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INF 5520 – Digital Image Analysis

Fritz Albregtsen 26.08.2020

TexTure
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Plan for today 
• G&W, “DIP4E”, Ch. 11 (pages 846-857)

• Why texture, and what is it?

• Statistical descriptors
– First order

• Mean, variance, …, moments, …

– Second order
• Gray level co-occurrence matrices (GLCM)

– Higher order
• Fourier analysis
• Gray level runlength matrices
• Cooccurrence of gray level runs
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What is segmentation?

• A process that splits the image into 
meaningful regions. 

• One of the most important elements of 
a complete image analysis system.

• Segmentation gives us regions and 
objects that we may later describe and 
recognize. 

• The simplest case: two classes:
– Foreground
– Background

”Simple” example: 
find symbols for OCR
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Segmentation problems

• Usually several objects in an image.
• Often several classes.
• Objects of same class

are seldom completely alike.
• Reflection, color etc. may vary.
• Lighting may vary over image.

• We perceive and utilize
- intensity (jnd≈1.7%=>N ≈ 60)

& color, N(IHS)≈(60*100*60 =360 000)

+ texture. 
A more complex example: 

What and where is the  
object in this image?
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What is texture?

• Intuitively obvious, 
but no precise definition exists
– ”fine, coarse, grained, smooth” etc

• Texture consists of texture primitives, texels,
– a contiguous set of pixels with some tonal 

and/or regional property

• Texture can be characterized by
– intensity (color) properties of texels
– Structure & spatial relationships of texels

• A texel is the characteristic object 
that the texture consists of (the ”brick in the wall”) 

• Textures are highly scale dependent.

“Spatially 
extended patterns 
of more or less 
accurate repetitions 
of some basic 
texture element, 
called texels.”
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How do we segment these images?
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What is a texel?
Texel = texture element, the fundamental unit of texture space.
Can be defined in a strict geometrical sense, or statistically.

Note that you can define texels in any image scale, 
and that the best image scale for analysis is problem dependent.
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Texture analysis applications
• Segment an image into regions with the 

same texture, i.e. as a complement to 
graylevel or color

• Recognize or classify objects in images 
based on their texture

• Find textural edges in an image, 
i.e., where the texture changes

• ”shape from texture” (Victor Vasarely) --->

• object detection, compression, synthesis

• Industrial inspection:
– find defects in materials



F2 26.08.20 IN5520 9

Texture analysis applications - II

• Reliable cancer prognostics.

• Microscopy images of monolayer 
cell nuclei from early stage 
ovarian cancer. 

• Four monolayer cell nuclei from 
a good prognosis sample (left) 
and from a bad prognosis sample (right). 

• Aim: small set of differentiating  
textural features.
– See The Lancet Oncology (2018):
http://dx.doi.org/10.1016/S1470-2045(17)30899-9
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Features

• Gray level image features can be found from:

– Edges
• Gives the (incomplete ?) borders between image regions

– Homogeneous regions
• Mean and variance are useful for describing

the contents of homogeneous regions

– The texture of a local (sliding) window
• Features that describe how the gray levels in a window varies, 

e.g. roughness, regularity, smoothness, contrast etc.
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A simple approach to texture
• To be able to find changes in the 

texture of an image, a simple 
strategy is to perform texture 
measurements in a sliding window

• Most texture features can be 
summed up as a set of scalars,
so we can assign features 
to each of the image pixels 
corresponding to window centers

• For each pixel, we now have a 
description of the ”texture” in its 
neighborhood

• Beware of image boundaries,  
artifacts will occur!

Compute a local texture feature 
in a local window. 
Slide the window around in the 
image. 
Each computed texture feature 
gives a new texture feature image!
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Computing texture images
• Select a window size 

and select a texture feature

• For each pixel (i,j) in the image:
– Center the window at pixel (i,j)
– Compute the texture feature
– Assign the computed value 

to the center pixel (i,j) 
in a new output image 
of the same size

• This is similar to filtering

• Pixels close to the image border can be handled in the same manner 
as for filtering/convolution (reflected indexing, circular indexing)
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What to do along image border?

• Make larger in-image, to make filter fit inside in-image,
to produce an out-image of same size as original.

• Padding of in-image:
– Most common: zero padding. Do not
– Using some fixed value, e.g., image mean value conserve
– Using closest image pixel value (replicate). texture
– Using  mirror-reflected indexing.
– Using circular indexing.
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Texture feature image example

Input image.

