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Today
From the textbook: DIP3E DIP4E

Boundary (Feature) Descriptors      11.2 (815-822)   11.3 (831-840)
Regional (Feature)Descriptors         11.3 (822-842)  11.4 (840-859)

Albregtsen: “Object shape descriptors - Area, perimeter, compactness, and spatial moments”

Curriculum also includes these lecture notes.

Today we cover the following :
1. Introduction
2. Topological features
3. Projections
4. Geometric features
5. Statistical shape features
6. Moment-based geometric features
7. Finding the best feature subset
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What is feature extraction?

• Devijver and Kittler  (1982): 
”Extracting from the raw data the information 
which is most relevant for classification purposes, 
in the sense of minimizing the within-class pattern 
variability while enhancing the between-class variability”.

– Within-class pattern variability: 
variance between objects belonging to the same class.

– Between-class pattern variability: 
variance between objects from different classes.  
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Feature extraction

• We will discriminate between different object classes 
based on a set of features.

• The features are often chosen given the application.

• Normally, a large set of different features is investigated.
• Classifier design also involves feature selection 

- selecting the best subset out of a larger feature set.
• Given a training data set of a certain size, 

the dimensionality of the feature vector must be limited.

• Careful selection of an optimal set of features 
is the most important step in image classification!
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Feature extraction methods
• There are a lot of different feature extraction

methods, you will only learn some in this course.

• The focus of this lecture is on
features for describing the shape of an object. 

• Features can also be extracted in local windows
around each pixel, e.g. 
– texture descriptors, 
– colour features,  
– or other metods. 

• The features will later be used for object recognition
and/or classification.
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Example: Recognize printed numbers

• Goal: get the series of digits, 
e.g. 14159265358979323846…… 

Steps in the program:

1. Segment the image to find digit pixels.
2. Find angle of rotation and rotate back.
3. Create region objects – one object pr. digit or 

connected component.

4. Compute features describing shape of objects

5. Train a classifier on many objects of each digit.
6. Assign a class label to each new object,

i.e., the class with the highest probability. 
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Typical image analysis tasks
• Preprocessing/noise filtering
• Segmentation
• Feature extraction

– Are the original image pixel values sufficient for classification, 
or do we need additional features?

– What kind of features do we use in order to discriminate 
between the object classes involved?

• Exploratory feature analysis and selection (next lecture)
– Which features separate the object classes best?
– How many features are needed?

• Classification ( following three/four lectures)
– From a set of object examples with known class, 

decide on a method that separates objects of different types.
– For new objects: assign each object/pixel to the class 

with the highest probability

• Testing and validation of classifier accuracy
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Topologic features

• This is a group of invariant integer object shape features
– Invariant to position, rotation, scaling, warping

• Features based on the object skeleton
– Number of terminations (one line from a point)
– Number of breakpoints or corners (two lines from a point)
– Number of branching points (three lines from a point)
– Number of crossings (> three lines from a point)

• Region features:
– Number of holes in the object (H)
– Number of components (C)
– Euler number, E = C - H 

• Number of connected components – number of holes

– Symmetry

Region with two holes

Regions with three 
connected 

components
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1D Projection histograms
• For each row in the region, 

count the number of object pixels. 

Image – binary region pixels Row histogram
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Projections

• 1D horizontal projection of the region (project on the x-axis):

• 1D vertical projection of the region (project on the y-axis):

• f(x,y) is normally the binary segmented image  
• Can be made scale independent by using a fixed number of bins 

and normalizing the histograms.

• Radial projection in reference to centroid -> ”signature”,
see previous lecture.
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Use of projection histograms

• Divide the object into different 
regions and compute projection 
histograms for each region.
– How can we use this 

to separate 6 and 9?

• Compute features from 
the histograms.
– E.g. mean and variance 

of the histograms.

• The histograms can also be 
used as features directly.

• Projections are also useful for preprocessing 
(e.g., finding and correcting angle of rotation).
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Y-axis projection of  page

Use of projection histograms
• Check if a page with text is rotated

• Then detect lines, connected objects, single symbols, …
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Object area

• Generally, the area is defined as:

I(x,y) = 1 if the pixel is within the object, and 0 otherwise. 

