
F4 16.09.20

IN 5520 – Digital Image Analysis

Fritz Albregtsen 16.09.2020

object representation

From pixels to regions

IN5520 1

Today

G&W, “DIP4E”, Ch. 11 + some from Ch. 8
– Curriculum includes these lecture notes.

We cover the following: DIP3E DIP4E

Boundary following/tracing (self study) 11.1.1 11.2 pp 814-816
Chain Codes 11.1.2 11.2 pp 816-18
Polygonal Approximations using MPP,(omitted) 11.1.3

Recursive boundary splitting 11.1.4 see lecture notes
Sequential polygonization see lecture notes

Boundary Signatures 11.1.5 11.2 pp 826-828
Boundary Segments (convex hull) 11.1.6 see lecture notes
Skeletons 11.1.7 11.2 pp 828-831
Fourier representation 11.2.3 11.2 pp 835-839
Run Length Encoding 8.2.7 8.8 pp 566-572
Bit plane representation (& Gray Code) 8.2.7 8.8 pp 575-576

F4 16.09.20 IN5520 2

An example –
Creating a program that recognizes the numbers

• Goal: get the series of digits, e.g.
1415926535897……

Steps in the program:
1. Segment the image to find digit pixels.
2. Find angle of rotation and rotate back.

3. Create region objects – one object pr.
digit or connected component.

4. Compute features describing the shape of
the digits (next week).

5. Train a classifier on many objects of each
digit.

6. Classify a new object as the one with the
highest probability.

Focus of this lecture

F4 16.09.20 IN5520 3

Shape representations vs. descriptors

• After the segmentation of an image,
its regions or edges are represented and described
in a manner appropriate for further processing.

• Shape representation:
methods to represent and store image objects
– Perimeter (and all the methods based on perimeter)
– Interior (and all the methods …)

• Shape descriptor (next lecture):
recipe to extract feature characterizing object shape.
– The resulting feature value should be useful for discrimination

between different object types.

F4 16.09.20 IN5520 4

Assumptions for shape representation

• The image objects can be represented as:
• Whole regions

– grey level or color image
– compressed image
– binary image

• Contours (region boundaries)
– in cartesian coordinates
– in polar coordinates
– in some other coordinates
– through a chain code / transform
– as coefficients of some transform (e.g. Fourier)
– through a run length code / transform

F4 16.09.20 IN5520 5

Considerations

• Input representation form, boundaries or whole regions?
• Object reconstruction ability?
• Incomplete shape recognition ability?
• Local/global description?
• Mathematical or heuristic techniques?
• Statistical or syntactic object description?
• Robustness of description to

translation, rotation, and scale transformations?
• Shape description properties in different resolutions?

– description changes discontinuously.
• Robustness against

– image noise
– geometric sampling (discretization)
– intensity quantization

F4 16.09.20 IN5520 6

From pixels to features – text recognition

• Input to the classifier is normally a set
of features derived from the image
data, not the image data itself.

• Why can’t we just use all the grey level
pixels as they are for text recognition?
– Objects corresponds to regions. We need

the spatial relationship between the pixels.
– For text recogntion: information is in shape,

not in the grey levels.

Region features:
-Area

-Perimeter
-Curvature

-Moment of inertia
-.....
-....

Region feature
extraction

Segmentation

F4 16.09.20 IN5520 7

Characteristics of a good segmentation

• Each object that is to be described
has been identified during segmentation.
– Ideally, one region in the segmented image

should correspond to one object.
– An object should not be fragmented into

several non-connected regions.
– Some small noise objects will often occurr,

these can often be removed later.

– This lecture and the next will describe
how to find connected region objects
and how to find scalars or vectors
representing their shapes.

F4 16.09.20 IN5520 8

What is ”shape”?
• A numerical description of the spatial configuration.
• No generally accepted methodology of shape description.
• High curvature points give essential information.
• Many useful, application-dependent heuristics.
• Shape is often defined in a 2D image, but its usefulness

in a 3D world depends on 3D -> 2D mapping.
• Invariance is an important issue.