For each pixel, compute
a local homogeneity
measure in a local sliding 
window.

New homogeneity image.

Try to get an image 
where pixels belonging to 
the same texture type get 
similar values.

Segmented feature image.
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”Texture” – description of regions

• Remember: we estimate local properties (features) to be able to 
isolate regions which are similar in an image (segmentation), 
usually with the goal of object description 
and possibly later identify these regions (classification), 

• One can describe the ”texture” of a region by:
– smoothness, roughness, regularity, orientation...

• Problem: we want the local properties to be as ”local” as possible

• Large region or window 
=> Precise estimate of features
=> Imprecise estimate of location

• Small window 
=> Precise estimate of location
=> Imprecise estimate of feature values
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Uncertainty relation

• Large region or window 
=> More precise feature value, 

but imprecise boundaries between regions

• Small window 
=>More precise estimate of region boundaries, 

but imprecise feature value

• Related to Heisenberg’s uncertainty relation
in physics:

σx σp ≈ h/(2π)

See: R. Wilson and G.H. Granlund,
“The Uncertainty Principle in Image Processing,
IEEE T-PAMI-6 , pp.758-767, 1984. DOI: 10.1109/TPAMI.1984.4767599
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Texture description is scale dependent

• What is our goal for texture description in the image? 

• Scale impacts the choice of texels, 
and vice versa

• The curtain can be described as 
– a repetition of single threads, 

– a configuration of meshes 

– a repetition of folds.
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Example of scale dependence

Original image “Variance” feature
computed in window
of size 3x3 

“Variance” feature
computed in window
of size 15x15 
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Statistical texture description
• Describe texture in a region by a vector of statistics 

(feature vector)

– First order statistics from graylevel intensity histogram p(i)
• Mean, variance, 3. and 4. order moment, entropy, energy

– Second order statistics, 
describing relation between pixel pairs 

• How does the gray levels of pixels i and j at a distance d
depend on each other. Are they similar or different ? 

– Higher order statistics, 
• describe region by runs of similar pixels
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First order statistics from histogram - I 

• Mean (hardly a useful texture feature)

• Variance (a more credible feature, measures region "roughness") 

• Skewness (are the texel intensities usually darker/lighter than average?)

• Kurtosis (how ”peaked" is the graylevel distribution?)
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First order statistics from histogram - II

• Entropy, i.e., first order Shannon entropy
(how uniform is the graylevel distribution?)

• Energy 
(how non-uniform is the graylevel distribution?)  
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Using variance estimates

• Variance, 2, is directly a measure of ”roughness”
– An unbounded measure ( 2 ≥ 0)

• A measure of ”smoothness” is

– A bounded measure (0 ≤ R ≤ 1)
• R is close to 0 for homogenous areas
• R tends to 1 as 2, ”roughness”, increases
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Using variance estimates

• “Coefficient of variation”

– where w and w are computed within window  w x w

– CV is intensity scale invariant:

– but not intensity shift invariant:

– Alternatives (if assumption of normal distribution not valid):
• use median instead of mean
• interpercentile-distance instead of standard deviation
• Also note “variance-to-mean” and “signal-to-noise”



F2 26.08.20 IN5520 24

Skewness 

– Skewness is a measure of the asymmetry of the probability distribution 
– Measures if there is a "wider" range of either darker or lighter pixels 

– Negative skew: The left tail is longer; the mass of the distribution is 
concentrated on the right of the figure. 

– Positive skew: The right tail is longer; the mass of the distribution is 
concentrated on the left of the figure (more darker pixels than average).
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Skewness example

Region 1

Region 2

Histogram - Region 1

Histogram - Region 2

Skewness feature
Computed in 15x15 window

Region1: all gray levels occur
Histogram is fairly symmetric
Skewness is gray (average)

Region2: bright pixels more 
frequent. Histogram asymmetric.
Negative skew: Skewness is dark. 
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Kurtosis

– Measure of  "peakedness" of the probability distribution.

– Low kurtosis distribution has a more rounded peak 
with wider "shoulders“

– A high kurtosis distribution has a sharper "peak" and flatter "tails"
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First order statistics - Entropy

• Entropy (how uniform is the graylevel distribution?)

• If all pixel values are the same, H = 0  ( since log2(1) = 0).

