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 UNIVERSITY OF OSLO 
 

 Faculty of Mathematics and Natural Sciences 
 
 

Exam: INF 4300 / INF 9305 – Digital image analysis           
Date: Thursday December 1,  2016  
Exam hours:       14.30-18.30 (4 hours) 
Number of pages:       8 pages of sketches to a solution  
Enclosures: None 
Allowed aid:                 Calculator  
   
 

 Read the entire exercise text before you start solving the exercises. Please 
check that the exam paper is complete. If you lack information in the exam 
text or think that some information is missing, you may make your own 
assumptions, as long as they are not contradictory to the “spirit” of the 
exercise. In such a case, you should make it clear what assumptions you 
have made. 
 

 You should spend your time in such a manner that you get to answer all exercises 
shortly. If you get stuck on one question, move on to the next question. 
 

 
 Your answers should be short, typically a few sentences and / or a sketch  

should be sufficient. 
 
 

Good luck!! 
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Exercise 1: Moments 

a) Give the expression for an ordinary moment of order (p+q) of an object in a 2D 
digital image. 	

Answer: 

 
b) Describe, in words or using mathematical expressions, how you get from an ordinary 

to a central moment. 
Answer: Shift the origin to the centre of mass of the object, and compute the moment as before. 
 

 
 

c) How can you get a central moment that is invariant to scale;  
and what else are such moments invariant to? 

Answer: Normalize by the area(volume) to the power of gamma, as given by the equation below. 
 
 

 
A scale-normalized central moment is also invariant to position. 
 

d) In the table to the right, “+”, “-“, and “0” 
indicates a positive, negative, or zero value of 
seven scale-normalized central moments  
(η11, η20,  η02,  η21,  η12,  η30,  η03)  
for objects symmetric about the y-axis (“M”), 
the x-axis (“C”), and both (“O”) in a continuous analog  image.  
 
Which of  Hu’s moment combinations in their simplified version (see below) 
may be useful for the task of obtaining rotation-invariant shape features  
of elliptical objects in a digital image? Please explain! 
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Answer: For an ellipse oriented parallel to axis system; a,b,c, and d are all zero.  
This implies that Hu’s moments 3 to 7 are zero. So only Hu’s first and second moment are useful.  
And since the moments are rotation invariant, this will also be true for all other orientations. 
 

e) What may cause zero entries in the table above to show up as non-zero in digital 
images? 

Answer: Noise, caused by the discrete sampling, and by the quantization. 

Exercise 2: Chain coding 

a) Give the absolute and relative chain code of the binary object below, starting at the origin in the  lower 
left corner having coordinates (0,0), using an 8-directional code, where 2 is up (forward). 

              
              
              
              
              
              
              
              

  
Answer: Absolute chain code is   21212120006565656444 (20 elements) 

Relative code is  01313130220131313022 (also 20 elements) 
 

b) How do we make a relative chain code start point invariant? 
Answer: We obtain start point invariant code  by ”Minimum circular shift” of the relative code. 
 

c) Discuss why the start point invariance is not unique in this case. 
Answer: Since we here have an object that is invariant under point reflection through its center of 
mass (point symmetry), two symmetric start points on the perimeter give the same relative code. 
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d) Given the 18 element relative code  021031313021031313 of a new object, how can 
you use a general property of chain codes to easily determine how it differs from the 
object in the figure above?  

Answer: This is a minimum circular shifted relative code which is shorter than the minimum circular 
relative code of the original object. We note that both are point symmetric objects.  
We do not bother comparing the objects on the code level. But since the relative code is a reversible 
transform, we can reconstruct the object from the given relative code, getting the perimeter of the 
original object minus its two symmetric start points, and easily see the difference. 
 
          
          
         
         
         
         
         
          

 
e) How do we normalize the absolute chain code in a)  to get rotation invariance? 

Please perform the calculations! 
Answer: By finding the first difference of the absolute chain code,  

6 7 1 7 1 7 1 6 0 0 6 7 1 7 1 7 1 6 0 0
 and then finding the minimum circular shift of the first difference: 
0 0 6 7 1 7 1 7 1 6 0 0 6 7 1 7 1 7 1 6

 
Next three questions for PhD-students only: 

f) An alternative way of obtaining a rotation invariant chain code would be  
to find the orientation of the object, rotate it, and then perform the chain coding. 
Please explain the steps of finding the orientation of the object in a) ! 
 

g) Compute the numerical values that are needed to find the object orientation. 
hint: (N+0.5)2 =N(N+1)+0.25 
 

h) What does it take for this alternative rotation invariance to be valid?  
 