• In digital images:

ΔA = area of one pixel. If ΔA = 1, area is simply measured in pixels.

• Area changes if we change the scale of the image
– change is not perfectly linear, because of the discretization of the image. 

• Area ≈ invariant to rotation (except small discretization errors).
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Geometric features from contours

• Boundary length/perimeter
• Area
• Curvature
• Diameter/major/minor axis
• Eccentricity
• Bending energy
• Basis expansion (Fourier – last week)
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Perimeter length from chain code
– Distance measure differs when using 8- or 4-neighborhood
– Using 4-neighborhood, measured length ≥ actual length.
– In 8-neighborhood, fair approximation from chain code by:

where nE and nO are the number of even / odd chain elements .
– This overestimates real perimeters systematically.
– Freeman (1970) computed the area and perimeter of the chain by 

– where N is the length of the chain, cix and ciy are the x and y
components of the ith chain element ci (cix, ciy = {1, 0, -1} indicate 
the change of the x- and y-coordinates), yi-1 is the y-coordinate of 
the start point of the chain element ci . 
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Perimeter from chain code

• Vossepoel and Smeulders (1982) improved 
perimeter length estimate by a corner count nC,     
defined as the number of occurrences of unequal 
consecutive chain elements:

• Kulpa (1977) gave the perimeter as

COEVS nnnP 091.0406.1980.0 

  OEK nnP 221
8
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Pattern matching - bit quads
• Let n{Q} = number of matches between image pixels and pattern Q. 
• Then area and perimeter of 4-connected object 

is given by:

“Bit Quads” can handle
8-connected images: 

• Gray (1971) gave area and the perimeter as

• More accurate formulas by Duda :

•
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A comparison of methods
• We have tested the methods on circles, R ={5,…,70}.

• Area estimator :
– Duda is slightly better than Gray. 

• Perimeter estimator :
– Kulpa is more accurate than Freeman.

• Circularity :
– Kulpa’s perimeter and Gray’s area gave the best result. 

• Errors and variability largest when R is small. 
– Test this yourself on this image:

• Best area and perimeter not computed simultaneously. 

• Gray’s area can be computed using discrete Green’s 
theorem, suggesting that the two estimators can be 
computed simultaneously during contour following.
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Object area from contour

• The surface integral over S (having contour C) is given by Green’s theorem:

s := 0.0;
n := n + 1;

pkt[n].x := pkt[1].x;
pkt[n].y := pkt[1].y;
for i:=2 step 1 until n do
begin

dy := pkt[i].y - pkt[i-1].y
s := s + (pkt[i].x + pkt[i-1].x)/2 * dy;

end;
area := if (s > 0) then s else -s;

• The region can also be represented by n polygon vertices (see previous lecture)

where the sign of the sum reflects 
the polygon orientation.
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Compactness and circularity

• Compactness (very simple measure)
– γ = P2 /(4πA), where P = Perimeter, A = Area, 
– For a circular disc, γ is minimum and equals 1.
– Compactness attains high value for complex object shapes, 

but also for very elongated simple objects, 
like rectangles and ellipses where a/b ratio is high.

=> Compactness is not correlated with complexity!

• G&W defines 
– Compactness = P2/A
– Circularity ratio = 4πA/P2

Y=3.4
Circ=0.28

Y=10.1
Circ=0.09
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Circularity and irregularity 

• Circularity may be defined by C = 4πA/P2. 
• C = 1 for a perfect continuous circle; betw. 0 and 1 for other shapes.

• In digital domain, C takes its smallest value for a
– digital octagon in 8-connectivity perimeter calculation
– digital diamond in 4-connectivity perimeter calculation

• Dispersion may be given as the major chord length to area
• Irregularity of an object of area A can be defined as:

– where the numerator is the area of the centered enclosing circle.

• Alternatively, ratio of maximum and minimum centered circles:
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Curvature

– In the continous case, curvature is the rate of change of slope.