• If all pixel values are equally probable:
– There are G = 2b gray levels, each having a probability  p(i) = 1/G = 1/2b, so:

• We see that 0  H  b (b = number of bits per pixel)

• Here, we use entropy as a texture feature, 
computed in a local window.
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Entropy example

Region 1

Region 2

Histogram - Region 1

Histogram - Region 2

Entropy feature
Computed in 15x15
Window

Region1: high entropy

Region2: low entropy
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First order statistics - Energy

• Energy (how non-uniform?)

• A  measure of homogeneity

• If all P(i) are equal (histogram is uniform), E=1/G

• If the image contains only one gray level: 
E=(G-1)0+11=1

• Thus, 1/G  E  1
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1. order statistics discussion
• 1. order statistics can separate two regions even if μ1 = μ2 , 

as long as  2
1  2

2 , or skewness or kurtosis differ
• The statistics of a pixel (x, y) is found in a local window

• Problems:
– Edges around objects will be exaggerated

• Solution: use adaptive windows

– 1. order statistics does not describe geometry or context
• Cannot discriminate between 

• Solution:

– Use 2. or higher order statistics.
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Second order statistics

• Gray-level Co-Occurrence matrices
– Intensity-change-”histograms” 

as a function of distance and direction

– By far the most popular texture description method 
due to its simplicity

– The co-occurrence matrix is 
an estimate of the second order joint probability, 
• which is the probability of 

– going from gray level i  to gray level j, 
– given the distance d   between two pixels 
– along a given direction θ.
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Gray Level Coocurrence Matrices (GLCM)

• Matrix element P(i,j) in a GLCM is 2. order probability of changing 
from graylevel i to j when moving a distance d in the direction 
of the image, or equivalent, (Δx, Δy)

• From a M × N image with G graylevels, and f(m,n) is the intensity. 
Then                                                         , where

and

• Alternative notation, dependent on distance and direction, P(i,j | d, )
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GLCM
• From one window of size ww we get one GLCM matrix for a 

given (d,θ)
• The dimension of the co-occurrence matrix is GxG

if we have G gray-levels in the image.
• Choose a distance d and a direction 

• Check all pixel pairs with distance d and direction  inside the 
window. Q(i,j|d,) is the number of pixel pairs where pixel 1 in 
the pair has pixel value i and pixel 2 has pixel value j.

In this example, 
d=1 and =0
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GLCM

d=1,  =0 correspond to dy=0, dx=1

This row has no neighbors to 
the right. The number of pixel 
pairs that we can compute is 
N(M-1) = 5  (5-1) = 20

Q(i,j|d,)

gray
level i

gray
level j

P(i,j|d,) is normalized by W, the number of 
pixel pairs inside the window.

1 2 1 0 
0 1 3 0 
0 0 3 5  
0 0 2 2  
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GLCM – practical issues

• The matrix must have a sufficient  “average occupancy level” :

– Reduce number of graylevels 
(Less precise description if the texture has low contrast)

• Select L =number of gray levels
• Rescale the image if necessary to use these levels using (histogram transform)
• Requantize the scaled image from G to L gray levels before GLCM 

computation

– Increase window size (Errors due to changes in texture) 

• Heuristics:
– L = 16 graylevels is usually sufficient 
– window should be 31 x 31 – 51 x 51 pixels.
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Preprocessing examples

Original image Histogram-equalized
and requantized to
16 gray levels
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GLCM matrices for subregions

Subregions of image

Nose Fur2

GLCM matrices
d=1, =0

GLCM matrix
d=1, =90

GLCM matrix
d=1, =0Fur1
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GLCM
• Usually a good idea to reduce the number of (d,) combinations evaluated

• Simple pairwise relations: 
– P(d,00) = P t (d,1800)  
– P(d,450) = P t (d,2250)
– P(d,900) = P t (d,2700) 
– P(d,1350) = P t (d,3150)

– Symmetric GLCM:
• Count “forwards” + “backwards”

• Isotropic cooccurrence matrix by averaging 
P(),   {0o, 45o, 90o, 135o}

– Beware of differences in effective window size!

• An isotropic texture is equal in all directions

• If the texture has a clear orientation, we select  according to this.

180 0

90

270
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Isotropic GLCM example
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How to use the GLCM

• Usually, used by extracting secondary features from GLCM
– Haralick et al. and Conners et al.
– Features are usually strongly correlated, 

using more than 4-5 simultaneously is not advisable
– You may need to evaluate several distances d

• Would you perform anti-aliasing filtering for d>1 ?
– Optimal set of features is problem dependent

• It may be advisable to preprocess by histogram transform 
to remove effect of absolute gray level.