Three curvature points

Ellipses with different size and orientation

Objects with more irregular shape

F4 16.09.20 IN5520 9

Is invariance needed?

•Translation invariance
•Scale invariance
•Rotation invariance, but what about e.g., 6 and 9?
•Warp invariance
•You should check INF 2310 on geometrical operations

•Gray-level images: invariance to contrast and mean gray level

F4 16.09.20 IN5520 10

Shape invariants

• Shape descriptors depend on viewpoint,
=> object recognition may often be impossible

if object or observer changes position.
• Shape description invariance is important

– shape invariants represent properties which remain
unchanged under an appropriate class of transforms.

• Stability of invariants is a crucial property
which affects their applicability.

• The robustness of invariants to image noise
and errors introduced by image sensors
is of prime importance.

F4 16.09.20 IN5520 11

Creating region objects from segmented image

• Start in upper left corner.
• Find first object pixel.

• Traverse the border of this object (Ch. 11.2; p 814)
– (recursive programming efficient)

• Continue with other pixels not yet visited

• Implementing this is time consuming
– (but may be interesting)

F4 16.09.20 IN5520 12

Region identification
• After a complete segmentation,

the regions must be labeled.
• Search image pixel by pixel,

sequentially number each foreground
pixel you find according to the
labeling of its neighbors.

• The algorithm is basically the same in
4-connectivity and 8-connectivity.

• Result of region identification is a
matrix same size as image, with
integers representing region label.

• This description of regions will be
the input to our shape descriptors

• Matlab function implementing this is
bwlabel

All pixels
in a foreground object

(connected component)
get the same label value.

Pixels in the next object
get a different label etc.

F4 16.09.20 IN5520 13

Generating regions from segmented image

• Matlab: Functions bwlabel and regionprops
are the starting points:

B1=bwlabel(B); B is a binary image, obtained by segmentation;
Useful for visualizing regions:

CC = bwconncomp(B1);
L = labelmatrix(CC);
RGBim = label2rgb(L); imshow(RGBim)

D=regionprops(B1,’area’,’boundingbox’); Compute area and boundingbox
for all regions in the image.

aa=[D.area];
See help regionprops for a list of all descriptors.
Typical use: get a list of pixels for each region
g=bwperim(B,8); Find perimeter pixels of all region in binary image B

F4 16.09.20 IN5520 14

Contour representation

• Goal of contour methods is to describe objects in images
• Hopefully, our contour detection method delivers

a complete sequence of pixel coordinates in the image!
• The contour can be represented as:

– Cartesian coordinates
– Polar coordinates from a reference point (usually image origin)
– Chain code and a starting point

• Connectivity: 4- or 8-neighbors
• Note: chain code is very sensitive to noise,

image resolution and object rotation.
• Not well suited for classification directly,

but useful for computation of other features (next lecture).

F4 16.09.20 IN5520 15

Chains
• Chains represent objects within the image

or borders between an object and the background

Object pixel

• How do we define border pixels?
• 4-neighbors
• 8-neighbors

• In which order do we check the
neighbors?

• Chains represent the object pixel,
but not their spatial relationship
directly.

F4 16.09.20 IN5520 16

Chain codes

• Chain codes represent the
boundary of a region.

• Chain codes are formed by
following the boundary in a given
direction (e.g. clockwise)
with 4-neighbors or 8-neighbors.

• A code is associated with each
direction.

• A code is based on a starting
point, often the upper leftmost
point of the object.

0

75

4

3

2

1

6

02

1

3

4-directional
code

8-directional
code

F4 16.09.20 IN5520 17

Absolute chain codes

0

75

4

3
2

1

6

Chain code in clockwise direction:
00077665555556700000644444442221111112234445652211

Search direction: look to the
left first and check neighbors in

clockwise direction

Start

F4 16.09.20 IN5520 18

Start point invariance
• The chain code depends on the starting point.
• It can be made invariant of start point by treating it as a

circular/periodic sequence, and redefining the start point
so that the resulting number is of «minimum magnitude».

Example:
7766555555670000064444444
2221111112234445652211000

becomes
0000064444444222111111223
4445652211000776655555567
which starts here

Sorting, not computing!