– In the discrete case, difficult because boundary is locally ragged.

– Use difference between slopes of adjacent boundary segments 
to describe curvature at point of segment intersection.

---------------------------------
– Curvature can be calculated from chain code.

How to get from chain code to curvature, a simple example:

0, 0, 2, 0, 1, 0, 7, 6, 0, 0  -->  0, 2, -2, 1, -1, -1, -1, 2, 0

then square:           0, 4, 4, 1, 1, 1, 1, 4, 0
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Discrete computation of curvature

• Trace the boundary and insert vertices, 
at a given distance (e.g. 3 pixels apart),
or by polygonization (previous lecture).

• Compute local curvature ci
as the difference between the directions 
of two edge segments joining a vertex:

• Curvature feature: sum all local curvature 
measures along the border.

• More complex regions get higher curvature.   

vi: edge segment i 
d^t-1: unit vectors of edge segments dt-1 and dt

ci: local curvature at point i 

1 iii ddc
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Contour based features

• Diameter = Major axis (a)
Longest distance of a line segment 

connecting two points on the perimeter

• Minor axis  (b)
Computed along a direction perpendicular to the major 
axis. Largest length possible between two border points in 
the given direction.

• So called “Eccentricity” 
of the contour (a/b)

Eccentricity: 4.7

Eccentricity: 1.8
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Bounding box and CH features 

• Regular bounding box features:
– Width/height of bounding box
– Centre of mass position in box

• If the object’s orientation is known, 
a bounding box can also be oriented 
along this direction. More meaningful!

• Extent = Area/(Area of bounding box)
– But which type of bounding box?

• Solidity = Area/(Area of Convex Hull)
(also termed ”convexity”)

Object-oriented
bounding box

Regular
(image oriented)

bounding box
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Moments

• Borrows ideas from physics and statistics.
• For a given continuous intensity distribution g(x, y) 

we define moments mpq by

• For sampled (and bounded) intensity distributions f(x, y) 
over a region R

• A moment mpq is said to be of order p + q.
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Moments from binary images - area

• For binary images, 
where
f (x, y) = 1  object 

pixel
f (x, y) = 0 

background pixel

• Area
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Centroid/center of mass from moments

• For binary images, where
f (x, y) = 1  object pixel
f (x, y) = 0  background pixel

• Center of mass /”tyngdepunkt”

gives the position of the object
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Grayscale moments

• In gray scale images, we may regard f(x,y)
as a discrete 2-D probability distribution over (x,y)

• For probability distributions, we should have

– And if this is not the case we can normalize by 
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Example use of centroid of grayscale image

Ultrasound image of muscle fibers
Want to find the near-horisontal lines 
using Radon-transform 
(generalized Hough to grayscale images)

Find peaks in the Radon domain
How do we robustly find the location 
of a «peak» in  the marked areas?
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Central moments
• These are position invariant moments, defined by

• where

• The total mass, and the center of mass coordinates are given by

• This corresponds to computing ordinary moments 
after having translated the object so that center of mass is in origo.

• Central moments are independent of position, 
but are not scaling or rotation invariant.

• Q:  What is 00 for a binary object?
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A simple example: center of mass

1 1 1
1

1
1

=6

=2

=2
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2D Central moments µpq from ordinary moments mpq

• Moments µpq (p + q ≤ 3) are given by mpq by:
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Generalization to 3D moments  from mpq

• The 3D µpqr, are expressed by mpqr:

• where
D = (p + q + r); d = (s + t + u)

• and the binomial coefficients are given by
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Moments of inertia or Variance

• The two second order central moments measure the spread of points 
around the y- and x-axis through the centre of mass

• From physics: moment of inertia about an axis: 
how much energy is required to rotate the object about this axis:
– Statisticans like to call this variance. 

• The cross moment of intertia is given by

– Statisticians call this covariance or correlation.

