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the computer. The sections related to estimation of the number of clusters and E—

neural network implementations are bypassed.

Chapter 13 deals with hierarchical clustering algorithms. In a first course, only
the general agglomerative scheme is considered with an emphasis on single link
and complete link algorithms, based on matrix theory. Agglomerative algorithms
based on graph theory concepts as well as the divisive schemes are bypassed.

Chapter 14 deals with clustering algorithms based on cost function optimization,
using tools from differential calculus. Hard clustering and fuzzy and possibilistic
schemes are considered, based on various types of cluster representatives, including
point representatives, hyperplane representatives, and shell-shaped representatives.
In a first course, most of these algorithms are bypassed, and emphasis is given to
the isodata algorithm.

Chapter 15 features a high degree of modularity. It deals with clustering algo-
rithms based on different ideas, which cannot be grouped under a single philosophy.
Spectral clustering, competitive learning, branch and bound, simulated annealing,
and genetic algorithms are some of the schemes treated in this chapter. These are
bypassed in a first course.

Chapter 16 deals with the clustering validity stage of a clustering procedure. It
contains rather advanced concepts and is omitted in a first course. Emphasis is given
to the definitions of internal, external, and relative criteria and the random hypothe-
ses used in each case. Indices, adopted in the framework of external and internal
criteria, are presented, and examples are provided showing the use of these indices.

Syntactic pattern recognition methods are not treated in this book. Syntactic
pattern recognition methods differ in philosophy from the methods discussed in
this book and, in general, are applicable to different types of problems. In syntactic
pattern recognition, the structure of the patterns is of paramount importance, and
pattern recognition is performed on the basis of a set of pattern primitives, a set
of rules in the form of a grammar, and a recognizer called automaton. Thus, we
were faced with a dilemma: either to increase the size of the book substantially, or
to provide a short overview (which, however, exists in a number of other books),
or to omit it. The last option seemed to be the most sensible choice.

Classifiers Based on
Bayes Decision Theory

2.1 INTRODUCTION

This is the first chapter, out of three, dealing with the design of the classifier in a
pattern recognition system. The approach to be followed builds upon probabilistic
arguments stemming from the statistical nature of the generated features. As has
already been pointed out in the introductory chapter, this is due to the statistical
variation of the patterns as well as to the noise in the measuring sensors. Adopting
this reasoning as our kickoff point, we will design classifiers that classify an unknown
pattern in the most probable of the classes. Thus, our task now becomes that of
defining what “most probable” means.

Given a classification task of M classes, w1, w3, . ..,wy,and an unknown pattern,
which is represented by a feature vector x, we form the M conditional probabilities
P(w;|x),i=1,2,...,M. Sometimes, these are also referred to as a posteriori
probabilities. In words, each of them represents the probability that the unknown
pattern belongs to the respective class w;, given that the corresponding feature
vector takes the value x. Who could then argue that these conditional probabilities
are not sensible choices to quantify the term rmost probable? Indeed, the classifiers
to be considered in this chapter compute either the maximum of these M values
or, equivalently, the maximum of an appropriately defined function of them. The
unknown pattern is then assigned to the class corresponding to this maximum.

The first task we are faced with is the computation of the conditional proba-
bilities. The Bayes rule will once more prove its usefulness! A major effort in this
chapter will be devoted to techniques for estimating probability density functions
(pdf), based on the available experimental evidence, that is, the feature vectors
corresponding to the patterns of the training set.

2.2 BAYES DECISION THEORY

We will initially focus on the two-class case. Let w1, w2 be the two classes in which
our patterns belong. In the sequel, we assume that the a priori probabilities
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P(w1), P(wz) are known. This is a very reasonable assumption, because even if
they are not known, they can easily be estimated from the available training feature
vectors. Indeed, if N is the total number of available training patterns, and N1, N2
of them belong to w; and wz, respectively, then P(w1) ~ Nip/N and P(w2) =~ N2/N.

The other statistical quantities assumed to be known are the class-conditional
probability density functions p(x|wy),i=1,2, describing the distribution of the
feature vectors in each of the classes. If these are not known, they can also be
estimated from the available training data, as we will discuss later on in this chapter.
The pdf p(x|w;) is sometimes referred to as the likelibood function of w; with
respect to x. Here we should stress the fact that an implicit assumption has been
made. That is, the feature vectors can take any value in the /-dimensional feature
space. In the case that feature vectors can take only discrete values, density functions
p(x|w;) become probabilities and will be denoted by P(x|w;).

We now have all the ingredients to compute our conditional probabilities, as
stated in the introduction. To this end, let us recall from our probability course
basics the Bayes rule (Appendix A)

_ p(x|w)P(wi)

(%) = 2.
P(wi] %) ) @.D

where p(x) is the pdf of x and for which we have (Appendix A)

2
px) =Y p(xlwdP@p)

=1
The Bayes classification rule can now be stated as

If P(wi|x)>P(w2]|x), xis classified to w;
If P(wi|x)<P(wz2|x), xis classified to w> 2.3)

The case of equality is detrimental and the pattern can be assigned to either of the
two classes. Using (2.1), the decision can equivalently be based on the inequalities

pxlwDP@)) 2 p(x|w)P(@2) Q.4

p(x) is not taken into account, because it is the same for all classes and it does
not affect the decision. Furthermore, if the a priori probabilities are equal, that is,
P(wy) = P(w2) = 1/2,Eq. (2.4) becomes

plx|lw) 2 plx|w) 2.5)