Answer: We would need to find the three second order central moments, to be used in the equation 
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In the two moments of inertia, 

 
we also need the first order moments and the area of the object,  
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Numerical values:  

Area=m00=32,  m10 =2*0+4*1+6*2+8*3+6*4+4*5+2*6=96 => cmx=96/32 =3	
m01 =4*(1+2+3+4+5+6+7)=112 => cmy =3.5  (x,y) of center of mass: (3,3.5) 

moments of inertia:  
mu20=(-3)2*2 + (-2)2*4 + (-1)2*6 + (0)2*8 + (1)2*6 + (2)2*4 +(3)2*2 
=18+16+6+0+6+16+18 = 80 
mu02= 4[(-3.5)2 + (-2.5)2 + (-1.5)2 + (-0.5)2 + (0.5)2 + (1.5)2 + (2.5)2 + (3.5)2] 
= 4[12.25 + 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 + 12.25] = 4*42 = 168 

mu11 = -3[-3.5 -2.5] -2[-3.5-2.5-1.5-0.5] -1[-3.5-2.5-1.5-0.5+0.5+1.5] +0[ ….] 
+1[-1.5-0.5+0.5+1.5+2.5+3.5] + 2[0.5+1.5+2.5+3.5] + 3[2.5+3.5]  =  80 

rotation angle: ≈ 60 degrees 

This alternative invariance is only valid if the boundary itself  
is invariant to the indicated rotation.  Otherwise, it will only be an approximation. 
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Exercise 3: Classification  
 
 

Consider a two-dimensional feature vector  and a set  of points from 2 classes in 2D 
feature space:    
Class 1 has points: (3,0), (5,0), (7,0), (5,2), (5, -2) 
Class 2 has points: (0,5), (0,3), (0,7), (-2, 5), (2,5) 
The discriminant function for Gaussian classifier is in the general form: 
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a) Compute the mean for each class 

 
Solution: 
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b) Show that the covariance between feature 1 and 2 is 0 for both classes.  
 
 
    For class 1: 1,12= 1/5[(3-5)(0-0)+(5-5)(0-0)+(7-5)(0-0)+(5-5)(2-0)+(5-5)(-2-0)] = 0 
    For class 2: 2,12=1/5[(0-0)(5-5)0(0-0)(3-5)+(0-0)(7-5)+(-2-0)(5-5)+(2-0)(5-5)] = 0 
 
 

c) Show how the discriminant function can be simplified in this case with a classifier 
with equal diagonal covariance matrices.  

 
Can be simplified to 
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d) Find an expression for the decision boundary using this simplified discriminant 
function.  

 
Can be simplified to  
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e) Compute the decision boundary if we assume equal prior probabilities. 
The equation is: 

1221 255255 xxxx   
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f) Sketch the class means and the decision boundary in a plot if we assume that the two 
classes have equal prior probability.  

 
 
 

g) If P(1) = 0.75, in which direction will the decision boundary change? Indicate this on 
the plot.  

 
 
 

Exercise 4: Linear feature transforms	
 

 
You are given a 2D dataset with 2 classes as plotted in the figure below. 

 
The data has the following properties: 

Covariance matrix C:  
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Eigenvalues of C: 512   ,51    
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a) Explain the criterion function that principal component analysis  (PCA) optimizes 

 
PCA find the direction with maximum variance, which is equivalent to minimizing the 
signal representation error. (Either answer is correct) 

 
b) Explain if PCA requires any normalization of the input data 

 
PCA normally use the correlation matrix, but we can use the covariance matrix if we 
subtract the mean.  
 

c) Which direction vector gives the first principal component? 
 

The direction given by the vector [ 0.83, 0.55]T 
 

d) PCA is a linear transform y=ATx of the input data x.  What is A for the data example? 
 

Solution 








 


83.055.0

55..083.0
A  

 
e) How much of the variance in the data is explained by the first principal component? 

 
Given by the eigenvalues 51/(51+5)=91% 

 
 

f) Which geometrical relation is there between the first and the second principal 
component? 

 
 

 
   They are perpendicular (and the correlation between them is zero) 

 
g) PhD Students only: 

From the data listed above, we can construct the covariance matrix of the transform 
data y. What is the covariance  matrix of y? No computation is needed. 

 
 

The variance is equal to the eigenvalues, and the covariance is zero: 
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h) In this exercise, the dominant direction is found by principal component analysis. 
Based on other topics in this course, could you suggest another method that could be 
used to find the dominant direction (unsupervised, no class labels used)? 
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This is also equal to the direction that has the smallest moment of inertia, and can be 
found from the equation to find the orientation of an object (formulae not required)  
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i) An alternative to PCA is  Fisher’s linear discriminant. Which criterion function does 

Fisher use? 
 

Fisher maximize the between-class scatter and minimize the within-class scatter, with 
function J= wTSWw/wTSBw 
 

j) Do either PCA or Fisher have any limitations regarding how many features the 
transform can produce? Justify you answer.   
 
No limitations with PCA, but with Fisher max dimension K-1, if K is the number of 
classes. This is because the rank of SB is K-1 

 

 
 
 

 
 