F4 16.09.20

0
75

4
3

2
1

6

IN5520 19

Rotation invariance

• We can also normalize for rotation by using
the first difference of the chain code:
(i.e., direction changes between code elements)
– Example Chain code: 10103322 (in N4)
– First difference (counterclockwise): 33133030
– To find first difference, look at the code

and count counterclockwise directions.
– Treating the curve as circular, add the 3 for the first point.
– Minimum circular shift of first difference: 03033133

• 00323211 is the same object, only rotated 180 degrees.
First difference is 30331330, min.circ.shift is 03033133.

• This invariance is only valid if the boundary itself
is invariant to rotation (and eventually scale).

02

1

3

F4 16.09.20 IN5520 20

Relative chain code

• Here, directions are defined
in relation to a moving perspective.

• Example: Orders given to a blind driver:

("F”, "B”, "L”, "R").

• The directional code representing any section
of the contour is relative to the directional code
of the preceding section.

•Why is the relative code:
R,F,F,R,F,R,R,L,L,R,R,F ?

0

75

4

3
2

1

6

Note: rotate the code
table so that 2 is
forward from your
position !!!

F4 16.09.20 IN5520 21

Relative chain code

• The absolute chain code for the triangles are

4,1,7 and 0, 5, 3

• The relative codes are 7, 7, 0. (Remember ”Forward” is 2)

• So, relative code is invariant to rotation,
as long as starting point remains fixed on object.

• Start-point invariance by ”Minimum circular shift”.

• Note: To find the first element, we look back one step,
to the end of the contour.

0

75

4

3
2

1

6
Note: rotate the code
table so that 2 is
forward from your
position

F4 16.09.20 IN5520 22

Using all border point vs. resampling the border

• If chain codes are generated from every point on the
border, the chain will be long and can be sensitive to
small disturbances along the border.

• The border is often resampled to a larger grid before
chain coding is done. The accuracy of the chain code
depends on the grid size.

F4 16.09.20 IN5520 23

Chain code example with smoothing

F4 16.09.20 IN5520 24

Polygonal boundary approximation:
Recursive boundary splitting

• Draw straight line between contour points that are farthest apart.
These two points are the initial breakpoints.

1. For each intermediate point:
2. Compute the point-to-line distance
3. Find the point with the greatest distance from the line.
4. If this distance is greater than given threshold,

we have a new breakpoint.
5. The previous line segment is replaced by two,

and 1-4 above is repeated for each of them.
• The procedure is repeated until all contour points are within the

threshold distance from a corresponding line segment.
• The resulting ordered set of breakpoints is then the set of vertices of

a polygon approximating the original contour
• This is probably the most frequently used polygonization.
• Since it is recursive, the procedure is fairly slow.

F4 16.09.20 IN5520 25

Sequential polygonization

• Start with any contour point as first “breakpoint”.
• Step through ordered sequence of contour points.
• Using previous breakpoint as the current origin,

area between contour and approximating line is:

• Let previous point be new breakpoint if
– area deviation A per unit length s of approximating line segment

exceeds a specified tolerance, T.

• If |Ai|/si < T, i is incremented and (Ai, si) is recomputed.
• Otherwise, the previous point is stored as a new breakpoint,

and the origin is moved to new breakpoint.

• This method is purely sequential and very fast.
• Reference: K. Wall and P.E. Danielsson, A Fast Sequential Method for Polygonal

Approximation of Digital Curves, Computer Vision, Graphics, and Image Processing,
vol. 28, 1984, pp. 220-227.

 22
111 ,

2

1
iiiiiiiii yxsyxxyAA

F4 16.09.20 IN5520 26

Sequential polygonization

 1111

111111111

111111

2

1

2

1

2

1
2

1

2

1

2

1

2

1

2

1

2

1
2

1

2

1

2

1

iiiiiiii

iiiiiiiiiiiiiiii

iiiiiiiiiiii

yxyxyxyx

yxyxyxyxyxyxyxyx

yxxyyxxyxyxA

F4 16.09.20

=
-

-
-

IN5520 27

Signature representations
• A signature is a 1D functional representation

of a 2D boundary.
• It can be represented in several ways.
• Simple choice: radius vs. angle:

• Invariant to translation.
• Not invariant to starting point, rotation or scaling.