Thus, the search for the maximum now rests on the values of the conditional pdfs
evaluated at x. Figure 2.1 presents an example of two equiprobable classes and
shows the variations of p(x|w)), i = 1,2, as functions of x for the simple case of a
single feature (/ = 1). The dotted line at x is a threshold partitioning the feature
space into two regions,R; and R;. According to the Bayes decision rule, for all values
of x in Ry the classifier decides w and for all values in R, it decides w,. However,
it is obvious from the figure that decision errors are unavoidable. Indeed, there is

2.2 Bayes Decision Theory

px|lw, /,\
= p(x[(,)z)

FIGURE 2.1

Example of the two regions Ry and R formed by the Bayesian classifier for the case of two
equiprobable classes.

a finite probability for an x to lie in the R, region and at the same time to belong
in class w;. Then our decision is in error. The same is true for points originating
from class w,. It does not take much thought to see that the total probability, Pe, of
committing a decision error for the case of two equiprobable classes, is given by

X0 +oo
1 1
P, =5 /p(xlwg)dx + 3 /p(xlwl)dx 2.6

X0

which is equal to the total shaded area under the curves in Figure 2.1. We have now
touched on a very important issue. Our starting point to arrive at the Bayes classifi-
cation rule was rather empirical, via our interpretation of the term most probable.
We will now see that this classification test, though simple in its formulation, has a
sounder mathematical interpretation.

Minimizing the Classification Error Probability

We will show that the Bayesian classifier is optimal with respect to minimizing the
classification error probability. Indeed, the reader can easily verify, as an exercise,
that moving the threshold away from xo, in Figure 2.1, always increases the corre-
sponding shaded area under the curves. Let us now proceed with a more formal
proof.

Proof. Let R; be the region of the feature space in which we decide in favor of
w1 and R, be the corresponding region for w,. Then an error is made if x € Ry,
although it belongs to w; or if x € Ry, although it belongs to w;. That is,

P, = P(x € Ry, w1) + P(x € Ry, w2) Q.7
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where P(-,-) is the joint probability of two events. Recalling, once more, our
probability basics (Appendix A), this becomes

P, = P(x € Rz2|w1)P(w1) + P(x € Ry|w2)P(w2)

= P(wl)fp(xlwl) dx + P(wz)/p(xlwz) dx
R> Ry

or using the Bayes rule

P, = /P(w1|x)p(x) dx + /P(w2|.x)p(x) dx Q.9

R Ry

It is now easy to see that the error is minimized if the partitioning regions R, and
R; of the feature space are chosen so that

Ri: P(w1|x) > P(w2|x)
R>: P(w2|x) > P(w1]|x) (2.10)

Indeed, since the union of the regions R1, R, covers all the space,from the definition
of a probability density function we have that

/P(wllx)p(x) dx + /P(wllx)p(x) dx = P(w1) (2.1
Ry R2
Combining Eqs. (2.9) and (2.11), we get

P, = P(w1) — / (P(w1]|x) — P(w2|x)) p(x) dx (2.12)
Ry

This suggests that the probability of error is minimized if R; is the region of space in
which P(w1|x) > P(wz|x). Then, R, becomes the region where the reverse is true.
O

So far, we have dealt with the simple case of two classes. Generalizations to
the multiclass case are straightforward. In a classification task with M classes,
w1, w2, ..., wy,an unknown pattern, represented by the feature vector x,is assigned
to class w; if

P(wi|x) > P(wj|lx) Yj #i (2.13)
It turns out that such a choice also minimizes the classification error probability
(Problem 2.1).

Minimizing the Average Risk

The classification error probability is not always the best criterion to be adopted for
minimization. This is because it assigns the same importance to all errors. However,
there are cases in which some wrong decisions may have more serious implications
than others. For example, it is much more serious for a doctor to make a wrong
decision and a malignant tumor to be diagnosed as a benign one, than the other
way round. If a benign tumor is diagnosed as a malignant one, the wrong decision
will be cleared out during subsequent clinical examinations. However, the results

2.2 Bayes Decision Theory

from the wrong decision concerning a malignant tumor may be fatal. Thus, in such
cases it is more appropriate to assign a penalty term to weigh each error. For our
example,let us denote by w1 the class of malignant tumors and as w; the class of the
benign ones. Let, also, R1, R, be the regions in the feature space where we decide
in favor of w; and w,, respectively. The error probability P, is given by Eq. (2.8).
Instead of selecting Ry and R so that P, is minimized, we will now try to minimize
a modified version of it, that is,

r = /\lzP(wl)/p(.x|a)1)dx + /\21P(w2)/p(x|w2)dx (2.14)
R Ry
where each of the two terms that contributes to the overall error probability is
weighted according to its significance. For our case, the reasonable choice would
be to have A2 > A21. Thus errors due to the assignment of patterns originating from
class w; to class wy will have a larger effect on the cost function than the errors
associated with the second term in the summation.