• Orientation of the object can be derived from these moments.
– This implies that they are not invariant to rotation.
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A simple example

1

1

1

1

=5

= - 5

Image coordinates 



















4,1

3,2

2,3

1,4

=5

(Note that image coordinates are swapped)  
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Object orientation - I
• Orientation is defined as the angle, relative to the X-axis, 

of an axis through the centre of mass 
that gives the lowest moment of inertia.

• Orientation θ relative to X-axis found by minimizing:

where the rotated coordinates are given by

• The second order central moment of the object around the α-axis, 
expressed in terms of x, y, and the orientation angle θ of the object is:

• We take the derivative of this expression with respect to the angle θ 
• Set derivative equal to zero, and find a simple expression for θ :

X

Y
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Object orientation - II
• Second order central moment around the α-axis:

• Derivative w.r.t. Θ = 0 =>

• So the object orientation is given by:
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A simple example

1
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(Note that image coordinates are swapped)  
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Bounding box - again
• Image-oriented bounding box:

– The smallest rectangle around the object, 
having sides parallell to the edges of the image.

– Found by searching for min and max x and y 
within the object (xmin, ymin, xmax, ymax)

• Object-oriented bounding box:
– Smalles rectangle around the object, having one side 

parallell to the orientation of the object (). 
– The transformation

is applied to all pixels in the object (or its boundary). 
– Then search for min, min, max, max

 sincos     ,sincos xyyx 
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The best fitting ellipse

• Object ellipse is defined as the ellipse whose least and 
greatest moments of inertia equal those of the object.

• Semi-major and semi-minor axes are given by 

• Numerical eccentricity is given by

• Orientation invariant object features. 
• Gray scale or binary object.
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Radius of gyration, K

• The radius of a circle where we could concentrate all the 
mass of an object without altering the moment of inertia 
about its center of mass.

• For arbitrary object having a mass μ00 and a moment of 
inertia around the Z-axis, we may write

• This feature is obviously invariant to rotation. 
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Radius of gyration, K
• For homogeneous objects, only determined by geometry. 
• Thus, the squared radius of gyration may be tabulated for 

simple object shapes:
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What if we want scale-invariance?

• Changing the scale of f(x,y) by (,) gives a new image:

• The transformed central moments 

• If =, scale-invariant central moments are given by the 
normalization:
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Symmetry
• To detect symmetry about center of mass, use central moments.

• For invariance of scale, use scale-normalised central moments 
– (η11, η20,  η02,  η21,  η12,  η30,  η03). 

• Objects symmetric about either x or y axis will produce η11 = 0. 
• Objects symmetric about y axis will give η12 = 0 and η30 = 0. 
• Objects symmetric about x axis will give η21 = 0 and η03 = 0. 
• X axis symmetry: ηpq = 0 for all p = 0, 2, 4, ... ; q = 1, 3, 5, …

η11 η20 η02 η21 η12 η30 η03

‘M’ 0 + + - 0 0 -

‘C’ 0 + + 0 + + 0

‘O’ 0 + + 0 0 0 0
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Rotation invariant moments

Method 1:

Find principal axes of object, rotate and compute moments.
This can break down if object has no unique principal axes.
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Rotation invariant moments

Method 2 : Hu moments
The method of absolute moment invariants:

This is a set of normalized central moment combinations, 
which can be used for scale, position, and rotation invariant 
pattern identification.

• For second order (p+q=2), 
there are two invariants/Hu moments:

φ1 =  η20 + η02 φ2 =  (η20 - η02)2 + 4η11
2
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Third order Hu moments
• For third order moments, (p+q=3), the invariants are:

φ3 =  (η30 - 3η12)2 + (3η21 - η03)2 

φ4 =  (η30 + η12)2 + (η21 + η03)2

φ5 =  (η30 - 3η12)(η30 + η12)[(η30 + η12)2 - 3(η21 +  η03)2]  
+ (3η21 - η03)(η21 + η03)[3(η30 + η12)2 - (η21 +  η03)2]

φ6 =  (η20 - η02)[(η30 + η12)2 - (η21 +  η03)2] + 4η11(η30 + η12)(η21 +  η03)

φ7 = (3η21 - η03)(η30 + η12)[(η30 + η12)2 - 3(η21 + η03)2]
- (η30 - 3η12)(η21 + η03)[3(η30 + η12)2 - (η21 + η03)2]

φ7 is skew invariant, and may help distinguish between mirror images.

