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 UNIVERSITY OF OSLO 
 

 Faculty of Mathematics and Natural Sciences 
 
 

Exam: INF 4300 / INF 9305 – Digital image analysis           
Date: Thursday December 4,  2015  
Exam hours:       09.00-13.00 (4 hours) 
Number of pages:       9 pages of sketches to a solution  
Enclosures: None 
Allowed aid:                 Calculator  
   
 

 Read the entire exercise text before you start solving the exercises. Please 
check that the exam paper is complete. If you lack information in the exam 
text or think that some information is missing, you may make your own 
assumptions, as long as they are not contradictory to the “spirit” of the 
exercise. In such a case, you should make it clear what assumptions you 
have made. 
 

 You should spend your time in such a manner that you get to answer all exercises 
shortly. If you get stuck on one question, move on to the next question. 
 

 
 Your answers should be short, typically a few sentences and / or a sketch  

should be sufficient. 
 
 

Good luck!! 
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Exercise 1: Representation of  binary shapes 
 

One of the methods of representing the contour of binary objects is to traverse the 
boundary pixels clockwise and generate a chain of  integer codes from 0 (=right) through 
2 (=forward) to 7. 
 
a) Given two chain codes  77553311 and 00664422, draw a simple sketch of the two 

shapes. 
Answer: A diamond and a square. 
 

b) Using Kulpas’s 1977 expression for the length of the perimeter: 
 

 
where nE is the number of even chain elements and nO the number of odd chain 
elements, what is the ratio of the lengths of the two perimeters? 

Answer: This is simpler than it looks, since the first (and largest) has only eight odd chain 
elements, while the square has only eight even elements. So the answer is square root of two. 
 

c) Given two chains codes 77444411 and 00005533,  how can we check whether these 
two codes represent the same shape? 

Answer: we could first make the representation start point independent by treating it as a 
circular/periodic sequence, and redefining the start point  
so that the resulting number is of minimum magnitude. But this is actually redundant, since we also 
have to take care of rotation by taking the first difference, followed by a circular shift: 
First difference of 77444411 is 60500050, and minimum circular shift of this is 00050605. 
First difference of 00005533 is 50005060, and minimum circular shift of this is 00050605. 
So the two shapes are identical. 
 
 
 

Exercise 2: Hough transform of lines 
 
The Hough transform is often used to detect and find the parameters of line segments in 
gradient images. 

a) Copy the sketch below of a line segment in a 2D image. 
Explain the “normal representation” of a straight line in the Hough transform,  
and indicate the parameters involved. 

 Answer: The “normal representation” is the (θ,ρ)-representation of lines, where a normal to the line 
through the origin is drawn, and θ is the orientation of this normal with respect to the x-axis, and ρ is 
its length, as illustrated by the dotted line in the figure below. 
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b) Another representation of straight line segments in a 2D image is Y = aX + b. In the 

8x8 pixel binary image below, three sets of co-linear pixels are present. Which of 
these sets that can be correctly detected by an (a,b)-accumulator matrix having integer 
indexes along both the a and b axis if the accumulator threshold is T = 4 ?  
Please explain your reasoning without any computations! 
 

0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

Answer: We observe that there are three sets of pixels containing 4 or 5 pixels, as indicated by three 
solid line segments overlaid onto the figure above. In addition, there is a horizontal and a vertical set 
of three colinear pixels, indicated by a dashed line segment. The vertical line cannot be handled by 
this parametrization anyhow, but both are below the threshold. 
Using the simple algorithm; for each value of 1 in the image, running through all values of a to 
compute corresponding values of b will produce a set of co-linear points in the (a,b)-plane, and pixels 
in the (x,y)-plane that are co-linear will give intersecting sets of points at an (a,b)-value that 
designates a line through this set of pixels in the (x,y)-plane. 
The pixels along the red line will produce a peak at (a,b) = (1,1) and the blue at (2,1). 
But the pixels along the green line are best represented by Y=0.5X, and the integer values of a in the 
accumulator will cause this line to go undetected. 
 

c) Above we have seen the Hough transform as  point-to-line mappings (PTLM). 
How do we get from this to point-to-point mappings (PTPM)? 