Let us now consider an M-class problem andletR;,7 = 1, 2,...,M,be the regions
of the feature space assigned to classes w;, respectively. Assume now that a feature
vector x that belongs to class wy, lies in R;, 7 # k. Then this vector is misclassified in
w; and an error is committed. A penalty term Ag;, known as /oss, is associated with
this wrong decision. The matrix L, which has at its (&, 7) location the corresponding
penalty term, is known as the loss matrix.! Observe that in contrast to the philoso-
phy behind Eq. (2.14), we have now allowed weights across the diagonal of the loss
matrix (Agg), which correspond to correct decisions. In practice, these are usually
set equal to zero, although we have considered them here for the sake of generality.
The risk or loss associated with wy, is defined as

M
e =) A / pxlwp) dx (2.15)
i=1 R

Observe that the integral is the overall probability of a feature vector from class wp
being classified in w;. This probability is weighted by Ag;. Our goal now is to choose
the partitioning regions R; so that the average risk

M
= > reP(w)
k=1

M M
Z/ (Z/\Ieip(x|wk)P(wk)> dx (2.16)
i=1p  \e=1
is minimized. This is achieved if each of the integrals is minimized, which is
€quivalent to selecting partitioning regions so that

M M

xXeR; if I;= Z/\Iez‘p(xlwk)P(wk) <= Z/\kjp(x|wk)P(wk) Vi#i (217)
k=1 k=1

1 .
The terminology comes from the general decision theory.
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It is obvious that if Ap; = 1 — 8g;, where 8p; is Kronecker’s delta (0 if k # i and
1if & = ), then minimizing the average risk becomes equivalent to minimizing the
classification error probability.

The two-class case. For this specific case we obtain

I = A1 p(xlwpDP(w) + A21 p(x|w2)P(w2)
L = A2 p(x|wDP(w1) + A2z p(x|w2)P(w2)

We assign x to wy if h <z, that is,
21 — A2)p(x|w2)P(w2) < A 12 — AMiDP(x|oDP(@1) 2.19)

It is natural to assume that A;; > A; (correct decisions are penalized much less than
wrong ones). Adopting this assumption, the decision rule (2.17) for the two-class
case now becomes

_ p(x|w1) -y P(w2) A21 —A22

. # by = 2.20
x € w1(w2) 12 Dp(xlw2) P(wp) A2 — A1 @20

The ratio /12 is known as the likelibood ratio and the preceding test as the likeli-
hood ratio test. Let us now investigate Eq. (2.20) a little further and consider the
case of Figure 2.1. Assume that the loss matrix is of the form

0 A2
L=
\:)\21 0 ]

If misclassification of patterns that come from w3 is considered to have serious
consequences, then we must choose Az; > A12. Thus, patterns are assigned to
class w; if

A12
D(x|w2) >p(x|w1)/\—
21

where P(w1) = P(wz) = 1/2 has been assumed. That is, p(x|w1) is multiplied by
a factor less than 1 and the effect of this is to move the threshold in Figure 2.1to
the left of xo. In other words, region R; is increased while R; is decreased. The
opposite would be true if A1 <Ap2.

An alternative cost that sometimes is used for two class problems is the Neyman-
Pearson criterion. The error for one of the classes is now constrained to be fixed
and equal to a chosen value (Problem 2.6). Such a decision rule has been used,
for example, in radar detection problems. The task there is to detect a target in
the presence of noise. One type of error is the so-called false alarm—that is, to
mistake the noise for a signal (target) present. Of course, the other type of error
is to miss the signal and to decide in favor of the noise (missed detection). In
many cases the error probability of false alarm is set equal to a predetermined
threshold.

2.3 Discriminant Functions and Decision Surfaces

Example 2.1
In a two-class problem with a single feature x the pdfs are Gaussians with variance 2 = 1/2
for both classes and mean values 0 and 1, respectively, that is,

pxlwr) = % exp(—x?)

plxlw2) = % exp(—(x — D

If P(w1) = P(w2) = 1/2, compute the threshold value xq (a) for minimum error probability and
(b) for minimum risk if the loss matrix is

I= 0 05
1.0 O

Taking into account the shape of the Gaussian function graph (Appendix A), the threshold for
the minimum probability case will be

xo 1 exp(—x?) = exp(—(x — 1))
Taking the logarithm of both sides, we end up with &g = 1/2. In the minimum risk case we get
%o exp(—x2) = 2exp(—(x — D?)
or xo = (1 — In 2)/2 < 1/2; that is, the threshold moves to the left of 1/2. If the two classes are
not equiprobable, then it is easily verified that if P(w1)> (<) P(w2) the threshold moves to

the right (left). Thatis, we expand the region in which we decide in favor of the most probable
class, since it is better to make fewer errors for the most probable class.

2.3 DISCRIMINANT FUNCTIONS AND DECISION SURFACES

It is by now clear that minimizing either the risk or the error probability or the
Neyman-Pearson criterion is equivalent to partitioning the feature space into M
regions, for a task with M classes. If regions R;, R; happen to be contiguous, then
they are separated by a decision surface in the multidimensional feature space. For
the minimum error probability case, this is described by the equation

P(wi|x) — P(w;|x) =0 22D
From the one side of the surface this difference is positive, and from the other
it is negative. Sometimes, instead of working directly with probabilities (or risk
functions), it may be more convenient, from a mathematical point of view, to work
with an equivalent function of them, for example, g;(x) = f (P(w;i]|x)), where f(-) is
a monotonically increasing function. g;(x) is known as a discriminant function.
The decision test (2.13) is now stated as
classify x in w; if gi(x)>gi(x) VjF#i (2.22)
The decision surfaces, separating contiguous regions, are described by

8i(x) =gi(x) —gi(x)=0, ij=12,....M, i#]j (2.23)
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So far, we have approached the classification problem via Bayesian probabilistic argu-
ments and the goal was to minimize the classification error probability or the risk.
However, as we will soon see, not all problems are well suited to such approaches.
For example, in many cases the involved pdfs are complicated and their estimation
is not an easy task. In such cases, it may be preferable to compute decision surfaces
directly by means of alternative costs, and this will be our focus in Chapters 3 and
4. Such approaches give rise to discriminant functions and decision surfaces, which
are entities with no (necessary) relation to Bayesian classification, and they are, in
general, suboptimal with respect to Bayesian classifiers.

