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shaded area under the corresponding curve. Similarly,let 8 (1 —f) be the probability
of a wrong (correct) decision concerning class wz. By moving the threshold over
“all” possible positions, different values of @ and 8 result. It takes little thought to
realize that if the two distributions have complete overlap, then for any position
of the threshold we get @ =1 — . Such a case corresponds to the straight line in
Figure 5.3b, where the two axesarc and 1— B. As the two distributions move apart,
the corresponding curve departs from the straight line, as Figure 5.3b demonstrates.
Once more, a little thought reveals that the less the overlap of the classes, the larger
the area between the curve and the straight line. At the other extreme of two com- |
pletely separated class distributions, moving the threshold to sweep the whole range
of values for @ in [0, 1],1 — B remains equal to unity. Thus, the aforementioned area
varies between zero, for complete overlap, and 1/2 (the area of the upper triangle),
for complete separation, and it is a measure of the class discrimination capability
- of the specific feature. 1n practice, the ROC curve can easily be constructed by
sweeping the threshold and computing percentages of wrong and correct classifi-
cations over the available training feature vectors. Other related criteria that test
the overlap of the classes have also been suggested (see Problem 5.7).
More recently, the area under the receiver operating characteristic curve (AUO)
has been used as an effective criterion to design classifiers. This is because larger
AUC values indicate on average better classifier performance, see, for example,

[Brad 97, Marr 08, Land 08].

5.6 CLASS SEPARABILITY MEASURES

The emphasis in the previous section was on techniques referring to the discrim-
ination properties of individual features. However, such methods neglect to take
into account the correlation that unavoidably exists among the various features
and influences the classification capabilities of the feature vectors that are formed.
Measuring the discrimination effectiveness of feature vectors will now become our
major concern. This information will then be used in two Ways. The first is to allow
us to combine features appropriately and end up with the “best” feature vector for
a given dimension . The second is to transform the original data on the basis of an
optimality criterion in order to come up with features offering high classification
power. In the sequel we will first state class separability measures, which will be
used subsequently in feature selection procedures.

5.6.1 Divergence
Let us recall our familiar Bayes rule. Given two classes @1 and w7 and a feature
vector x, we select w1 if

P(w|%) > P(w2|%)

As pointed out in Chapter 2, the classification error probability depends on the dif

P(w|x)

ference between P(w1|x) and P(wz2|x),e.g.,Eq. (2.12). Hence, the ratio Plwal® can




5.6 Class Separability Measures

convey useful information concerning the discriminatory capabilities associated
with an adopted feature vector x, with respect to the two classes w1, w>. Alterna-
tively (for given values of P(w1), P(w2)), the same information resides in the ratio
In j%%% = D12(x),and this can be used as a measure of the underlying discriminat-
ing information of class w; with Tespect to wy. Clearly, for completely overlapped
classes, we get Di2(x) = 0. Since x takes different values, it is natural to consider
the mean value over class w1, that is,

+eo

_ plx|wy)
Dy -—‘ip(xlwl)lnm dx .19

Similar arguments hold for class w2, and we define
_ D(x|w2) i
Doy fp(x|€-‘-'2) In m dx (G.20)
The sum
dya = Dy + Doy

is known as the divergence and can be used as a separability measure for the classes
@1, w2, with respect to the adopted feature vector x. For a multiclass problem, the
divergence is computed for every class pair wy, wj

dy’ = DU + Ijﬂ
oo r
- s 1. Plx|wp)
:{; O(x|w;) p(xlw;))lnp(x|mj) dx (5.21)

and the average class separability can be computed using the average divergence
M M

d=3%" > PwpP(wpdy

i=1 =1

Divergence is basically a form of the Kullback-Leibler distance measure between

density functions [Kulb 51] (Appendix A). The divergence has the following easily
shown properties: ;

dy =0
d,j =0 ifi = J
dyj = dyi
If the components of the feature vector are statistically independent, then it can

be shown (Problem 5. 10) that

I
A1, %z, ..., %) =Y dye)

r=1
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Assuming now that the density functions are Gaussians N (i;, %;) and Np;, 2,
respectively, the computation of the divergence is simplified, and it is not difficult
to show that

1 = 2 1 - -
dij = Etmce{ﬁ,- 13 + % 15, —2an+ E(p.,- = uj)T(Ef 1+ 3 1](,u.i - ) (5.22)

For the one-dimensional case this becomes
2 2

o 2
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As already pointed out, a class separability measure cannot depend only on the dif-
ference of the mean values: it must also be variance dependent. Indeed, divergence
does depend explicitly on both the difference of the means and the respective
variances. Furthermore, dj; can be large even for equal mean values, provided the
variances differ significantly. Thus, class separation is still possible even if the class
means coincide. We will come to this later on.

Let us now investigate (5.22). If the covariance matrices of the two Gaussian
distributions are equal, %; = X; = X, then the divergence is further simplified to

dy = (uy — ) 27 Gy —

which is nothing other than the Mahalanobis distance between the corresponding
mean vectors. This has another interesting implication. Recalling Problem 2.9
of Chapter 2, it turns out that in this case we have a direct relation between the
divergence dj and the Bayes error—that is, the minimum error we can achieve
by adopting the specific feature vector. This is a most desirable property for any
class separability measure. Unfortunately, such a direct relation of the divergence
with the Bayes error is not possible for more general distributions. Furthermore, in
[Swai 73, Rich 95] it is pointed out that the specific dependence of the divergence
on the difference of the mean vectors may lead to misleading results, in the sense
that small variations in the difference of the mean values can produce large changes
in the divergence, which, however, are not reflected in the classification error. To
overcome this, a variation of the divergence is suggested, called the transformed
divergence:

dy =2 (1 — exp(—d;;/8))
In the sequel, we will try to define class separability measures with a closer

relationship to the Bayes error.