F4 16.09.20 IN5520 28

Normalization of (r,θ) signature
• Normalization for starting point and rotation:

– Find unique point on the boundary according to some criteria:
• Farthest away from the center (may not be unique)
• Obtain the chain code and normalize as described for chain codes.

• Normalization for scale:
– If the boundary is sampled at equal intervals in angle,

changes in size only affect the amplitude (r).
• The function can be scales so that it always spans the range [0,1].

– This is not robust for extreme values of min/max.
• Scaling by subtracting the mean and dividing by the standard

deviation is more robust.

r

F4 16.09.20 IN5520 29

Signature example

F4 16.09.20 IN5520 30

Boundary segments from convex hull
• The boundary can be decomposed into segments.

– Useful to extract information from concave parts of the objects.
• Convex hull H of set S is the smallest convex set containing S.
• The set difference H-S is called the convex deficiency D.
• If we trace the boundary and identify the points where we go in and out

of the convex deficiency, these points can represent important border points
charaterizing the shape of the border.

• Border points are often noisy, and smoothing can be applied first.
– Smooth the border by moving average of k boundary points.
– Use polygonal approximation to boundary.
– Simple algorithm to get convex hull from polygons.

F4 16.09.20 IN5520 31

Descriptors extracted from Convex Hull

Useful features for shape characterization can be e.g.:
• Area of object and area of convex hull (CH)

– CH ”solidity” aka ”convexity” = (object area)/(CH area)
= The proportion of pixels in CH also in the object

– Better than ”extent” = (object area)/(area of bounding box)

• Number of components of convex deficiency
– Distribution of component areas

• Relative location of
– points where we go in and out of the convex deficiency.
– points of local maximal distance to CH.

F4 16.09.20 IN5520 32

Skeletons
• The skeleton of a region is defined by the medial axis transform:

For a region R with border B, for every point p in R,
find the closest neighbor in B.

• If p has more than one such neighbor, it belongs to the medial axis.
• The skeleton S(A) of an object is the axis of the object.
• The medial axis transform (MAT) gives the distance to the border,

see color-coded left figure below.

F4 16.09.20 IN5520 33

Thinning algorithm to find the skeleton
• There are many algorithms in the literature, here is just one:
• Assume that region points have value 1 and background points 0.
• Define a contour point as a point that has value 1 (=> inside region)

and at least one 8-neighbor with value 0 (=> outside region).
• Apply successive passes of two steps to contour points of region.
• Step 1: Flag contour point p1 for deletion if:

a) 2≤N(p1) ≤6 (N=1 => end point)
b) T(p1) =1 (T=1 => 1 pixel thick)
c) p2p4p6=0
d) p4p6p8=0
Where N(p1) is the number of nonzero neighbors of p1 (=Σpi)

T(p1) is the number of 0-1 transitions
in the ordered sequence p2, p3,...., p8, p9, p2

F4 16.09.20 IN5520 34

Thinning algorithm – cont.
• Step 2: change condition c) and d) to

c’) p2p4p8=0 d’) p2p6p8=0

• Step 1 is applied to every border pixel in the region
under consideration. If any of the conditions a)-d)
are violated, the value of the point is unchanged.
– If all conditions are satisfied, the point is flagged.
– The point is not deleted until all points have been satisfied.
– After completion of step 1, the flagged points are deleted.

• Step 2 is then applied in the same manner as step 1.
• Step1+Step2 defines one iteration of the algorithm.
• More iterations are done until convergence,

i.e. until no further points are deleted.
• Does not remove end points, break connectivity

or cause excessive erosion of the region.
F4 16.09.20 IN5520 35

Introduction to Fourier descriptors

• Suppose that we have an object S, and that
we are able to find the length of its contour.
The contour should be a closed curve.

• We partition the contour into M segments of
equal length, and thereby find M equidistant
points along the contour of S.