In the following we will focus on a particular family of decision surfaces asso-
ciated with the Bayesian classification for the specific case of Gaussian density
functions.

2.4 BAYESIAN CLASSIFICATION FOR NORMAL DISTRIBUTIONS
2.4.1 The Gaussian Probability Density Function

One of the most commonly encountered probability density functions in practice
is the Gaussian or normal probability density function. The major reasons for its
popularity are its computational tractability and the fact that it models adequately
a large number of cases. One of the most celebrated theorems in statistics is the
central limit theorem. The theorem states that if a random variable is the outcome of
2 summation of a number of independent random variables, its pdf approaches the
Gaussian function as the number of summands tends to infinity (see AppendixA). In
practice, it is most common to assume that the sum of random variables is distributed
according to a Gaussian pdf, for a sufficiently large number of summing terms.

The one-dimensional or the univariate Gaussian, as it is sometimes called, is
defined by

(2.24)

RG0S )
202

1
px) = «/5;0 exp(

The parameters u and o2 turn out to have a specific meaning. The mean value of
the random variable x is equal to u, that is,

+o0

pn=E[x] = / xp(x)dx (2.25)

—o0

where E[-] denotes the mean (or expected) value of a random variable. The
parameter o2 is equal to the variance of x, that is,

+o0

o2 = E[(x — w’l = / (x — w*p(dox (2.26)

2.4 Bayesian Classification for Normal Distributions

FIGURE 2.2

Graphs for the one-dimensional Gaussian pdf. (a) Mean value w = 0, 0> = 1, (b) u = 1 and
o2 = 0.2. The larger the variance the broader the graph is. The graphs are symmetric, and they
are centered at the respective mean value.

Figure 2.2a shows the graph of the Gaussian function for w =0 and o?=1,and
Figure 2.2b the case for u = 1 and o2 = 0.2. The larger the variance the broader the
graph, which is symmetric, and it is always centered at u (see Appendix A, for some
more properties).

The multivariate generalization of a Gaussian pdf in the I-dimensional space is
given by

1 1 -
px) = W CXp<_—2—(x == /u)TE l(x — p.)) 2.27)

where u = E[x] is the mean value and 3, is the I X [ covariance matrix (Appendix
A) defined as

S = E[(x — p)(x — w1 (2.28)

where |3| denotes the determinant of . It is readily seen that for /[ = 1 the
multivariate Gaussian coincides with the univariate one. Sometimes, the symbol
N(u,3) is used to denote a Gaussian pdf with mean value p and covariance p

To get a better feeling on what the multivariate Gaussian looks like, let us focus
on some cases in the two-dimensional space, where nature allows us the luxury of
visualization. For this case we have

_ X1 T M
Li=E H:x; _ M;:l [xl — 1, X2~ I-Lz]:l (2.29)
= o7 o1 (2.30)
g12 0'% '

where E[x;] = u;, i = 1,2,and by definition 12 = E[(x1 — p1)(oc2 — p2)], which is
known as the covariance between the random variables x; and x and it is a measure
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of their mutual statistical correlation. If the variables are statistically independent,
their covariance is zero (Appendix A). Obviously, the diagonal elements of 3, are the
variances of the respective elements of the random vector.

Figures 2.3-2.6 show the graphs for four instances of a two-dimensional Gaussian
probability density function. Figure 2.3a corresponds to a Gaussian with a diagonal
covariance matrix

3 0
0 3

@

FIGURE 2.3

(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a diagonal = with gl = o2. The graph has a spherical symmetry showing no preference in any
direction.

@ ®

FIGURE 2.4

(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a diagonal 3, with o7 >> a2. The graph is elongated along the x; direction.

2.4 Bayesian Classification for Normal Distributions

®

FIGURE 2.5

(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a diagonal 3, with o << 3. The graph is elongated along the x direction.

)

®

FIGURE 2.6

(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a case of a nondiagonal 3. Playing with the values of the elements of 3, one can achieve different
shapes and orientations.

that is, both features, x1, x> have variance equal to 3 and their covariance is zero.
The graph of the Gaussian is symmetric. For this case the isovalue curves (i.e.,
curves of equal probability density values) are circles (hyperspheres in the general
I-dimensional space) and are shown in Figure 2.3b. The case shown in Figure 2.4a
corresponds to the covariance matrix

3= {"%

with o7 = 15>>05 =3. The graph of the Gaussian is now elongated along the
x1-axis, which is the direction of the larger variance. The isovalue curves, shown
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in Figure 2.4b, are ellipses. Figures 2.52 and 2.5b correspond to the case with
02 =3<<g%=15. Figures 2.6a and 2.6b correspond to the more general case

where
2
a g12
2= 1 5
g12 (5

ando? = 15, 05 = 3, 012 = 6. Playing with o2, 02 and oy one can achieve different
shapes and different orientations.