5.6.2 Chernoff Bound and Bhattacharyya Distance

The minimum attainable classification error of the Bayes classifier for two classes
w1, w2 can be written as:

Pe = f min [P(wppCx|wn), P(opp(x|w)] dx (5.23)

e s o e, e e~

Y s e

v

T




5.6 Class Separability Measures

Analytic computation of this integral in the general case is not possible. However,
an upper bound can be derived. The derivation is based on the inequality

minfa,b] =a’b'™* for a,b>0, and 0=s=1 (5.24)

Combining (5.23) and (5.24), we get

Pe < P(w;)*P(wp)' ™S f pxlw)’p(x|w)! ™ dx = ecp (5.25)

—co

€cp is known as the Chernoff bound. The minimum bound can be computed by
minimizing ecg with respect to s. A special form of the bound results for s = 1/2:

P < €cp = /[P(w)P(wp) f VP(x|w)p(x|w)) dx (5.26)

For Gaussian distributions N (u;, %), (1, %) and after a bit of algebra, we obtain

€cs = /P(w)P(w;) exp (—B)
where
1 r(Sh+ 31 1|25
B= g(!-"f T ,‘-"f) ( = ) ;= nu'j) + 5 In 527

- “ JIENE
and | - | denotes the determinant of the respective matrix. The term B is known as
the Bhattacharyya distance,and it is used as a class separability measure. It can be
shown (Problem 5.11) that it corresponds to the optimum Chernoff bound when
2; = %;. Itis readily seen that in this case the Bhattacharyya distance becomes pro-
portional to the Mahalanobis distance between the means. In [Lee 00] an equation
that relates the optimal Bayesian error and the Bhattacharyya distance is proposed,
based on an empirical study involving normal distributions. This was subsequently
used for feature selection in [Choi 03].

A comparative study of various distance measures for feature selection in the con-
text of multispectral data classification in remote sensing can be found in [Maus 90].
A more detailed treatment of the topic is given in [Fuku 90].

Example 5.4
Assume that P(w) = P(w2) and that the corresponding distributions are Gaussians N (g, o31)
and (g, o31). The Bhattacharyya distance becomes
o‘2+0'§ !
(%32) ot + oy

1
O,,%I U,.Z’ZI 2 20102

1
B= 5 In (5.28)

For the one-dimensional case I = 1 and for o3 = 1002, B = 0.8097 and

P, =0.2225
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FIGURE 5.4
Gaussian pdfs with the same mean and different variances.

If &3 = 10002, B = 1.9561 and
P, = 0.0707

Thus, the greater the difference of the variances, the smaller the error bound. The decrease
is bigger for higher dimensions due to the dependence on {. Figure 5.4 shows the pdfs for
the same mean and o7 = 1, o2 = 0.01. The figure is self-explanatory as to how the Bayesian
classifier discriminates between two classes of the same mean and significantly different
variances. Furthermore, as o»2/07 —0, the probability of error tends to zero (why?)

5.6.3 Scatter Matrices

A major disadvantage of the class separability criteria considered so far is that they
are not easily computed, unless the Gaussian assumption is employed. We will now
turn our attention to a set of simpler criteria, built upon information related to the
way feature vector samples are scattered in the /-dimensional space. To this end,
the following matrices are defined:

Within-class scatter matrix

M
Sw = ZF,’Z;
i=1

where %,; is the covariance matrix for class w;

3 = E[(x — p)(x — p)"]
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and P; the a priori probability of class w;. That is,P; >~ n;/N ,where n;
of samples in class w;, out of a total of N samples. Obviously, trace {S,,
of the average, over all classes, variance of the features.

is the number
} is a measure

Between-class scatter matrix

M
So =D P = pod(pty — po)”

i=]

where g, is the global mean vector

M
Hy = thuq‘
i

Trace(Sp} is a measure of the average (over all classes) distance of the mean of each
individual class from the respective global value.

Mixture scatter matrix

Sm = E[(x = po)(x — pp)’]

That is, S, is the covariance matrix of the feature vector with respect to the global
mean. It is not difficult to show (Problem 5.12) that

Sm =Sy + 5p

Its trace is the sum of variances of the features around their respective global mean
From these definitions it is straightforward to see that the criterion

__ trace(S,,)
trace(S,,}

takes large values when samples in the /-dimensional space are well clustered
around their mean, within each class, and the clusters of the different classes are
well separated. Sometimes Sp is used in place of S An alternative criterion results

if determinants are used in the place of traces. This is justified for scatter matri-

ces that are symmetric positive definite, and thus their eigenvalues are positive

(Appendix B). The trace is equal to the sum of the eigenvalues, while the determi-
nant is equal to their product. Hence, large values of J; also correspond to large
values of the criterion

[Si| .
Jrz = ‘E—_I = |Sgy1‘s‘??ﬂl
w

A variant of J; commonly encountered in practice is

J3 = trace{S;15,)

As we will see ] iter on, criteria J2and J3

have the advantage of being invariant under
linear transformations, and we will ado

pt them to derive features in an optimal way.
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In [Fuku 90] a number of different criteria are also defined by using various combi-
nations of 8y, Sp, S, in a “trace” or “determinant” formulation. However, whenever
a determinant is used, one should be careful with Sp, since |Sp| = 0 for M < 1. This
is because S is the sum of M [ X [ matrices, of rank one each. In practice, all
three matrices are approximated by appropriate averaging using the available data
samples.