• Traveling anti-clockwise along contour at constant speed,
we can collect pairs of coordinates, x(k) and y(k).
Any 1D signal representation can be used for these.

• If the speed is such that one circumnavigation
of the object takes 2, x(k) and y(x) will we periodic with period 2.

GH Granlund,“Fourier preprocessing for hand print character recognition”,
IEEE Trans. Comput., C-21:195–201, 1972.

x

y

F4 16.09.20 IN5520 36

• a+bi

Reminder: complex numbers

F4 16.09.20

a+bi

a

b

IN5520 37

Parametric contour representation
using 1D Fourier transform

• The coordinates (x,y) of these M points are
then put into a complex vector s :

s(k)=x(k)+iy(k), k[0,M-1]
• We choose a direction (e.g. anti-clockwise)
• We view the x-axis as the real axis

and the y-axis as the imaginary one
for a sequence of complex numbers.

• The representation of the object contour is
changed, but all the information is preserved.

• We have transformed the contour problem
from 2D to 1D.

is

is

is

is

43)4(

33)3(

22)2(

13)1(

0 7

0

7

Start

x = 3 2 3 3 3 3 4 4 4 4 4 4 3
y = 1 2 3 4 5 6 6 5 4 3 2 1 1

F4 16.09.20 IN5520 38

Fourier-coefficients from s(k)
• We perform a 1D forward Fourier transform

• Complex coefficients a(u) are the Fourier representation of boundary.
• a(0) contains the center of mass of the object.
• Exclude a(0) as a feature for object recognition.
• a(1), a(2),....,a(M-1) will describe the object in increasing detail.
• These depend on rotation, scaling and starting point of the contour.

• For object recognition, use only the N first coefficients (a(N), N<M)
• This corresponds to setting a(k)=0, k>N-1

 1,0 ,
2

sin
2

cos)(
12

exp)(
1

)(
1

0

1

0

Mu
M

uk
i

M

uk
ks

MM

iuk
ks

M
ua

M

k

M

k

F4 16.09.20 IN5520 39

Approximating a curve with Fourier
coefficients in 1D

• Do the Fourier transform
of the signal of length M

• Keep only N (<M/2) first coefficients
(set the others to 0 in amplitude).

• Compute the inverse 1D Fourier
transform of the modified signal.

• Display the reconstructed M-point signal
based on only N coefficients.

F4 16.09.20

Original signal of length N=36

Reconstructed signal using
only 2 Fourier coefficients

IN5520 40

Approximating in increasing detail

n=2

n=10

n=3 n=8n=4

n=15n=13 Original

F4 16.09.20 IN5520 41

Look back to 2D Fourier spectra (INF2310)

F4 16.09.20

Most of the energy is concentrated along the lowest frequencies.
We can reconstruct the image with an increasing accuracy by starting with
the lowest frequencies and adding higher frequencies.

IN5520 42

Fourier Symbol reconstruction
• Inverse Fourier transform gives an approximation to the original contour

• We have only used N features to reconstruct each component of
• The number of points in the approximation is the same (M),

but the number of coefficients (features) used to reconstruct each point
is smaller (N<M).

• Use an even number of descriptors.
• The first 10-16 descriptors are found to be sufficient for character

description. They can be used as features for classification.
• The Fourier descriptors can be invariant to translation and rotation if the

coordinate system is appropriately chosen.
• All properties of 1D Fourier transform pairs (scaling, translation, rotation)

can be applied.

 1,0 ,
2

exp)()(ˆ
1

0

Mk
M

iuk
uaks

N

k

).(ˆ ks

F4 16.09.20 IN5520 43

Fourer descriptor example
Matlab DIPUM Toolbox:

b=boundaries(f);
b=b{1};
%size(b) tells that the contour is 65

pixels long
bim=bound2im(b,26,21);
%must tell image dimension
z=frdescp(b);
zinv2=ifrdesc(z,2);
z2im=bound2im(zinv2,26,21);
imshow(z2im);

Image, 26x21 = 546 pixels

Boundary

2 coefficients

4 coefficients

6 coefficients

8 coefficients

20 coefficients

F4 16.09.20 IN5520 44

Fourier coefficients and invariance

• Translation affects only the center of mass (a(0)).
• Rotation only affects the phase of the coefficients.
• Scaling affects all coefficients in the same way,

so ratios a(u1)/a(u2) are not affected.
• The start point affects the phase of the coefficients.