The isovalue curves are ellipses of different orientations and with different ratios
of major to minor axis lengths. Let us consider, as an example, the case of a zero
mean random vector with a diagonal covariance matrix. To compute the isovalue
curves is equivalent to computing the curves of constant values for the exponent,
that is,

1

L 9
273 1x = [x1,%2] ‘g 3D

(2.32)

for some constant C. This is the equation of an ellipse whose axes are determined
by the the variances of the involved features. As we will soon see, the principal axes
of the ellipses are controlled by the eigenvectors/eigenvalues of the covariance
matrix. As we know from linear algebra (and it is easily checked), the eigenvalues of
a diagonal matrix, which was the case for our example, are equal to the respective
elements across its diagonal.

2.4.2 The Bayesian Classifier for Normally Distributed Classes

Our goal in this section is to study the optimal Bayesian classifier when the involved
pdfs, p(x|wy), i = 1,2,...,M (likelihood functions of w; with respect to x),
describing the data distribution in each one of the classes, are multivariate normal
distributions, that is, N/ (p,z-,E,'), i =1,2,...,M. Because of the exponential form
of the involved densities, it is preferable to work with the following discriminant
functions, which involve the (monotonic) logarithmic function In(-):

gi(x) = In(p(x|w)P(wp)) = Inp(x|o) + In Pw;) (233

1 _
8i(®) = —(x -~ DTS e — pp + InP(w) + ¢ (2.34)

where ¢; is a constant equal to —(/2)In 27 — (1/2)1n|2;|. Expanding, we obtain

1 — 1 _ 1 _ 1 =
gi(x)= — ExTEI- lx + ExTEi iy, — E;L?E, T, + E;L,.TE,; lx  +InP(w) +c¢ (235)

N
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In general, this is a nonlinear quadratic form. Take, for example, the case of [ = 2

and assume that
crl.2 0
3= 5
0 o/

IR N N L5 9
gi(x)= —27‘—2(951 +ag)+ p(uilxl + wizx2) — ?(Mn +up) + InP(w)+c (2.36)
3 . .

1 7

Then (2.35) becomes

and obviously the associated decision curves g;(x) — gj(x) =0 are quadrics (i.e.,
ellipsoids, parabolas, hyperbolas, pairs of lines). That is, in such cases, the Bayesian
classifier is a quadratic classifier, in the sense that the partition of the feature
space is performed via quadric decision surfaces. For [/ >2 the decision sur-
faces are hyperquadrics. Figure 2.7a shows the decision curve corresponding to
P(w1) = P(02), iy = [0,017 and p, = [4, 017. The covariance matrices for the two

classes are
03 0.0 12 00
3 = =
1 [0.0 0.35}’ R [0.0 1.85}

For the case of Figure 2.7b the classes are also equiprobable with w; = [0, 017,
p, = [3.2,017 and covariance matrices

0.1 0.0 0.75 0.0
S, = =
! {0.0 0.75} » 22 [0.0 0.1]
Figure 2.8 shows the two pdfs for the case of Figure 2.7a. The red color is used
for class w; and indicates the points where p(x|w1) > p(x|w2). The gray color
is similarly used for class wy. It is readily observed that the decision curve is an

ellipse, as shown in Figure 2.7a. The setup corresponding to Figure 2.7b is shown
in Figure 2.9. In this case, the decision curve is a hyperbola.

FIGURE 2.7

Examples of quadric decision curves. Playing with the covariance matrices of the Gaussian
functions, different decision curves result, that is, ellipsoids, parabolas, hyperbolas, pairs of lines.

25
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FIGURE 2.8

An example of the pdfs of two equiprobable classes in the two-dimensional space. The feature
vectors in both classes are normally distributed with different covariance matrices. In this case,
the decision curve is an ellipse and it is shown in Figure 2.7a. The coloring indicates the areas
where the value of the respective pdf is larger.

Decision Hyperplanes

The only quadratic contribution in (2.35) comes from the term x73 'x. If we
now assume that the covariance matrix is the same in all classes, that is, 2; = 3, the
quadratic term will be the same in all discriminant functions. Hence, it does not
enter into the comparisons for computing the maximum, and it cancels out in the
decision surface equations. The same is true for the constants ¢;. Thus, they can be
omitted and we may redefine g;(x) as

gi(x) = wlTx + wio 2.37)

2.4 Bayesian Classification for Normal Distributions

FIGURE 2.9

An example of the pdfs of two equiprobable classes in the two-dimensional space. The feature
vectors in both classes are normally distributed with different covariance matrices. In this case,
the decision curve is a hyperbola and it is shown in Figure 2.7b.

where

w; =3y, (2.38)

1 jee
wio = InP(w;) — EuiTE Ty, (2.39)

Hence g;(x) is a linear function of x and the respective decision surfaces are
byperplanes. Let us investigate this a bit more.
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m Diagonal covariance matrix with equal elements: Assume that the individual
features, constituting the feature vector, are mutually uncorrelated and of
the same variance (E[(x; — pu)(x — )l = azéy). Then, as discussed in
Appendix A, 3, = 02, where [ is the [-dimensional identity matrix, and (2.37)
becomes

L 7
gi(x) = EE”’!’ x + wio (2.40)

Thus, the corresponding decision hyperplanes can now be written as

(verify it)

(%) = gi(x) — gi(x) = w’ (x — x0) = 0 (2.41)

W=~ My

(2.43)

1 P(w)\ M~ My
xo:z(“i"'lltj)_o'zhl( z) i J

P(wp ) s = mll?

where || x|| = /x? + x% + -+ - + x7 denotes the Euclidean norm of x. Thus,
the decision surface is a hyperplane passing through the point x¢. Obviously,
if P(w;) = P(w)), then xo = %(p,z- + 1, and the hyperplane passes through
the average of u,, p,j,that is, the middle point of the segment joining the mean
values. On the other hand, if P(w;) > P(w;) (P(w;) > P(w))) the hyperplane
is located closer to p.i(p,j). In other words, the area of the region where we
decide in favor of the more probable of the two classes is increased.

