Solution of selected exercises

Exercises INF 4300 related to the lecture 12.10.17

2. Finding the decision functions for a minimum distance classifier.

A classifier that uses diagonal covariance matrices is often called a minimum distance
classifier, because a pattern is classified to class that is closest when distance is computed
using Euclidean distance.
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a. Inthe above figure, find the class means just by looking at the plot.

b. If this data is classified using a minimum distance classifier, sketch the decision
boundaries on the plot.

Solution:



Problem 12.1

(a) By mspaction, the mean wectors of the three classas are, approctimately, my =
(1.5, El.;il:lj_. m:; = (4.3 1.3)7, and my = 5.5, 3117 for the classes Inis setosa, ver-
sieolor, and virginica, respectively. The decision fimetions are of the form ziven in Eq.

(12.2-5). Substituting the above valuss of mean vectors grves

. - 1 =

di(x) = =x* m-_—?nﬂ my = 1.6z ~ 0.3z — 1.2
Jiel = =T 1 - = 43 <1 3z — 101
di(x) = x"my - gmim,; =43z + 13z, —101
e T 1 = e 9 -
gzl = ®my - gmpmg = e - 21z, =173

(b) The decision boundaries ave given by the equations

dyglx] = di(x) —dy(x)=-20xy - 102, -39 =10
dilx] = difx) —dp(x)=—40x — 102y - 161 =
dazlx] = dafx) —dp(x)=-122y =082y =-72=10

]

Figure P11.1

3. Discriminant functions
A classifier that uses Euclidean distance computes distance from pattern x to class j as:

D, -

Show that classification with this rule is equivalent to using the discriminant function

Solution:
Problem 12.2

1
d,(x)=x" s, = w1

From the definition of the Euclidean distance,

D;(x) = |x —m; | = [(x— ]]]j)T(X_ In})-l,«’z

Since D;(x) is non-negative, choosing the smallest D;(x) is the same as choosing the

smallest DJZ- (x), where

: 9 .
Dix) = [x—-m;|" =(x—my)

T

T(x —my)

= X X— Zxrmj + III?D]J‘

T T

_ 1
= x x—2 (x m; — Emj mj)
We note that the term x 7 x is independent of j (that is, it is a constant with respect to j in

9 L . . 9y .
Ds(x), j = 1.2....). Thus, choosing the minimum of D (x) is equivalent to choosing

: T _ 1T
the maximum of (x m; — zm, 111J).



» Example:
Given @, @, : P(w,) = P(w,) and p(x|w,) = Ny, X),

@,)=N(y,,2), 4, :[{)} A, :LJ’ 22[03 1 j:l

1.0
el

p(x

classify the vector x :{

o { 0.95 —0.15]

} using Bayesian classification :

=015 0.55
* Compute Mahalanobis d,, from s, i, : d’,; = [1.0, 2.2]

1.0
z-{z 2] =2.952, d%n2=[-2.0, -0.8] 2-'[

0
J: 3.672
8

e Classify x — @,. Observethatd,, <d 3

Exercise 3: Classification (From Exam 2015)

a) Consider a two-dimensional feature vector and a set of points in 2D feature space: (-
316) (-2!4) (_11 2) (010) (11 -2) (21 -4) (31 -6)
Show that the covariance matrix between the two features is :

4 -8
Z:
[—8 16}

Show all your calculations.



Answer:

=(-3-2-1+0+1+2+3)/7=0
u2=06+4+2+0+2+4+7)/7=0

Op = %Zl: (%, — 1) (x, —11,) =

Z[-3-0)6-0)+ (-2-0)(4-0)+ (-1-0)(2-0) + 0~ 0)(0-0) + (-1)(2) + (-2(4) + -3)(6)] -
-56/6=-8
:—Z:(x1 )’ 73*3+2*2+1*1+O+1*1+2*2+3*3] 28/7=4

=—Z(x2 11,)° ; —6*—6+—4*—4+1%1+0+1*1+4*4+6%6]=16

b) Given the two features defined above, would you base you classification on 1 or 2

features? Justify your answer.
Answer: We note that the points line on a straight line, thus the two features are linear dependent, and
there is no need to use more than one of them (and the 2D covariance matrix is singular).

c) The discriminant functions for a multivariate Gaussian classifier are given as:
&i (X) = —%(X—Hi )Tz;l(x_pi)_gln 27[_%|n|2i| +In P(a)i)

Consider two classes with equal prior probability and

1 0 10 _, [1o0
nolo] wela] 2ol i) 2
22=[2 _1} 2, = F }|zl| =, =1

-1 1 12

Can the discriminant function be simplified in this case?
Answer: Somewhat,, we can avoid the In2 7 and InP(wi) and also the determinant of the covariance
matrices, which is equal.

3
d) Classify the point x = {O} by computing the value of the discriminant functions and

assign it to the class corresponding to the highest probability.
Answer:

g, (x) = —%[3—1,0—0]{(1) ﬂ[g;l}—o.ﬂnl: 2

2, (x)= —%[3—0,0— 2]TE ﬂ[_gz} ~05In1=-5/2

Here we have ignore the two class-independent terms. We should assign it to the class with maximum
value, so the pattern will be assigned to class 1.



e) Explain how classifier sensitivity and specitivity are computed, and discuss their
importance on a medical classification problem.
Answer: Very short: Sensitivity: TP/(TP+FN) The probability that the test is positive given that the
patient is sick. Specifitivity: TN/(TN+FP). The probability that the test is negative given that the

patient is not sick. For a sick/healthy scenario we want all sick to be diagnosed as sick, so sensitivity
is important and we can allow a lower specitivity.

f) Let us assume that we have a 2-class classification problem with a 1-dimensional

feature vector f(x) which is exponentially distributed given the class-conditional
parameter Ai:

f(x)=Aexp™
Find an expression for the decision boundary for this classification problem.

Answer:
The decision boundary is the point T where

re ™ =1 &

A RO AN



Exercise 4: Classification (From Exam 2016)

Consider a two-dimensional feature vector and a set of points from 2 classes in 2D
feature space:

Class 1 has points: (3,0), (5,0), (7,0), (5,2), (5, -2)

Class 2 has points: (0,5), (0,3), (0,7), (-2, 5), (2,5)

The discriminant function for Gaussian classifier is in the general form:

g(x)= —%(x—ui)rZil(x—pi)—%ln 27 —%In|2i|+ In P(w,)
a) Compute the mean for each class

Solution:

et

b) Show that the covariance between feature 1 and 2 is 0 for both classes.

For class 1: 61.12= 1/5[(3-5)(0-0)+(5-5)(0-0)+(7-5)(0-0)+(5-5)(2-0)+(5-5)(-2-0)] = 0
For class 2: 62,12=1/5[(0-0)(5-5)0(0-0)(3-5)+(0-0)(7-5)+(-2-0)(5-5)+(2-0)(5-5)] = 0

c) Show how the discriminant function can be simplified in this case with a classifier
with equal diagonal covariance matrices.

Can be simplified to

1
&)=ty X =S pip i+ INPlo, )

d) Find an expression for the decision boundary using this simplified discriminant
function.

Can be simplified to

1 1
g(x)= gj(x) = :ul.Tx_E:ul.T:ui +InP(w, ) = :ujrx_zzul.rﬂj +InP(o(

e) Compute the decision boundary if we assume equal prior probabilities.
The equation is:
5x, —25=5x,-25< x, =x,



f) Sketch the class means and the decision boundary in a plot if we assume that the two
classes have equal prior probability.

g) If P(w1) =0.75, in which direction will the decision boundary change? Indicate this on
the plot.