These criteria take a special form in the one-dimensional, two-class problem. In
this case, it is easy to see that for equiprobable classes |S,,| is proportional to orf + cr%
and [Sp| proportional to (w1 — u2)?. Combining S, and Sy, the so-called Fisher’s
discriminant ratio (FDR) results

_ G - u2)?

FDR
a'% + 0"22

FDR is sometimes used to quantify the separability capabilities of individual
features. It reminds us of the test statistic ¢ appearing in the hypothesis statisti-
cal tests dealt with before. However, here the use of FDR is suggested in a more
“primitive” fashion, independent of the underlying statistical distributions. For the
multiclass case, averaging forms of FDR can be used. One possibility is

M M 2

_ (i — )"

FDRy = 35~ L=
ij#i 1 7

where the subscripts Z, j refer to the mean and variance corresponding to the feature
under investigation for the classes w;, wj, respectively.

Example 5.5
Figure 5.5 shows three cases of classes at different locations and within-class variances. The
resulting values for the J3 criterion involving the S, and S,, matrices are 164.7, 12.5, and
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FIGURE 5.5

Classes with (a) small within-class variance and small between-class distances, (b) large within-
class variance and small between-class distances, and (c) small within-class variance and large
between-class distances.
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620.9 for the cases in Figures-5.5a, b, and c, respectively. That is, the best is for distant

well-clustered classes and the worst for the case of closely located classes with large within-
class variance.

5.7 FEATURE SUBSET SELECTION

Having defined a number of criteria, measuring the classification effectiveness of
individual features and/or feature vectors, we come to the heart of our problem,

that is, to select a subset of / features out of m originally available. There are two
major directions to follow.

9.7.1 Scalar Feature Selection

Features are treated individually. Any of the class separability measuring criteria can
be adopted, for example, ROC, FDR, one-dimensional divergence, and so on. The
value of the criterion C(k) is computed for each of the features, k=1,2,...,m.
Features are then ranked in order of descending values of C(k). The [ features
corresponding to the / best values of C(k) are then selected to form the feature
vector.

All the criteria we have dealt with in the previous sections measure the classifi-
cation capability with respect to a two-class problem. As we have already pointed
out in a couple of places, in a multiclass situation a form of average or “total” value,
over all classes, is used to compute C(k). However, this is not the only possibility.
In [Su 94] the one-dimensional divergence dy; was used and computed for every pair
of classes. Then, for each of the features, the corresponding C(%) was set equal to

€@ = mindy

that is, the minimum divergence value over all class pairs, instead of an average value.

Thus, selecting the features with the largest C(k) values is equivalent to choosing
features with the best “worst-case” class separability capability, giving a “maxmin’
flavor to the feature selection task. Such an approach may lead to more robust
performance in certain cases.

The major advantage of dealing with features individually is computational sim-
plicity. However, such approaches do not take into account existing correlations
between features. Before we proceed to techniques dealing with vectors, we will
comment on some ad boc techniques that incorporate correlation information
combined with criteria tailored for scalar features.

Letxpp,n=1,2,...,Nand k =1, 2,...,m,be the kth feature of the nth pattern.
The cross-correlation coefficient between any two of them is given by

N
Zn= 1 XniXnj

Pir=
N 2 vN
\/Zn=lx:u' Zn=l‘x§j

(5.29)
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It can be shown that [p;| =1 (Problem 5.13). The selection procedure evolves along
the following steps:

m Selecta class separability criterion C and compute its values for all the available
features xz, 2 = 1,2,...,m. Rank them in descending order and choose the
one with the best C value. Let us say that this is x;, .

= To select the second feature, compute the cross-correlation coefficient defined
in Eq. (5.29) between the chosen x;, and each of the remaining 72 — 1 features,
that is, Pij, J F i1.

m Choose the feature x;, for which
i = argmjax [anc(p) - Of2|Px'1j|] , forall j# 4

where a1, a; are weighting factors that determine the relative importance
we give to the two terms. In words, for the selection of the next feature,
we take into account not only the class separability measure C but also the
correlation with the already chosen feature. This is then generalized for the
kth step

m Selectx;,,k = 3,...,1,50 that

k=1
i [85] 3
= c(fH— — . fi '.’
ir = arg mjax a1C(H P ril i or j # i

r=12,...,k—1

That is, the average correlation with all previously selected features is taken
into account.