• These moments are not independent, and do not comprise a complete set.
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Hu’s moments; a bit simplified notation

For second order moments (p+q=2), two invariants are used:
φ1 =  η20 + η02

φ2 =  (η20 - η02)2 + 4η11
2

For third order moments, (p+q=3), we can use
a = (η30 - 3η12),   b = (3η21 - η03),   
c = (η30 + η12),   and d = (η21 + η03)

and simplify the five last invariants of the set:
φ3 =  a2 + b2

φ4 =  c2 + d2

φ5 =  ac[c2 - 3d2] + bd[3c2 - d2]
φ6 =  (η20 - η02)[c2 - d2] + 4η11cd
φ7 =  bc[c2 - 3d2] - ad[3c2 - d2]
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Hu moments of simple objects
• In the continuous case, the two first Hu moments of a binary 

rectangular object of size 2a by 2b, are given by 

while the remaining five Hu moments are all zero.

• Similarly, the two first Hu moments of a binary elliptic object with 
semi-axes a and b, are given by 

while the remaining five Hu moments are all zero. 

(See definitions of a, b, c and d
and  table of symmetry)
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Φ1 and φ2 versus a/b
• Only (φ1, φ2) are useful for these simple objects.

• Notice that even in the continuous case it may be 
hard to distinguish between an ellipse and its 
bounding rectangle using these two moments.

• Relative difference in φ1 of ellipse and its object 
oriented bounding rectangle is constant, 4.5%.

• Relative difference in φ2 of ellipse and its object 
oriented bounding rectangle is constant, 8.8%.

• Relative differences given above are also true 
when comparing an ellipse with a same-area 
rectangle having the same a/b ratio, regardless 
of the size and eccentricity of the ellipse.
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Moments as shape features

• The central moments are seldom used directly 
as shape descriptors.

• Major and minor axis, radius of gyration, and eccentricity 
are useful shape descriptors.

• Object orientation is normally not used directly, 
but to estimate rotation.

• The set of 7 Hu moments can be used as shape features. 
(Start with the first four, 
as the last half are often zero for simple objects).
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Moments of inertia for simple shapes

• Rectangular object (2a×2b): 
I20 = 4a3b/3 ,  I02 = 4ab3/3

• Square (a×a): 
I20 = I02 = a4/12

• Elliptical object, semi-axes (a,b): 
I20 = a3b/4 ,   I02= ab3/4

• Circular object, radius R: 
I20 = I02 = R4/4

2b

2a

a
b
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Moments of an ellipse
• Assume that the ellipse has semimajor and semiminor axes (a,b), a>b.

An ellipse where major axis is along x-axis is given by

The largest second order central moment (here called I20) is given by

Similary, the smallest moment of inertia is
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Grayscale contrast invariants
• Abo-Zaid et al. have defined a normalization 

that cancels both scaling and contrast.
• The normalization is given by

• This normalization also reduces the dynamic range of 
the moment features, so that we may use higher order 
moments without having to resort to logarithmic 
representation. 

• Abo-Zaid’s normalization cancels the effect of changes 
in contrast, but not the effect of changes in intensity: 

• In practice, we often experience a combination:
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From features to discrimination between objects

• The following slide introduces simple tools like 
scatter plots to visualize how good a feature 
(or combination of 2-3 features) is 
in separating objects of different types/classes. 

• To evaluate features, we use training data 
consisting of objects with KNOWN CLASS.
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Scatter plots
• A 2D scatter plot is a plot of 

feature values for two different 
features. Each object’s feature 
values are plotted in the position 
given by the features values, and 
with a class label telling its object 
class. 

• Matlab: gscatter(feature1, 
feature2, labelvector)

• Classification is done based on 
more than two features, 
but this is difficult to visualize. 