The geometry is illustrated in Figure 2.10 for the two-dimensional case
and for two cases, that is, P(w;) = P(w;) (black line) and P(w;) > P(w;) (red
line). We observe that for both cases the decision hyperplane (straight line) is
orthogonal to p; — ;. Indeed, for any point x lying on the decision hyperplane,
the vector x — xg also lies on the hyperplane and

g (%) = 0= wl'(x — x0) = (u; — pp" (x — x%0) = 0

Thatis, p; — p; is orthogonal to the decision hyperplane. Furthermore, if o?is
small with respect to [|u; — &, the location of the hyperplane is rather insen-
sitive to the values of P(w;), P(w)). This is expected, because small variance
indicates that the random vectors are clustered within a small radius around
their mean values. Thus a small shift of the decision hyperplane has a small
effect on the result.

Figure 2.11 illustrates this. For each class, the circles around the
means indicate regions where samples have a high probability, say 98%,

2.4 Bayesian Classification for Normal Distributions

FIGURE 2.10

Decision lines for normally distributed vectors with 3 = o2I. The black line corresponds to the
case of P(w)) = P(w;) and it passes through the middle point of the line segment joining the
mean values of the two classes. The red line corresponds to the case of P(w;) > P(w;) and it is
closer to u;, leaving more “room” to the more probable of the two classes. If we had assumed
P(w)) < P(w)), the decision line would have moved closer to 79

@ ®

FIGURE 2.11

Decision line (a) for compact and (b) for noncompact classes. When classes are compact around
their mean values, the location of the hyperplane is rather insensitive to the values of P(wy) and
P(wy). This is not the case for noncompact classes, where a small movement of the hyperplane
to the right or to the left may be more critical.

of being found. The case of Figure 2.11a corresponds to small variance,
and that of Figure 2.11b to large variance. No doubt the location of the
decision hyperplane in Figure 2.11b is much more critical than that in
Figure 2.11a.
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s Nondiagonal covariance matrix: Following algebraic arguments similar to
those used before, we end up with hyperplanes described by

gij(x) = w' (x — x0) =0 (2.44)
where
w=3""(u; — B (2.45)
and

i <‘“f)> _ MR (2.46)

P ) ;= Byl

1
xo = SCu; T B~ ln(

where ||x|s-1 = (xS 1x)V/? denotes the so-called 3~ ! norm of x. The
comments made before for the case of the diagonal covariance matrix are still
valid, with one exception. The decision byperplane is no longer orthogonal
to the vector [b; —-[k; but to its linear transformation L, = [TH2

Figure 2.12 shows two Gaussian pdfs with equal covariance matrices, describing
the data distribution of two equiprobable classes. In both classes, the data are dis-
tributed around their mean values in exactly the same way and the optimal decision
curve is a straight line.

Minimum Distance Classifiers

We will now view the task from a slightly different angle. Assuming equiprobable
classes with the same covariance matrix, g;(x) in (2.34) is simplified to

gi(x) =~ %(x D N CE ) (247
where constants have been neglected.
a S = oI In this case maximum g;(x) implies minimum
FEuclidean distance: de = ||%X — K Il (2.48)

Thus, feature vectors are assigned to classes according to their Euclidean
distance from the respective mean points. Can you verify that this result ties
in with the geometry of the hyperplanes discussed before?

Figure 2.13a shows curves of equal distance de = € from the mean points
of each class. They are obviously circles of radius ¢ (hyperspheres in the
general case).

m Nondiagonal X: For this case maximizing g;(x) is equivalent to minimizing
the 3~ norm, known as the
1/2
Mabalanobis distance: dm = ((x = p,i)TE_l(x = p,i)> (2.49)

In this case, the constant distance d,, = ¢ curves are ellipses (hyperellipses).
Indeed, the covariance matfix is symmetric and, as discussed in Appendix B,
it can always be diagonalized by a unitary transform

s, = dADT 2.50)

2.4 Bayesian Classification for Normal Distributions

—40 —40

FIGURE 2.12

An example of two Gaussian pdfs with the same covariance matrix in the two-dimensional space.
Each one of them is associated with one of two equiprobable classes. In this case, the decision
curve is a straight line.

where ®T =®~! and A is the diagonal matrix whose elements are the eigen-
values of 3. @ has as its columns the corresponding (orthonormal)
eigenvectors of %

d = [v1,v2,.--,01] .51

Combining (2.49) and (2.50), we obtain
(x — pT OA 1O (x — ) = g% (252
Define x' = ®7 x. The coordinates of x’ are equal to v} x,k=1,2,...,1,that
is, the projections of x onto the eigenvectors. In other words, they are the

coordinates of x with respect to a new coordinate system whose axes arc
determined by vg,R=1,2,... ,1. Equation (2.52) can now be written as

r IN2 o N2
M+..,+M:CZ (2.53)
A Ay
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FIGURE 2.13

Curves of (a) equal Euclidean distance and (b) equal Mahalanobis distance from the mean points
of each class. In the two-dimensional space, they are circles in the case of Euclidean distance
and ellipses in the case of Mahalanobis distance. Observe that in the latter case the decision
line is no longer orthogonal to the line segment joining the mean values. It turns according to
the shape of the ellipses.