• Often, we want to make the features ”rotation” invariant 
by using the isotropic GLCM (remember different weights).
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Classical GLCM features

• There are a number of scalar texture features that characterize 
the cooccurrence matrix directly and the image indirectly. 

• Many of these GLCM features may be seen as a weighted sum 
of the cooccurrence matrix element values, where the weighting 
applied to each element is based on a given weighting function.

• By varying this weighting function, different types of information 
about the texture can be extracted. 

• The weighting functions fall into two general categories:
1. Weighting based on the value of the GLCM element
2. Weighting based on the position within the GLCM
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Value-based GLCM Features
• Angular Second Moment,

– ASM is a measure of homogeneity of an image. 
– Homogeneous scene will contain a few gray levels, 

giving a GLCM with few but high values of P(i,j). 
– Thus, the sum of squares will be high.

• Entropy, 

– Inhomogeneous scenes have high entropy, 
while a homogeneous scene has a low entropy.

– Maximum Entropy is reached when 
all 2. order probabilities are equal.

– Note that 0 ≤ P(i,j) ≤ 1.
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Position-based GLCM Features

• Inverse Difference Moment (also called homogeneity)

– So the weight function is 

– IDM is influenced by the homogeneity of the image. 

– Because of the weighting factor, IDM will get 
small contributions from inhomogeneous areas (i  j). 

– The result is a low IDM value for inhomogeneous images, 
and a relatively higher value for homogeneous images.
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Position-based GLCM Features-2

• Inertia, also called Contrast:

• The Inertia weighting function is zero along the diagonal (i = j), 
and increases towards (G − 1)2 away from the diagonal.

• Thus, it will favor contributions from P(i, j) away from the diagonal 
(i ≠ j), i.e., give higher values for images with high local contrast.
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GLCM feature image examples, w= 15

GLCM contrast

GLCM contrast is
•negative correlated with IDM 
•positively correlated with   
variance

GLCM variance GLCM entropy

GLCM entropy is 
negatively correlated
with ASM 
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GLCM IDM GLCM ASM GLCM correlation 

GLCM feature image examples, w= 15
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Aristotle and Occam

• Our search for models or hypotheses that describe the laws of 
nature is based on a ”minimum complexity principle”. 

• Aristotle (384-322 BC), Physics, book I, chapter VI: 
‘The more limited, if adequate, is always preferable’.

• William of Occam (1285-1349): 
‘Pluralitas non est ponenda sine necessitate’.

• The simplest model that explains the data is the best. 

• So far, “Occam’s Razor”  has generally motivated the 
search and selection of reduced dimensionality feature sets. 

• It should also motivate us to generate
only a few powerful features.

F2 26.08.20 IN5520
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The ”curse-of-dimensionality”

• Also called ”peaking phenomenon”.

• For a finite training sample size,     
the correct classification rate initially 
increases when adding new features, 
attains a maximum and then begins 
to decrease.

• The implication is that:
• For a high measurement complexity, 

we will need large amounts of 
training data in order to attain 
the best classification performance.

• => 5-10 samples / feature / class.

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

of the two classes is assumed.
Illustration from G.F. Hughes (1968).

F2 26.08.20 IN5520
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Feature subsets

• A goal is to find the subset of observed features which 
– best characterizes the differences between groups  
– is similar within the groups 
– Maximize the ratio of between-class and within-class variance. 

• If we want to perform an exhaustive search through D 
features for the optimal subset of the d ≤ m “best 
features”, the number of combinations to test is 

• Impractical even for a moderate number of features!
m ≤ 5, D = 100  =>  n = 79.374.995
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Which GLCM θ to use
• Remember the simple pairwise relations: 

– P(d,00) = P t (d,1800)  
– P(d,450) = P t (d,2250)
– P(d,900) = P t (d,2700) 
– P(d,1350) = P t (d,3150)

– Symmetric GLCM:
• Count “forwards” + “backwards”

• If you are to distinguish betw. oriented patterns, use a GLCM 
direction, θ, that optimizes differences, not similarities.

• If you are to distinguish betw. textures that differ 
in contrast or homogeneity, use θ and d that capture the
differences, combined with features with weight functions like

« Inertia / Contrast»: (i-j)2
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Low-D adaptive weighting functions

• The GLCM features described are predefined and non-adaptive ,
and we need a number of them to describe the matrix content.

• Instead, we could find a few weighting functions 
adapted to the problem. 

• This would extract information from the parts of the GLCM matrix 
that actually contain information about texture differences between 
e.g., two different clinical classes (say, good and bad prognosis). 