Answer: We use the gradient direction to pinpoint the orientation of the line. 
 
For the PhD-students only : 
 

d) The Hough transform has several weaknesses. Assuming an image of size h x w, 
Wallace introduced an alternative “Muff transform” 30 years ago:  
 
As the basis for this parametrization, a bounding rectangle around the image is used.  
Each line in the image intersects this bounding box / perimeter at exactly two points. 
The distance of the first intersection (i.e. the nearest intersection from the origin along 
the perimeter) on the perimeter from the origin, and the distance between the first and 
second intersections are then used as the Muff parameters. 
 
What is the size and resolution of this accumulator space, and which weakness(es) 
does this transform solve? 

Answer: The maximum value of the shortest distance from the origin to an intersection is 
h+2w and the maximum distance between the intersections is 2h+2w. 
The resolution is the same as the pixel resolution along the perimeter of the image. 
Consequently, the main advantages are the automatically bounding of the Hough space and 
that the discretization error is directly connected to the discretization of the input image. 
Therefore, it is possible to represent all necessary values as integers. 
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Exercise 3: Classification  
 
 

a) Consider a two-dimensional feature vector  and a set  of points in 2D feature space:   
(-3,6) (-2,4) (-1, 2) (0,0) (1, -2) (2, -4) (3, -6) 
Show that the covariance matrix  between the two features is : 
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b) Given the two features defined above, would you base you classification on 1 or 2 
features? Justify your answer. 

Answer: We note that the points line on a straight line, thus the two features are linear dependent, 
and there is no need to use more than one of them (and the 2D covariance matrix is singular). 
 
 

c) The discriminant functions for a multivariate Gaussian classifier are given as: 
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Can the discriminant function be simplified in this case? 

Answer: Somewhat,, we can  avoid the ln2 and lnP(i) and also the determinant of the covariance 
matrices, which is equal.  
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d) Classify the point 

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x by computing the value of the discriminant functions and 

assign it to the class corresponding to the highest probability.  
Answer: 
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Here we have ignore the two class-independent terms. We should assign it to the class with maximum 
value, so the pattern will be assigned to class 1.  
 

e) Explain how classifier sensitivity and specitivity are computed, and discuss their 
importance on a medical classification problem. 

Answer: Very short: Sensitivity: TP/(TP+FN) The probability that the test is positive given that the 
patient is sick. Specifitivity: TN/(TN+FP). The probability that the test is negative given that the 
patient is not sick. For a sick/healthy scenario we want all sick to be diagnosed as sick, so sensitivity 
is important and we can allow a lower specitivity. 
 
For the PhD-students only: 

f) Let us assume that we have a 2-class classification problem with a 1-dimensional 
feature vector f(x) which is exponentially distributed given the class-conditional 
parameter i:  

x
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Find an expression for the decision boundary for this classification problem.  
 
Answer:   
The decision boundary is the point T where 
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Exercise 4: Clustering 
a) Describe how the K-means clustering algorithm work and which parameters it has. 

Answer: Textbook material 
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b) Kmeans-clustering with K=2 is done on the data points given in the scatter plot 
below. Three different  strategies for initializing the clustering is to assign the initial 
cluster centers to 1) minimum/maximum among the points in the data set 2) the first 
K points 3) K random data points. In the table below the resulting cluster centers after 
each iteration in Kmeans-clustering are given.  
Discuss which of these two methods you would choose for this particular data set, and 
how different the clustering result would be.  
 