There are variations of this procedure. For example,in [Fine 83] more than one
criterion is adopted and averaged out. Hence, the best index is found by optimizing

23

k=1
QG + G = 727 D 1P|
r=1

5.7.2 Feature Vector Selection

Treating features individually, that is, as scalars, has the advantage of computational
simplicity but may not be effective for complex problems and for features with
high mutual correlation. We will now focus on techniques measuring classification
capabilities of feature vectors. It does not require much thought to see that com-
putational burden is the major limiting factor of such an approach. Indeed, if we
want to act according to what “optimality” suggests, we should form all possible
vector combinations of / features out of the »z originally available. According to the

T T o P s sl

e e e Sr—— -
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type of optimality rule that one chooses to work with, the feature selection task is
classified into two categories:

Filter approach. In this approach, the optimality rule for feature selection is inde-
pendent of the classifier, which will be used in the classifier design stage. For each
combination we should use one of the separability criteria introduced previously
(e.g.,Bhattacharrya distance, J>) and select the best feature vector combination.,
Recalling our combinatorics basics, we obtain the total number of vectors as

m m!
(z ) = m - D! (5.30)

This is a large number even for small values of /, 7. Indeed, for m =20,1=5,
the number equals 15,504. Furthermore,in many practical cases the number/ is
not even known a priori. Thus, one has to try feature combinations for different
values of / and select the “best”value for it (beyond which no gain in performance
is obtained) and the corresponding “best” I-dimensional feature vector.

Wrapper approach. As we will see in Chapter 10, sometimes it is desirable to base
our feature selection decision not on the values of an adopted class separability
criterion but on the performance of the classifier itself. That is, for each feature
vector combination the classification error probability of the classifier has to be
estimated and the combination resulting in the minimum error probability is
selected. This approach may increase the complexity requirements even more
depending, of course, on the classifier type.

For both approaches, in order to reduce complexity, a number of efficient
searching techniques have been suggested. Some of them are suboptimal and
some optimal (under certain assumptions or constraints).

]

Suboptimal Searching Technigues
Sequential Backward Selection

We will demonstrate the method via an example. Let 2 = 4, and the originally
available features are xy, X2, x3,x5. We wish to select two of them. The selection
procedure consists of the following steps:

= Adopt a class separability criterion, C, and compute its value for the feature
vector [x1, X2, x3,%4]7 .

= Eliminate one feature and for each of the possible resulting combinations,
that is, [x1, %2, %317, [x1, %2, 24]7, [201, 23, %417, [%2, %3, %417, compute the cor-
responding criterion value. Select the combination with the best value, say
[x1, %2, %3] 7.

m From the selected three-dimensional feature vector eliminate one feature and
for each of the resulting combinations, [x1, %217, [1, 2317, [x2, 2317, compute
the criterion value and select the one with the best value.
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Thus, starting from 2, at each step we drop out one feature from the “best”
combination until we obtain a vector of / features. Obviously, this is a subop-
timal searching procedure, since nobody can guarantee that the optimal two-
dimensional vector has to originate from the optimal three-dimensional one. The
number of combinations searched via this method is 1 + 172((m + Dm — 1

(I + 1)) (Problem 5.15), which is substantially less than that of the full search
procedure. :

Sequential Forward Selection

Here, the reverse to the preceding procedure is followed:

= Compute the criterion value for each of the features. Select the feature with
the best value, say x;.

= Form all possible two-dimensional vectors that contain the winner from the
previous step, that is, [x1,x2]7, [x1,x317, [x1,%4]7. Compute the criterion
value for each of them and select the best one, say [x,x3] T

If/ = 3,then the procedure must continue. That is, we form all three-dimensional
vectors springing from the two-dimensional winner, that s, {21, x3, 2217, [ov1, 23,241,
and select the best one. For the general 7, m case, it is simple algebra to show that
the number of combinations searched with this procedure is Im — I(I — 1)/2. Thus,
from a computational point of view, the backward search technique is more efficient
than the forward one for / closer to m than to 1.

Floating Search Methods

The preceding two methods suffer from the so-called nesting effect. That is, once
a feature is discarded in the backward method, there is no possibility for it to be
reconsidered again. The opposite is true for the forward procedure; once a feature
is chosen, there is no way for it to be discarded later on. In [Pudi 94] a technique
is suggested that offers the flexibility to reconsider features previously discarded
and, vice versa, to discard features previously selected. The technique is called the
Jloating search method. Two schemes implement this technique. One springs from
the forward selection, and the other from the backward selection rationale. We will
focus on the former. We consider a set of 72 features,and the idea is to search for the
best subset of k of them fork = 1,2, ... ,I = m so that a cost criterion C is optimized.
Let X = {x1,%2,...,xz} be the set of the best combination of % of the features and
Y~k the set of the remaining m — & features. We also keep all the lower dimension
best subsets X3, X3,...,Xp~1 of 2,3, ... , k& — 1 features, respectively. The rationale
at the heart of the method is summarized as follows: At the next step the & + 1 best
subset Xj+ is formed by “borrowing” an element from Y;,,—z. Then, return to the
previously selected lower dimension subsets to check whether the inclusion of this
new elementimproves the criterion C. If it does, the new element replaces one of the
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previously selected features. The steps of the algorithm, when maximization of C is
required are:

m Step I Inclusion xp+1 = arg maXyey,,_, C({Xg, »}); that is, choose that ele-
ment from Y;,—p which, combined with X, results in the best value of C.
Xp+1 = (Xe, Xp+1}

m Step II:Test

1. x = arg maxXyex, ., C(Xg+1 — (¥}]); that is, find the feature that has the
least effect on the cost when it is removed from Xj, 1.

2. Ifr =k + 1,change 2 = &k + 1 and go to step L.

3. Ifr # B+ 1AND C(Xp+1 — [x-}) < C(Xp) go to step L; that is, if removal
of x, does not improve upon the cost of the previously selected best
group of k&, no further backward search is performed.