• Given a number of images of each of two classes, compute 
– the mean P(i,j|ω) , for each class, ω=1,2
– the variance σ2(i,j|ω) of P , for each class, ω=1,2
for each position (i,j) of the GLCM.
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Low-D adaptive weighting functions

• Then for each position (i,j), compute two new matrices:
– the class difference matrix value (difference between the means)

Δ(i,j) = P(i,j|ω=1) – P(i,j|ω=2), 

– and the Mahalanobis class distance matrix (Q: what is this J(i,j)?)

J(i,j) = 2 Δ2(i,j) / (σ2(i,j|ω=1)+ σ2(i,j|ω=2) ). 

• Then use the Malalanobis distance matrix as the weighting function
on each GLCM  matrix obtained from a (new) image, 
to produce only two features,
one for the positive and one for the negative partition of Δ(i,j).

See Kleppe, Albregtsen, Vlatkovic et al., The Lancet Oncology (2018)
“Chromatin organisation and cancer prognosis: A pan-cancer study»
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Sum and difference histograms

• The sum histogram S  is simply the histogram of the sums 
of pixels dx and dy  apart

• For example, the gray level at I(x,y) is added to the gray level at 
I(x+dx,y+dy) and the histogram bin corresponding to that sum is 
incremented

• The difference histogram D is simply the histogram of the difference 
of pixels dx and dy apart

• The number of possible values of sum and difference histogram is 2G-1.
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Sum and difference histograms

• GLCM features can be derived from Ps and Pd
• Example:

– Contrast from Pd

– Contrast from GLCM

• Some of the features mentioned earlier is derived from the 
histograms
– Sum Average, 
– Sum Entropy, 
– Difference Entropy, 
– Inverse Difference moment, 



F2 26.08.20 IN5520 55

Fourier analysis
• The Fourier spectra give direction and frequency for periodic 

or near periodic 2D patterns

• Local FFT in windows

• Texture with a dominating direction will have peaks in the 
spectra along a line orthogonal to the texture orientation

• High frequency  = fine texture 
= peaks in the spectra far from the origin 

• Thus it is possible to separate fine and coarse spectra  

• The spread in image frequencies = width of the peak in Fourier

• Isotropic textures with a defined frequency can be seen as rings 
in the spectra

• Scalar features can be extracted by integration over rings, 
wedges or from results of Gabor filtering (next slide)
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Fourier analysis example

• Transform to Fourier domain, 
integrate over rings or wedges

Gabor filters 
combine estimate of 

orientation and 
frequency.
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Gray level run length statistics

• The GLRLM method extracts higher-order statistical 
texture information from digital images. 

• A set of consecutive pixels with the same gray-level, 
colinear in a given direction, constitute a gray-level run.

• The run length is the number of pixels in the run. 
• Run length value is the number of occurrences of a run.
• The normalized GLRLM contains the run length values 

divided by the total number of runs in the image.
• A number of value- and position-dependent weightings.
• The adaptive approach has proven useful.
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Cooccurrence of Gray Level Runs

• As an alternative to the GLCM and GLRLM methods, we introduced  
the cooccurrence of gray-level run length matrix (CGLRLM) method. 

• The four-dimensional (4D) normalized matrix P(i, j, k, l) may be seen 
as a natural extension of the 2D gray-level run length matrix, 
containing the estimated probability of cooccurrence of two runs 
of (gray-level, run length) = (i, j) and (k, l). 

• One could specify any geometrical relationship between the two runs. 
However, the most fruitful relationship to capture aspects of the 
texture primitives is to consider neighboring runs.

• The 4D normalized cooccurrence probability matrix P(i, j, k, l) may be 
replaced by its associated 2D sum and difference run-length matrices, 
and adaptive features may be extracted from these.
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Learning goals - texture

• Understand what texture is, and the difference between 
first order and second order measures

• Understand the GLCM matrix, and be able to describe algorithm

• Understand how we go from an image to a GLCM feature image
– Preprocessing, choosing d and , 

selecting some features that are not too correlated

• There is no optimal texture features, 
it depends on the problem

• A good tutorial on texture: 
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
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Exercise & next lecture 

• Exercise: implement your own GLCM function,
and find the zebras in the images. 
Happy zebra hunting!, See the web page.

• Next lecture: Introduction to Hough transform:
Using gradient information to detect & represent lines.
Detecting circles and ellipses, triangles and polygons.