Initialization Cluster 1 mean Cluster 2 mean 
Iteration 0 (-10.6, -4.8) (6.8, -0.9) 
Iteration 1 (-6.4, -2.9) (1.8, -1.4) 
Iteration 2 (-6.4, -2.9) (1.7, -1.5) 
Iteration 3 (-6.4, -2.9) (1.7, -1.5) 
Iteration 4 (-6.4, -2.9) (1.7, -1.5) 
Iteration 5 (-6.4, -2.9) (1.7, -1.5) 
Iteration 6 (-6.4, -2.9) (1.7, -1.5) 

Table 1 Clustering, initialization using minmax points 

 
Initialization Cluster 1 mean Cluster 2 mean 
Iteration 0 (1.6, -3.6) (-1.3, -5.1) 
Iteration 1 (2.2, -0.9) (-5.6, -3.1) 
Iteration 2 (2.1, -1.5) (-6.0, -2.8) 
Iteration 3 (2.0, -1.6) (-6.2, -2.7) 
Iteration 4 (1.9, -1.7) (-6.3, -2.6) 
Iteration 5 (1.9, -1.7) (-6.3, -2.6) 
Iteration 6 (1.9, -1.7) (-6.4, -2.6) 

Table 2 - Cluster means after initialization by the first points in the data set 
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Answer: The means after 6 iterations are only slightly different so the resulting clustering shoul be 
fairly similar (only few data points will be assigned to different clusters). Note of course that 
cluster1method 1 corresponds to cluster 2 for method 2, but this does not matter for clustering.  

 
 

 
c) Select one of the initializations and indicate the decision boundaries the clustering would result in on 

the scatter plot in enclosure 1.  
 

Answer: Kmeans-clustering corresponds to a Gaussian classifier with equal diagonal covariance matrix so 
the decision boundary will be perpendicular to the line connecting the cluster means after the last iteration.  
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d) This data originates from a classification data set with known class labels. A scatter plot with class 

labels is given in the figure below.  
Plot your estimated decision boundary from the clustering on the labelled scatter plot. Use the scatter 
plot to compute the confusion matrix for the clustering result.  
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Answer: The ecact confusion matrix will depend on the drawing for points close to the boundary. 
Based on the scanned drawing we get: 
 

 
 
 Estimated Estimated 1 Estimated 2 
True class 1 42 18 
 2 13 47 
 
 

e)  Discuss if a Gaussian classifier with full class-conditional covariance matrix would perform well on 
this data set given the known class labels.  
 
Answer: a Gaussian classifier would not work very well on these banana shaped classes.  

 
 

Exercise 5: Mathematical morphology on binary images 
 

a) Explain what erosion and dilation do to a binary image. 
Answer: … 
 

b) Perform an erosion-based edge detection on the binary image given below, using a 
3x3 plus-shaped structuring element that is symmetric around  its origin. 
 

0 0 0 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 0
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1 1 1 1 0 1 1 1 1 1 1
0 1 1 1 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 1 0 0 0

Answer: The result of the erosion is given below, 
 and the edge-image is the difference between the original and the eroded image. 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 1 1 0 0 0 
0 0 1 1 0 1 1 1 1 0 0 
0 1 1 0 0 0 1 1 1 1 0 
0 0 1 1 0 0 0 1 1 1 0 
0 0 1 1 1 0 1 1 1 0 0 
0 0 0 0 0 1 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
    
0 0 0 1 1 0 1 1 0 0 0 
0 0 1 0 0 1 0 0 1 0 0 
0 1 0 0 1 0 0 0 0 1 0 
1 0 0 1 0 1 0 0 0 0 1 
0 1 0 0 1 0 1 0 0 0 1 
0 1 0 0 0 1 0 0 0 1 0 
0 1 1 1 1 0 1 0 1 0 0 
0 0 0 0 0 1 0 1 0 0 0 

 
 

c) Give the expression for the Bottom Hat operation, and apply this to the image 
given below. Illustrate each step of the operation and describe the effect of the 
operators. 

0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1 1 0
0 0 1 1 1 0 1 1 0 0 0
0 0 1 1 1 0 0 1 1 0 0
0 0 0 1 1 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0

Answer: The Bottom Hat is given by a closing minus the original. The closing consists of two 
steps: first a dilation and then an erosion of the result of the dilation.  
So we will dilate, erode and subtract. 

Dilation Erosion Difference = Bottom Hat 

0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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• The dilation expands the object borders - both inside and outside. It fills holes in the object 
and smooths out  the object contour. 

• The erosion  removes pixels on the border of the dilated object. 
• The difference from the original will mark inlets and gaps in the original object. 

 

 
 

Thank You for Your Attention! 