This is the equation of a hyperellipsoid in the new coordinate system.
Figure 2.13b shows the / = 2 case. The center of mass of the ellipse is at u;,and
the principal axes are aligned with the corresponding eigenvectors and have
lengths 2+/Arc, respectively. Thus, all points baving the same Mabalanobis
distance from a specific point are located on an ellipse.

Example 2.2

In a two-class, two-dimensional classification task, the feature vectors are generated by two
normal distributions sharing the same covariance matrix

. {1.1 03}
03 19
and the mean vectors are u; = [0, O]T,p,2 = 3,317, respectively.
(a) Classify the vector [1.0,2.2]7 according to the Bayesian classifier.

It suffices to compute the Mahalanobis distance of [1.0;2.2]7 from the two mean vectors.
Thus,

Ay, 3 = (x — 'S 7w — py)

095 —0.15||1.0
=[1.0,2.2 =2
! ] {—OAIS 0.55 j| I:2.2:| =902

Similarly,

0. —g15| [-2
A2y, %) = [—2.0,—0.8] [ 5 1 [ 2 0} ~3.672 259

—=0.15 0.55 —-0.8

Thus, the vector is assigned to the class with mean vector [0, 017. Notice that the given vector
[1.0,2.2]7 is closer to [3,3]7 with respect to the Euclidean distance.

2.4 Bayesian Classification for Normal Distributions

(b) Compute the principal axes of the ellipse centered at [0, 017 that corresponds to a constant
Mahalanobis distance d,,, = +/2.952 from the center.
To this end, we first calculate the eigenvalues of 3.

dee[|TLTr 93 ) oazosm+2=0
03 19-A

orA; = 1and A, = 2. Tocompute the eigenvectors we substitute these values into the equation
C—-ADv=0

and we obtain the unit norm eigenvectors

1
It can easily be seen that they are mutually orthogonal. The principal axes of the ellipse are
parallel to v1 and v, and have lengths 3.436 and 4.859, respectively.

Remarks

m In practice, it is quite common to assume that the data in each class are ade-
quately described by a Gaussian distribution. As a consequence, the associated
Bayesian classifier is either linear or quadratic in nature, depending on the
adopted assumptions concerning the covariance matrices. That is, if they
are all equal or different. In statistics, this approach to the classification task
is known as linear discriminant analysis (LDA) or quadratic discriminant
analysis (QDA), respectively. Maximum likelibood is usually the method
mobilized for the estimation of the unknown parameters that define the mean
values and the covariance matrices (see Section 2.5 and Problem 2.19).

® A major problem associated with LDA and even more with QDA is the large
number of the unknown parameters that have to be estimated in the case
of high-dimensional spaces. For example, there are / parameters in each of
the mean vectors and approximately I?/2 in each (symmetric) covariance
matrix. Besides the high demand for computational resources, obtaining good
estimates of a large number of parameters dictates a large number of training
points, N. This is a2 major issue that also embraces the design of other types
of classifiers, for most of the cases, and we will come to it in greater detail in
Chapter 5. In an effort to reduce the number of parameters to be estimated,
a number of approximate techniques have been suggested over the years,
including [Kimu 87, Hoff 96, Frie 89, Liu 04]. Linear discrimination will be
approached from a different perspective in Section 5.8.

LDA and QDA exhibit good performance in a large set of diverse applications
and are considered to be among the most popular classifiers. No doubt, it
is hard to accept that in all these cases the Gaussian assumption provides a
reasonable modeling for the data statistics. The secret of the success seems
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to lie in the fact that linear or quadratic decision surfaces offer a reasonably
good partition of the space, from the classification point of view. Moreover,as
pointed out in [Hast 01], the estimates associated with Gaussian models have
some good statistical properties (i.e., bias variance trade-off, Section 3.5.3)
compared to other techniques.

2.5 ESTIMATION OF UNKNOWN PROBABILITY
DENSITY FUNCTIONS

So far, we have assumed that the probability density functions are known. However,
this is not the most common case. In many problems, the underlying pdf has to be
estimated from the available data. There are various ways to approach the problem.
Sometimes we may know the type of the pdf (e.g., Gaussian, Rayleigh), but we do not
know certain parameters, such as the mean values or the variances. In contrast,in
other cases we may not have information about the type of the pdf but we may know
certain statistical parameters, such as the mean value and the variance. Depending
on the available information, different approaches can be adopted. This will be our
focus in the next subsections.

2.5.1 Maximum Likelihood Parameter Estimation

Let us consider an M-class problem with feature vectors distributed according to
p(xlw),i = 1,2,...,M. We assume that these likelihood functions are given in a
parametric form and that the corresponding parameters form the vectors 6; which
are unknown. To show the dependence on 6; we write p(x|wi; 6;). Our goal is
to estimate the unknown parameters using a set of known feature vectors in each
class. If we further assume that data from one class do not affect the parameter
estimation of the others, we can formulate the problem independent of classes and
simplify our notation. At the end, one has to solve one such problem for each class

independently.