• Normalized coefficients can be obtained,
but is beyond the scope of this course.

– See e.g., ØD Trier, A Jain and T Taxt,
«Feature extraction methods for character recognition – a survey».
Pattern Recognition, vol. 29, no. 4, pp. 641-662, 1996.

F4 16.09.20 IN5520 45

Examples from Trier et al. 1996

F4 16.09.20 IN5520 46

Remark about Fourier descriptors
Note that the contour of
is

Objects with holes, like 8, 9, 6 will only by described by
the outer contour.

The length of a(u) will depend on the number of
boundary points (and the size of the object).

We should resample the contour by selecting M evenly
spaced points along the contour.

F4 16.09.20 IN5520 47

Run Length Encoding of Objects

• See also G&W, “DIP3E”, 8.2.7, G&W, “DIP4E”, 8.8
• Sequences of adjacent pixels are represented as ”runs”.
• Absolute notation of foreground in binary images:

– Runi = …;<rowi, columni, runlengthi>; …
• Relative notation in graylevel images:

– …;(grayleveli, runlengthi); …
• This is used as a lossless compression transform.
• Relative notation in binary images:

Start value, length1, length2, …, eol,
…

Start value, length1, length2, …, eol,eol.
• This is also useful for representation of image bit planes.
• RLE is found in TIFF, GIF, JPEG, …, and in fax machines.

F4 16.09.20 IN5520 48

“Gray code”

Is the conventional binary representation of graylevels optimal?

• Consider a single band graylevel image having b bit planes.
• We desire a minimum complexity in each bit plane

– Because the run-length transform will then be most efficient.

• Conventional binary representation gives high complexity:
– If the graylevel value fluctuates between 2k-1 and 2k, k+1 bits will

change value. Example: 127 = 01111111 while 128 = 10000000

• In ”Gray Code” only one bit changes if graylevel is changed by 1.

• The transition from binary code to ”Gray Code” is a reversible
transform, while both binary code and ”Gray Code” are codes.

F4 16.09.20 IN5520 49

Binary vs Gray Code transforms *

• ”Binary Code” to ”Gray Code”:
1. Start by MSB in BC and keep all 0 until you hit 1
2. 1 is kept, but all following bits are complemented until you hit 0
3. 0 is complemented, but all following bits are kept until you hit 1
4. Go to 2.

• ”Gray Code” to ”Binary Code”:
1. Start by MSB in GC and keep all 0 until you hit 1
2. 1 is kept, but all following bits are complemented until you hit 1.
3. 1 is complemented, but all following bits are kept until you hit 1.
4. Go to 2.

* (This is just to demonstrate that there are simple transforms)

F4 16.09.20 IN5520 50

Encoding angular position of a shaft
as a binary number

4 bits codes
Decimal Binary Gray
0d 0000b 0000g

1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

”Gray code shaft encoder”

Gives secure reading of angle.

Émile Baudot’s telegraph 1878.

Code patented by Frank Gray in 1953.

F4 16.09.20 IN5520 51

Gray code in graylevel images

• MSB is the same in the
two representations.

• Larger homogeneous
areas in each bitplane
in Gray Code than in
natural binary code.

• Less noisy bitplanes
in Gray Code.

• More compact run-length
coding of bitplanes in
Gray Code.

GC BC GC BC

F4 16.09.20 IN5520 52

Learning goals - representation

• Understand difference between representation and description.
• Chain coding of contours

– Absolute code invariants:
• Start point: Min circular shift. Rotation: First difference + min circular shift

– Relative code invariants
• Rotation: inherent! Start point: Minimum circular shift

• Polygonization of contours
– Recursive and sequential

• Signatures of contours
• Convex hull of contours
• Skeletons: Thinning

• Fourier descriptors of contours
• Run Length Encoding of objects
• Less complex bit planes in Gray coded images

F4 16.09.20 IN5520 53