• Features with good class 
separation show clusters for each 
class, and different clusters 
should ideally be separated. 

Feature 1: minor axis length

Feature 2: 
major axis

length
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The ”curse-of-dimensionality”

• Also called ”peaking phenomenon”.
• For a finite training sample size,     

the correct classification rate initially 
increases when adding new features, 
attains a maximum and then begins 
to decrease.

• The implication is that:
• For a high measurement complexity, 

we will need large amounts of 
training data in order to attain the 
best classification performance.

• => 5-10 samples 
per feature per class.

Illustration from G.F. Hughes (1968).

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

of the two classes is assumed.
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Finding best feature subset

• The goal: to find the subset of observed features which 
– best characterizes the differences between groups  
– is similar within the groups 
– Maximize the ratio of between-class and within-class variance. 

• If we want to perform an exhaustive search through D 
features for the optimal subset of the d ≤ m “best 
features”, the number of combinations to test is 

• Impractical even for a moderate number of features!
d ≤ 5, D = 100  =>  n = 79.374.995

• There exist several sub-optimal schemes to search for the best sub-set.
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A simulation study design
• H. Schulerud and F.Albregtsen: “Many are called, but few are chosen. 

Feature selection and error estimation in high dimensional spaces”, 
Computer Methods and Programs in Biomedicine, 73, 91—99, 2004.

• Monte Carlo study, averaging 100 simulations per setting
• 2 classes, normally distributed, common covariance
• Up to 500 feature candidates
• Only 5 features are different between the classes

For these 5, squared difference of class means = δ2/√5 ;   δ2 = 0, 1, 4

the rest of the continuous distributions are EQUAL!

• Stepwise forward-backward feature selection
• 20 - 1000 training samples
• 20 - 1000 test samples
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Probabilistic distance measures

• If the class-conditional probability distributions are Gaussian:

where μi and Σi are the mean vector and the
covariance matrix of the i-th class distribution; 

the Mahalanobis distance is

• The Bhattacharyya distance may also be useful:
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Samples from distributions

• For small sample sets and small class distances, 
observations may indicate a separation of classes, 
while no real difference exists !!!

0

4,5

0

20

Distribution of 2 independent sets 
of 20 samples from standardized 
normal distributions, δ2 = 0.

Distribution of 2 independent sets of 
200 samples from standardized 

normal distributions, δ2 = 0.
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Simulation results - Feature selection II

• The number of correctly selected 
features increases with
– increasing # of training samples 
– decreasing # of  candidates
– (increasing class distance)

• For small sample sizes
the number of candidates
features is of great importance :
– For D = 50 and δ2 = 1, 

half of the 5 selected 
features will be noise 

if  nTr = 100.

– For D = 50, δ2 = 1, nTr = 50,         
60% of the selected 
features  will be noise!

– So, Be Careful !!!
The average number of correctly selected features,

when the class Mahalanobis distance δ2 = 1.



Caveats of Cross Validation
• A simple simulation may demonstrate the effect of performing feature 

selection before a cross validation to estimate classification performance on 
the same data.

• If the classes are overlapping, the number of training samples is small, 
and the number of feature candidates are high, the common approach of 
performing feature selection before leave-one-out error estimation on the 
same data results in a highly biased error estimate of the true error.

• Performing feature selection and leave-one-out error estimation in one 
process gives an unbiased error estimate, but with high variance. 

• See Figure 7 of
H Schulerud and F Albregtsen, “Many are called, but few are chosen. 
Feature selection and error estimation in high dimensional spaces”,
Computer Methods and Programs in Biomedicine 73, 91—99, 2004.
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Learning goals – object description
• Invariant topological features
• Projections and signatures – use and limitations
• Geometric features

– Area, perimeter and circularity/compactness
– Bounding boxes

• Moments, binary and grayscale
• Ordinary moments and central moments

– Moments of objects, object orientation, and best fitting ellipse
• Focus on first- and second-order moments.

– Invariance may be important

• Inspection of feature scatter plots
• Select your feature set with great care !  Validate correctly!
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