4. Ifk=2put Xp, = Xp+1 — {xy} and C(Xp) = C(Xp+1 — {x,});g0 to step L.

m Step III: Exclusion

I X,; = Xp+1 — {x,); that is, remove x,.

2. x; = arg max yex,, CX ;; — {y}); that is, find the least significant feature
in the new set.

3. If C(X;e — {x:}) < C(Xp-1) then X, = Xk, and go to step I; no further
backward search is performed.

4. PutX, ; =X, —{x}andk=k—1.

5. If & = 2 put X, = X;, and C(Xz) = C(X},) and go to step L
6. Go to step IIL.1.

The algorithm is initialized by running the sequential forward algorithm to form
X>. The algorithm terminates when / features have been selected. Although the
algorithm does not guarantee finding all the best feature subsets, it results in sub-
stantially improved performance compared with its sequential counterpart, at the
expense of increased complexity. The backward floating search scheme operates
in the reverse direction but with the same philosophy.

Optimal Searching Techniques

These techniques are applicable when the separability criterion is monotonic,
that is,
CCx1, ey ) = C(X1, -0, X4, X 41)

This property allows identifying the optimal combination but at a considerably
reduced computational cost with respect to (5.30). Algorithms based on the
dynamic programming concept (Chapter 8) offer one possibility to approaching
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the problem. A computationally more efficient way is to formulate the problem
as a combinatorial optimization task and employ the so-called branch and bound
methods to obtain the optimal solution [Lawe 66, Yu 93]. These methods compute
the optimal value without involving exhaustive enumeration of all possible combi-
, nations. A more detailed description of the branch and bound methods is given
: in Chapter 15 and can also be found in [Fuku 90]. However, the complexity of

these techniques is still higher than that of the previously mentioned suboptimal
techniques.

Remark

L, m The separability measures and feature selection techniques presented above,
although they indicate the major directions followed in practice, do not cover
the whole range of methods that have been suggested. For example,in [Bati 94,
Kwak 02, Leiv 07] the mutual information between the input features and
the classifier’s outputs is used as a criterion. The features that are selected
i maximize the input-output mutual information. In [Sind 04] the mutual
- [ ) information between the class labels of the respective features and those pre-

Ii: dicted by the classifier is used as a criterion. This has the advantage that
lid only discrete random variables are involved. The existence of bounds that
| ‘. relate the probability of error to the mutual information function, for example,
[Erdo 03, Butz 05], could offer a theoretically pleasing flavor to the adoption
9 of information theoretic criteria for feature selection. In [Seti 97] a feature
| ], selection technique is proposed based on a decision tree by excluding features
| one by one and retraining the classifier. In [Zhan 02] the tabu combinatorial
optimization technique is employed for feature selection.

e Comparative studies of various feature selection searching schemes can be found
Al in [Kitt 78, Devi 82, Pudi 94, Jain 97, Brun 00, Wang 00, Guyo 03]. The task of
i selection bias, when using the wrapper approach and how to overcome it is treated
i in [Ambr 02]. This is an important issue, and it has to be carefully considered in
i practice in order to avoid biased estimates of the error probability.

E 5.8 OPTIMAL FEATURE GENERATION

; So far, the class separability measuring criteria have been used in a rather “passive”

. way, that is, to measure the classification effectiveness of features generated in some
L way. In this section we will employ these measuring criteria in an “active” manner,
P as an integral part of the feature generation process itself. From this point of view,
|18 this section can be considered as a bridge between this chapter and the following

i one. The method goes back to the pioneering work of Fisher ([Fish 36]) on linear
§ discrimination, and it is also known as linear discriminant analysis (LDA). We
will first focus on the simplest form of the method in order to get a better feeling
and physical understanding of its basic rationale.

13
1
|
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The Two-class Case

Let our data points, &, be in the m-dimensional space and assume that they originate
from two classes. Our goal is to generate a feature Y as a linear combination of
the components of x. In such a way; we €xpect to “squeeze” the classification-
related information residing in x in a smaller number (in this case only one) of

chapter.
Given an x € R™ the scalar
wrx

y= ‘H_w_ﬁ G.31)

factor does not add any classification-related information, we will ignore the scaling
factor ||w||. We adopt the Fisher’s discriminant ratio (FDR) (Section 5.6.3)

(1 — up)?
FDR = 1~ p2)*
0'1+c7§

(5.32)

where w1, s are the mean values and 0'12, 0'22 the variances of Y in the two classes
w1 and w,, respectively, after the projection along v Using the definition in (G.3D
and omitting ||z, it is readily seen that

mi=wp, =12 (5.33)

where Ky ©=1,2, is the mean value of the data in @; in the m-dimensional
Space. Assuming the classes to be equiprobable and recalling the definition of
Sp in Section 5.6.3,it is easily shown that

(i = 12> = 0"y = )y — YT * wT Syaw (5.39)

where « denotes proportionality. We now turn our attention to the denominator
of (5.32). We have

o7 = Bl = u)*] = Efa (e — RO = )T w) = w0 (5.35)

where for each ;= 1,2, samples y(x) from the respective class w; have been
used. 3; is the covariance matrix corresponding to the data of class w; in the
m-dimensional space. Recalling the definition of S, from Section 5.6.3, we get

a-f + org o wTSww (5.36)

