | = 2 | I – j | = 3 

I = 1 | I – j | = 1 I – j = 0 | I – j | = 1 | I – j | = 2 

I = 2 | I – j | = 2 | I – j | = 1 I – j = 0 | I – j | = 1 

I = 3 | I – j | = 3 | I – j | = 2 | I – j | = 1 I – j = 0 
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Exercise 2: Chain Codes 

 
You are given the 8-directional chain code and the binary object below.  

 

 

 

 

 

 

 

  

 

 

 

a) Find the absolute chain code of the boundary of the object  

clockwise from the upper left pixel.  

Answer: The absolute code starting at the upper left point and moving clockwise is 19 digits:  

 

0000644570645422222 

 

b) Which technique, based on the 8-directional absolute chain code,  

can be used to make a description of the object that is independent of the start point?  

Demonstrate this by starting at the lower right pixel of the object, instead of the upper left. 

Answer: A minimum circular shift of the clockwise absolute chain code gives start point invariance. 

Demonstration: The absolute chain code starting at the lower right point is:  422222000064457645. 

The minimum circular shift of this is: 000064457645422222, which is the same code as when we 

started at the upper left in a). 

 

c) Which technique, based on the clockwise relative chain code, will give you the same 

description of the object, independent of the start point?  

Demonstrate this by starting at the upper left and the lower right object pixel. 

Answer: A minimum circular shift of the clockwise relative  chain code  gives a normalization for 

start point. 

Demonstration: 

The clockwise relative code, starting at the upper left pixel of the object, is the 19 digits: 

0222002343003102222 . The minimum circular shift of this is: 00233430031022220222. 

With start point at the lower right pixel we get 1022220222002343003 which has a minimum 

circular shift 0023430031022220222, which is the same as above. 

 

d) Rotation invariance is inherent in relative chain codes.  

But what if the object has been flipped horizontally. 

How can you then determine if it is the same object? 

Answer: The simplest way is to flip it back, select a starting point, and do 

as in the exercise above. 

Alternatively, the anti-clockwise relative code, using a flipped code, and 

starting upper right, is 0222002343003102222, which has a minimum 

circular shift:  002343003102220222. So it is the same object! 

As a vertical flip is equivalent to a rotation by 180 degrees followed by a 

horizontal flip, this works for vertical flips too. 
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Exercise 3: Geometric Moments and Hough Transform 

 
Assume that you have thresholded a gray level image into a binary image b(x,y)  

containing a solid object (pixel value = 1) and a background (pixel value 0).  

 

a) Describe a moment-based approach to find the center of mass of the object. 

Answer: We use first order moments to find the center of mass 

 

 

 

 

 

 

b) Assume that the object is an equilateral triangle, located somewhere in the image.  

Give a definition of the object orientation, and describe a moment-based approach to 

estimate the orientation of the object. In this case, is the result unique? 

Answer: We either use central moments defined by 

 

 

And use the three second order central moments μ11, μ20, and μ02 to estimate the orientation of the 

object by 

 

 

 

Or we shift the origin to the center of mass, and use the ordinary moments to find the orientation. 

Since the orientation is defined as “the angle, relative to the X-axis, of an axis through the centre of 

mass  that gives the lowest moment of inertia”, we have three possible orientations of this triangle. 
 

c) Assume that we translate the origin to the center of mass of 

the triangle, then apply a gradient detector to the binary 

image, and use the “normal representation” Hough Transform. 

 

Assume that one side of the triangle is parallel to the x-axis, 

describe the contents of the Hough space. 

Answer:  

 There will be three TH peaks, π/3 apart.  

 The peaks will have the same height,  

since the three line segments have the same length, s. 

 The normal onto the three sides are of the same length, so the all peaks will occur at ρ=h. 

 

d) What happens in the Hough space if the origin ismoved inside the triangle, so that it does 

not coincide with the center of mass?  

Answer:  

 The three TH peaks will still be π/3 apart.  

 The peaks will still have the same height, but the normals onto the three sides are different. 
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The following two questions are intended for the PhD-students: 
 

e) What will happen in the Hough domain, if an equi-angular polygon is rotated anti-clockwise 

around an off-centered origin inside the polygon?   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Answer:  

 The N peaks in the Hough space will be 180*(1-2/N)˚ apart on the θ-axis. 

 The normals onto the N sides are in general of different length, so the peaks occur at 

different ρ-values. 

 The sides of the polygon are in general different length, so the peaks have different heights. 