Let x1, X2, ..., xy be random samples drawn from pdf p(x; 6). We form the
joint pdf p(X; 6), where X = {x1,...,%xy} is the set of the samples. Assuming
statistical independence between the different samples, we have

N
DX 0) = plxy, %2, xn; 0) = [ | pCoxr; 0) (2.55)
k=1

This is a function of 8, and it is also known as the likelihood function of 6 with
respect to X. The maximum likelibood (ML) method estimates 0 so that the
likelibood function takes its maximum value, that is,

N
Oz = ) 2.56
ML argmgxkl;[lp(xk ) (2.56)

2.5 Estimation of Unknown Probability Density Functions

A necessary condition that 0,1 must satisfy in order to be a maximum is the gradient
of the likelihood function with respect to 0 to be zero, that is

ITa=1 PGk O _ @57
a0

Because of the monotonicity of the logarithmic function, we define the log-
likelibood function as

N
1@ =In [ [ pCxe: O (2.58)
k=1 )
and (2.57) is equivalent to
N . N .
dL(O) _ Z dlnp(xg; 6 _ Z 1 ap(xe; 0) -0 (259
70 = 70 = P(xes 6 96

Figure 2.14 illustrates the method for the single unknown parameter casc. The ML
estimate corresponds to the peak of the log-likelihood function.

Maximum likelihood estimation has some very desirable properties. If @ is
the true value of the unknown parameter in p(x; 0), it can be shown that under
generally valid conditions the following are true [Papo 91].

a The ML estimate is asymptotically unbiased, which by definition means that
lim E6z] = 60 (2.60)

Alternatively, we say that the estimate converges in the mean to the true value.
The meaning of this is as follows. The estimate 9ML is itself a random vector,
because for different sample sets X different estimates will result. An estimate
is called unbiased if its mean is the true value of the unknown parameter. In
the ML case this is true only asymptotically (N — %).

PO

FIGURE 2.14

The maximum likelihood estimator 8, corresponds to the peak of p(X; ).
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a The ML estimate is asymptotically consistent, that is, it satisfies

A}imocprob{I\éML — ol =€ =1 (2.61)

where € is arbitrarily small. Alternatively, we say that the estimate converges 72
probability. In other words, for large N it is highly probable that the resulting
estimate will be arbitrarily close to the true value. A stronger condition for
consistency is also true:

lim (163 — 6oll] = 0 (2.62)

In such cases we say that the estimate converges in the mean square. In
words, for large N, the variance of the ML estimates tends to zero.
Consistency is very important for an estimator, because it may be unbiased,
but the resulting estimates exhibit large variations around the mean. In such
cases we have little confidence in the result obtained from a single set X.

a The ML estimate is asymptotically efficient; that is, it achieves the Cramer-Rao
lower bound (Appendix A). This is the lowest value of variance, which any
estimate can achieve.

m The pdf of the ML estimate as N — ® approaches the Gaussian distribution
with mean 6y [Cram 46]. This property is an offspring of (a) the central
limit theorem (Appendix A) and (b) the fact that the ML estimate is related to
the sum of random variables, that is, d In(p(xr; 6))/36 (Problem 2.16).

In summary, the ML estimator is unbiased, is normally distributed, and has the
minimum possible variance. However, all these nice properties are valid only for
large values of V.

Example 2.3
Assume that N data points, x1, x2, ..., Xy, have been generated by a one-dimensional
Gaussian pdf of known mean, w, but of unknown variance. Derive the ML estimate of the
variance.
The log-likelihood function for this case is given by
N N 2
20 L2y 1 7(@% - W
L@ =In [ | pla;o® = 1n [ | ——mméxp( —5om )

k=1 k=1
or

N 1<
oD = ~5 In@mo™) = 55 ) (e~ W
k=1

Taking the derivative of the above with respect to o2 and equating to zero, we obtain

N

N 1

-+ — e — ) =0
202 204;(ia 1)
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and finally the ML estimate of o2 results as the solution of the above,
L N
52, = — - w? 2.63
oML Z(xk W (2.63)
k=1
Observe that, for finite NV, &fm in Eq. (2.63) is a biased estimate of the variance. Indeed,

0_2

i A N —
ElGi) = & 3 ElGe — w1 = —
k=1

where a2 is the true variance of the Gaussian pdf. However, for large values of N, we
have
1
E62.1 = (1 — —)o? ~ o2
(O] ( N)U ag

which is in line with the theoretical result of asymptotic consistency of the ML estimator.

Example 2.4
Let %1, x2, .-
matrix and unknown mean, that is,

., xy be vectors stemmed from a normal distribution with known covariance

1 1 Is—1 _
Plxp; p) = (—ZWCXP<_E(M€ —py E (e M))

Obtain the ML estimate of the unknown mean vector.
For N available samples we have

N N
N 1 -
1w = In [ | plaes ) = =7 (@' IZD — 5 Yo - w26

k=1 k=1
Taking the gradient with respect to u, we obtain
L
ap1
a—ﬂ— N
ACON e [ ZE‘l(xk -mw=0 (2.65)

B
=
=
Il
-

JdL

I
or
1 N
i = x (266)
Fearr Nk};l ke

That is, the ML estimate of the mean, for Gaussian densities, is the sample mean. However,
this very “natural approximation” is not necessarily ML optimal for non-Gaussian density

functions.
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