Combining (5.36), (.39, and (5.32), we end up that the optimal direction is
obtained by maximizing Fisher’s criterion

wTS;,w
wlS,,w

FDR(w) = G.37D
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with respect to w. This is the celebrated generalized Rayleigh quotient, which, asit J
is known from linear algebra (Problem 5.16), is maximized if w is chosen such that

Sptw = ASyw (5.3sj'

where A is the largest eigenvalue of S, 'S,. However, for our simple case we do not
have to worry about any eigen decomposition. By the definition of §;, we have tha
ASww o (g — Py — g w = a(iy — Bo) g

b

where « is a scalar. Solving the previous equation with respect to w, and since we.
are only interested in the direction of w, we can write ;

w=5,"(uy — k) 639

assuming, of course, that S, is invertible. As has already been discussed, in pracf ice,
S, and S, are approximated by averaging using the available data samples. 3

Figures 5.6a and 5.6b correspond to two examples for the special case of thetv
dimensional space (m = 2). In both cases, the classes are assumed eqmprobablc i ‘r
have the same covariance matrix 3. Thus S, = 3. In Figure 5.6a,, is diagonal with
equal diagonal elements,and w turns out to be parallel to p; — . In Figure 5. 6b,% 2
is no more diagonal, and the data distribution does not have a spherical symmetry.
In this case, the optimal direction for projection (the line on the left) is no more
parallel to g, — o, and its direction changes in order to account for the shapea u?-
the data distribution. This simple example once again demonstrates that the right
choice of the features is of paramount importance. Take as an example the ca
of generating a feature by projecting along the direction of the line on the right
Figure 5.6b. Then, the values that this feature takes for the two classes exhi
heavy overlap.
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FIGURE 5.6

(a) The optimal line resulting from Fisher's criterion, for two Gaussian classes. Both cla

share the same diagonal covariance matrix, with equal elements on the diagonal. The lin
parallel to g, — po. (b) The covariance matrix for both classes is nondiagonal. The optimal
is on the left. Observe that it is no more parallel to s, — p,. The line on the right is not optimel
and the classes, after the projection, overlap.
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eparability, with respect to »,is as
i criterion.

hold value
Moreover, recall from Problem 3.14 that this is also directly related to the
MSE classifier. In other words, although our original goal was to generate 2

: the design of a (linear) classifier; it combined the stages of feature generation
sifier design into a single one. The resulting classifier is

8(xX) = (uy = p)TS e + (5.40)

_ — -1, _ 1 _ . P(w)
8 = (uy — u)'s, (x 5 +p2)) In Pap (5.41)

kISto be emphasized, however, that in the context of Fisher’s theory the Gaussian
ption was not nNecessary to derive the direction of the optimal hyperplane.
Ctice, sometimes the rule in (5.41) is used even if we know that the data
aussian. Of course, other values of wy may be devised, according to the

follows: If x is an m-dimensional
another /-dimensional vector ¥ so

ity criterion is optimized. We will confine ourselves
ear transformations,

_y=ATx

ere AT is an I X m matrix. Any of the criteria ¢xposed so far can be used.
Obviously; the degree of complexity of the optimization procedure depends heavily
the chosen criterion. We will demonstrate the method via the J5 scattering

X criterion, involving S, and Sy matrices. Its optimization is straightforward,
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and at the same time it has some interesting implications. Let Sawws
class and between-class scatter matrices of x. From
corresponding matrices of y become

Sxp be the within-
the respective definitions, the

Syw = Arswa, Sy = ATSWA

Thus, the J3 criterion in the Y subspace is given by
J3(A) = trace{(A” Sy A) 147 S 4))

Our task is to compute the elements of A so that this is maximized. Then 4 must
necessarily satisfy

f3(4) _

0
dA

It can be shown that (Problem 5.17)

dJ5(4)
dA

Il

~ 28 ACAT S0 )7 (AT S AT S0y A) ™ + 285 AAT S 4)
=0
or
S Sxb)A = A(Sy Syo) (5.42)
An experienced eye will easily identify the affinity of this with an eigenvalue prob-
lem. It suffices to simplify its formulation slightly. Recall from Appendix B that the
matrices Sy, Syp can be diagonalized simultaneously by a linear transformation

B'SywB=1, B'S,B=D (5.43)

which are the within- and between-class scatter matrices of the transformed
vector

$p=BTy=B"ATx

B is an [ X [ matrix and D an ! X [ diagonal matrix. Note that in going from y to
¥ there is no loss in the value of the cost J3. This is because J3 is invariant under
linear transformations, within the /-dimensional subspace. Indeed,

J3(3) = trace(S;,,S5p) = trace((B” Syuw B (B Sy B))

= trace{B ! S;,,f Sy» B}

= tracc{SJTJ, Sy BB™'} = J5(»
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Combining (5.42) and (5.43), we finally obtain
(So18)C = €D (5.44)

where C =AB is an m X[ dimensional matrix. Equation (5.44) is a typical
eigenvalue-eigenvector problem, with the diagonal matrix D having the eigenval-
ues of S, Sxp on its diagonal and C having the corresponding eigenvectors as its
columns. However, S;ul, Sxp is an m X m matrix, and the question is which / out of a
total of m eigenvalues we must choose for the solution of (5.44). From its definition,
matrix Syp is of rank M —1, where M is the number of classes (Problem 5.18). Thus,
S;zj Sxp is also of rank M —1 and there are M —1 nonzero eigenvalues. Let us focus
on the two possible alternatives separately.