 The N peaks in the (θ,ρ)-domain will slide in the positive  

θ-direction, keeping the distance between the maxima and the  ρ-values,  

sliding out of the [-π/2,π/2]-domain at π/2 and  reappearing at –π/2. 

 

f) Which polygon feature in the HT domain is invariant to the location of the origin inside an 

equiangular polygon, and may be useful when working with noisy images? 

Answer: “The sum of distances from an interior point to the sides of an equiangular polygon (∑ρ) 

does not depend on the location of the point, and is that polygon's invariant.” Viviani’s theorem. 

So a hint is that the length of the bar above the sketched polygon is constant when P moves. 

 

Exercise 4: Short questions on classification 

 
a)  Explain briefly the drawbacks of overfitting a classifier. 

Keywords: will have poor generalization ability as it is fit too well to the training data. If the model 

is compex, it will also be difficult to explain the results. 

 

b) Explain briefly how you should split the available set of labelled data for a classification 

problem, and what the resulting subsets should be used for.  

Answer: it should be split into training, validation and test sets. The proportion into each subset 

will depend on the problem and the amount of data available. Training set: estimate classifier 

parameters. Validation: estimate hyperparameters. Test: estimate final classification accuracy, use 

only once.  
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c) Given a classification problem, describe briefly in general how you use the discriminant 

functions to find the decision boundary between two classes.  

Answer: The decision boundary is where gi(x)=gj(x) for two classes i and j.  

  

d) When evaluating classifier performance, we often use precision, sensitivity and specificity: 

Precision = TP/(TP+FP)  

Sensitivity = TP/(TP+FN) 

Specificity = TN/(TN+FP) 

Give an example of a binary classification problem where specificity is more important than 

sensitivity. 

Answer: One example:  Consider a system when fining cars based on licence plate recognition.  

Cars that have not prepaid should be fined. Due to dirt and imperfect imaging not all license plates 

are correctly recognized. High spesificity means that fewer cars that have paid are fined.  

e) Explain briefly which parameters that a SVM classifier has, and how they should be 

determined.  

Answer: Choice of kernel function, normally RBF with parameter , and the cost of 

misclassification C. A grid search on the validation data should be used to find the best values of  

and C.  

 

f) Assume that you use a Gaussian classifier with full covariance matrices. Discuss if you have 

some challenges working in high-dimensional feature space, e.g. 100 features.  

Answer: The covariance matrix then has dimension 100x100, and the number of unique parameters 

to estimate for each class is 100x(100-1)/2. Firstly, you need a lot of training data to robustly 

estimate these as such a high dimensional space will be mostly empty. Secondly, computing the 

inverse is likely to be problematic due to singularity.  

 

 

Exercise 5: Classification 

 

a) Give Bayes rule for a classification problem .  

 

Answer:   

 

 

 

 

b) Given a Gaussian classifier with d features. Consider a binary classification problem. The class-

conditional probability density is given as: 
 

 
 

Write down the logarithmic descriminant function without any assumptions on the covariance 

matrix.  

Answer: 

)(lnln
2

1
2ln

2
)()(

2

1
)( 1

iiii

t

ii P
d

g   
μxμxx

 

 



7 

 

 

c) If we assume a 2-class problem with P(1)=0.75 and P(2)=0.25  and equal diagonal covariance 

matrices, describe by words how we can find the decision boundary.  

Answer: The boundary will be normal to the line connecting the mean values, but located at a 

distance 0.75 to class 1 and 0.25 to class 2 along that line.  

 

d) If we assume a 2-class problem with P(1)=0.5 and P(2)=0.5, mean vectors 1=[1,3]T and  

2=[-1,1]T and equal diagonal covariance matrices, find the 

equation for the decision boundary.  

Answer: The boundary will be the line x2=2-x1 

 

e) Assume that you have a 1-d feature vector that follows a 

Laplace distribution given two parameters mean s and shape 

bs by: 

 

 
 

 
 

The shape of this distribution is indicated in the figure. Assume two classes with equal prior 

probability and equal shape bs=1. Compute the decision boundary for this 1-d case. For 

simplicity, you can assume 2 >1 .  

 

Answer: For the bondary between 1 and 2:  

 

 
This is exacly the same solution as for the Gaussian, as the distributions are symmetrical around 

the mean and the prior probabilities and the shape parameters are equal. This could also be 

expected by looking at the plot.  

 

f) For the binary problem in e), set up an expression for the total classification error.  

 

Answer: The error will be the following integral:  
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Thank You for Your Attention! 