m [ = M — 1:We first form matrix C so that its columns are the unit norm M — 1
eigenvectors of S;J, S«». Then we form the transformed vector

p=CTx (5.45)

This guarantees the maximum J3 value. In reducing the number of data from
m to M — 1, there is no loss in class separability power; as this is measured
by J3. Indeed, recalling from linear algebra that the trace of a matrix is equal
to the sum of its eigenvalues, we have

Ja,x = trace{SgpSup) = Ay + -+ Ap=1 +0 (5.46)
Also
J3,5 = trace{(CT SO~ (CT S 0)) (5.47)
Rearranging (5.44), we get
Y 5w = Cr S5iCD (5.48)
Combining (5.47) and (5.48), we obtain
J3,5 = trace(D} = Ay + -+ Ay-1 =Jsx (5.49

It is most interesting to view this from a slightly different perspective. Let us
recall the Bayesian classifier for an M class problem. Of the M conditional class
probabilities, P(w;|x),i =1,2,...,M,only M — 1 are independent, since they
all add up to one. In general, M — 1 is the minimum number of discriminant
functions needed for an M-class classification task (Problem 5.19). The linear
operation C T x, which computes the M — 1 components of 3, can be seen as
an optimal linear rule that provides M — 1 discriminant functions, where
optimality is with respect to J3. This was clearly demonstrated in the two-
class case, where Fisher’s method was also used as a classifier (subject to an
unknown threshold).




) ey g At

o

R i

Eax
At it b

et
=

TR TP

Lr sy ey e V|

CHAPTER 5 Feature Selection

Investigating the specific form that Eq. (5.45) takes for the two-class prob-
lem, one can show that for M = 2 there is only one nonzero eigenvalue, and it
turns out that (Problem 5.20)

§ =y — B Sz
which is our familiar Fisher’s linear discriminant.

a [ < M—1:In this case C is formed from the eigenvectors corresponding to the
1 largest eigenvalues of Sk Sxp. The fact that J3 is given as the sum of the cor-
responding eigenvalues guarantees its maximization. Of course, in this case
there is loss of the available information because now J35 <J/3x-

A geometric interpretation of (5 45) reveals that J is the projection of the original
vector x onto the subspace spanned by the eigenvectors v; of S;,'Sp. It must be
pointed out that these are not necessarily mutually orthogonal. Indeed, although
matrices Sy, Sp (Spm) are symmetric, products of the form 5515[, are not; thus, the
eigenvectors are not mutually orthogonal (Problem 5.21). Furthermore,as We saw
during the proof, once we decide on which subspace to project (by selecting the
appropriate combination of eigenvectors) the value of J3 remains invariant under
any linear transformation within this subspace. That is, it is independent of the
coordinate system,and its value depends only on the particular subspace. In general,
projection of the original feature vectors onto a lower dimensional subspace is
associated with some information loss. An extreme example is shown in Figure 5.7,
where the two classes coincide after projection on the v axis. On the other hand,
from all possible projection directions, Fisher’s linear discrimination rule leads to

X
LS 21

@ *

*1

FIGURE 5.7

Geometry illustrating the loss of information associated with projections in lower dimensional
subspaces. Projecting onto the direction of the principle eigenvector, v, there is no loss of
information. Projection on the orthogonal direction results in a complete class overlap.
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the choice of the one-dimensional subspace v;, which corresponds to the optimal
J5 value, that guarantees no loss of information for! =M — 1 =1 (as this is measured
by the J3 criterion). Thus, this is a good choice, provided that J3 is a good criterion
for the problem of interest. Of course, this is not always the case; it depends on
the specific classification task. For example, in [Hams 08] the criterion used is the
probability of error for a multiclass task involving normally distributed data. A more
extensive treatment of the topic, also involving other optimizing criteria, can be
found in [Fuku 90].

Remarks

m If /5 is used with another combination of matrices, such as S, and S,,,then, in
general, the rank of the corresponding matrix product involved in the trace
is 7 and there are 7 nonzero eigenvalues. In such cases, the transformation
matrix C is formed so that its columns are the eigenvectors corresponding to
the I largest eigenvalues. According to (5.49), this guarantees the maximum
value of J5.

= In practice,one may encounter cases in which Sy, is not invertible. This occurs
in applications where the available size of the training set, N, is smaller than
the dimensionality, 72, of the original feature space. In such cases the resulting
estimate of S, which is obtained as the mean of N outer vector products, has
rank lower than #2; hence it is singular. This is known as the small sample size
(SSS) problem. Web document classification, face recognition, and disease
classification based on gene-expression profiling are some examples where
the small sample size problem occurs frequently in practice.

One way to overcome this difficulty is to use the pseudoinverse Sy, in place
of S;l [Tian 86]. However, now, there is no guarantee that the J3 criterion is
maximized by selecting the eigenvectors of S.h Sp corresponding to the largest
eigenvalues. An alternative route is to employ regularization techniques, in
one way or another, for example, [Frie 89, Hast 95]. For example, S,y may be
replaced by S, + 0Q, where Q) can be any positive definite and symmetric
matrix. The specific choice depends on the problem. The choice of o is also
a critical factor here. Another drawback of these techniques is that they do
not scale well for problems with large dimensionality. For example, in certain
tasks of face recognition, the resulting covariance matrices can be as high as
a few thousand making matrix inversion a computationally thirsty task.

Another way to deal with the small sample size problem is to adopt a two-
stage approach. One such technique is the so-called PCA+LDA technique.
In the first stage, principle component analysis (PCA, see Chapter 6) is per-
formed to reduce, appropriately, the dimensionality of the feature space and
linear discriminant analysis (LDA) is then performed in the low-dimensional
space, for example, [Belh 97]. A drawback of this technique is that during the

dimension reduction phase part of the discriminatory information may be lost.
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In [Yang 02] the mixture scatter matrix, Sy, is used in the J criterion in the
place of 8. It is shown that in this case, applying first a PCA on S,,, to reduce
the dimensionality to the value of the rank of S,,,, followed by an LDA in the
reduced space, does not lead to any loss of information. In [Chen 00] the null
space of the within-class scatter matrix is brought into the game. It has been
observed that the null space of S,, contains useful discriminant information.
The method first projects onto the null space and, then, in the projected space
the transformation that maximizes the between-class scatter is computed. A
disadvantage of this approach is that it may lose information by considering
the null space instead of S,,. A second problem is that the complexity of
determining the null space of Sy, is very high. Computational difficulties of
the method are addressed in [Cevi 05]. In [Ye 05],in the first stage, dimension-
ality reduction is achieved by maximizing the between-class cluster (Sp),viaa
QR decomposition technique. In the second stage,a refinement is achieved by
focusing on the within-class scatter issue, following arguments similar to the
classical LDA. A unifying treatment of a number from the previous techniques
is considered in [Zhan 07].

A different approach is proposed in [Li 06]. Instead of the J3 criterion,
another criterion is introduced that involves the trace of the difference of the
involved matrices, thus bypassing the need for inversions.

Besides the small sample size problem, another issue associated with the
LDA is that the number of features that can be generated is at most one less
than the number of classes. As we have seen, this is due to the rank of the
matrix product §,, 1Sy. For an M-class problem, there are only M — 1 nonzero
cigenvalues. All the J3 related discriminatory information can be recovered
by projecting onto the subspace generated by the eigenvectors associated
with these nonzero eigenvalues. Projecting on any other direction adds no
information.

Good insight into it can be gained through geometry by considering a
simple example. Let us assume, for simplicity, a two-class task with classes
normally distributed with covariance matrices equal to the identity matrix.
Then by its definition, Sy, is also an identity matrix. Itis easy to show ( Problem
5.20) that in this case the eigenvector corresponding to the only nonzero
cigenvalue is equal to g, — @,. The (Euclidean) distance between the mean
values of the projection points in the (nonzero) eigenvector direction is the
same as the distance between the mean values of the classes in the original
space, i.e., [[(i; — mp)||. This can easily be deduced by visual inspection of
Figure 5.7, which corresponds to a case such as is discussed our example.
Projecting on the orthogonal direction adds no information since the classes
coincide. All the scatter information, with respect to both classes, is obtained
from a single direction.

Due to the previous drawback, there are cases where the number of classes
M is small, and the resulting number of, at most, M — 1 features is insuffi-
cient. An attempt to overcome this difficulty is given in [Loog 04]. The main
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idea is to employ a different to S, measure to quantify the between-class
scatter. The Chernoff distance (closely related to the Bhattacharyya dis-
tance of Section 5.6.2) is employed. This change offers the possibility of
reducing the dimensionality to any dimension / smaller than the original
m. A different path is followed in [Kim 07]. From the original 2 features,
the authors build a2 number of so-called composite vectors. Each vector
consists of a subset of the m features. Different composite vectors are
allowed to share some of the original features. LDA is then performed on
this new set of feature vectors. This procedure enhances the range of the
rank of the involved matrix product beyond M — 1. In [Nena 07], the short-
comings of LDA are overcome by defining a new class-separability measure
based on an information-theoretic cost inspired by the concept of mutual
information.

No doubt, scattering matrix criteria are not the only ones that can be used
to compute the optimal transformation matrix. For example, [Wata 97] sug-
gested using ta different transformation matrix for each class and optimizing
with respect to the classification error. This is within the spirit of the
recent trend, to optimize directly with respect to the quantity of interest,
which is the classification error probability. For the optimization, smooth
versions of the error rate are used to guarantee differentiability. Other
ways to compute the transformation matrix will be discussed in the next
chapter.

Besides the linear nonlinear transformations can also be employed for optimal
feature selection. For example, in [Samm 69] a nonlinear technique is pro-
posed that attempts to preserve maximally all the distances between vectors.
Let x;,9;,i=1,2,...,N,be the feature vectors in the original z-dimensional
and the transformed /-dimensional space, respectively. The transformation
into the lower dimensional space is performed so as to maximize

N-1 N F ; 2
1 (@°G.pp — dG.p) .
il s (5.50)
=t ZJL:'H a°a.pn ;3 j*—“XH—:] BN

where d°(Z,j), d(i,j) are the (Buclidean) distances between vectors x;, and
x; in the original space and y,, J; in the transformed space, respectively.

® Another nonlinear generalization of the method consists of two (implicit)
steps. First, one employs a nonlinear vector function to transform the input
feature space into a higher-dimensional one, which can even be of infinite
dimension. Then, the linear discriminant method is applied in this high-
dimensionality space. However, the problem formulation is done so that
vectors appear only via inner products. This allows the use of kernel functions
to facilitate computations, as was the case with the nonlinear support vector
machines presented in Chapter 4 [Baud 00, Ma 03].




