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Today

From the textbook: DIP3E DIP4E

Boundary (Feature) Descriptors 11.2 (815-822) 11.3 (831-840)
Regional (Feature)Descriptors 11.3 (822-842) 11.4 (840-859)

Albregtsen: “Object shape descriptors - Area, perimeter, compactness, and spatial moments”
Curriculum also includes these lecture notes.

Today we cover the following :
1. Introduction
. Topological features
. Projections
. Geometric features
. Statistical shape features
. Moment-based geometric features
. Finding the best feature subset

NO o~ WDN
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What is feature extraction?

e Devijver and Kittler (1982):

"Extracting from the raw data the information

which is most relevant for classification purposes,

in the sense of minimizing the within-class pattern
variability while enhancing the between-class variability”.

— Within-class pattern variability: AAAAAAAAAAAA
variance between objects belonging to the same class.

— Between-class pattern variability: ABCDEFGHIJ
variance between objects from different classes.
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Feature extraction

o We will discriminate between different object classes
based on a set of features.

e The features are often chosen given the application.

 Normally, a large set of different features is investigated.

o C(lassifier design also involves feature selection
- selecting the best subset out of a larger feature set.

e Given a training data set of a certain size,
the dimensionality of the feature vector must be limited.

o (Careful selection of an optimal set of features
is the most important step in image classification!
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Feature extraction methods

e There are a lot of different feature extraction
methods, you will only learn some in this course.

e The focus of this lecture is on
features for describing the shape of an object.

e [eatures can also be extracted in local windows
around each pixel, e.q.
— texture descriptors,
— colour features,
— or other metods.

e The features will later be used for object recognition
and/or classification.
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Example: Recognize printed numbers

e (Goal: get the series of digits,
e.g. 14159265358979323846......

Steps in the program:

1. Segment the image to find digit pixels.
2. Find angle of rotation and rotate back.

3. Create region objects — one object pr. digit or
connected component.

4. | Compute features describing shape of objects

5. Train a classifier on many objects of each digit.

6. Assign a class label to each new object,
i.e., the class with the highest probability.
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Typical image analysis tasks

e Preprocessing/noise filtering
e Segmentation

e Feature extraction

— Are the original image pixel values sufficient for classification,
or do we need additional features?

— What kind of features do we use in order to discriminate
between the object classes involved?
o Exploratory feature analysis and selection (next lecture)
— Which features separate the object classes best?
— How many features are needed?

o C(lassification ( following three/four lectures)

— From a set of object examples with known class,
decide on a method that separates objects of different types.

— For new objects: assign each object/pixel to the class
with the highest probability

e Testing and validation of classifier accuracy
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Topologic features

This is a group of invariant integer object shape features
— Invariant to position, rotation, scaling, warping

Features based on the object skeleton o 2

— Number of terminations (one line from a point) s

— Number of branching points (three lines from a point)
— Number of crossings (> three lines from a point)

P
1 i
Region features: oy iy >
— Number of holes in the object (H) ( %4 &>
— Number of components (C) S iy
— Euler number, E=C-H Regions with three
e Number of connected components — number of holes connected
components
— Symmetry
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1D Projection histograms

e For each row in the region,
count the number of object pixels.

Image — binary region pixels Row histogram
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Projections

o 1D horizontal projection of the region (project on the x-axis):

py(x)=> f(x,»)

e 1D vertical projection of the region (project on the y-axis):

p,( =D f(xy)

e f(X,y) is normally the binary segmented image

e (Can be made scale independent by using a fixed number of bins
and normalizing the histograms.

o Radial projection in reference to centroid -> “signature”,
see previous lecture.
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Use of projection histograms

Divide the object into different

regions and compute projection

histograms for each region.

— How can we use this

to separate 6 and 9?

Compute features from

the histograms.

— E.g. mean and variance

of the histograms.

The histograms can also be

used as features directly.

Projections are also useful for preprocessing
(e.g., finding and correcting angle of rotation).
F06 23.09.2020 IN5520
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Use of projection histograms

e Check if a page with text is rotated
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Y-axis projection of page Y-axis projection after
rotation correction

e Then detect lines, connected objects, single symbols, ...
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Object area

Generally, the area is defined as: A4 = I j I(x, y)dxdy
XY

I(x,y) = 1 if the pixel is within the object, and 0 otherwise.

In digital images: A=) >"I(x,y)AA
X Y

AA = area of one pixel. If AA = 1, area is simply measured in pixels.

Area changes if we change the scale of the image
— change is not perfectly linear, because of the discretization of the image.

Area = invariant to rotation (except small discretization errors).
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Geometric features from contours

e Boundary length/perimeter

e Area

e Curvature

e Diameter/major/minor axis

e Eccentricity

e Bending energy

e Basis expansion (Fourier — last week)
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Perimeter length from chain code

Distance measure differs when using 8- or 4-neighborhood 2
Using 4-neighborhood, measured length > actual length. 3 1
In 8-neighborhood, fair approximation from chain code by: 4 %
P.=n;+n, V2 > 6
where ng and ng are the number of even / odd chain elements .
This overestimates real perimeters systematically.
Freeman (1970) computed the area and perimeter of the chain by

N
A, = Zcix (yl.l +C%j, P.=n, +n0\/§
im1

where N is the length of the chain, ¢;, and ¢;, are the x and y
components of the ith chain element ¢; (¢, ¢y = {1, 0, -1} indicate
the change of the x- and y-coordinates), y;_, is the y-coordinate of
the start point of the chain element c; .

0
7
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Perimeter from chain code

3 : 1
e Vossepoel and Smeulders (1982) improved * >< - 0
perimeter length estimate by a corner count n, 5 7
defined as the number of occurrences of unequal -
consecutive chain elements: 1 7 o
P, =0980n, +1.406n, —-0.091n, 4 2
e Kulpa (1977) gave the perimeter as AR
N N />5
NS
P =2, +42n,) N
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Pattern matching - bit quads

Let n{Q} = number of matches between image pixels and pattern Q.
Then area and perimeter of 4-connected object

< qiven by:
IS given by 4 = n{]}’ P:Zn{() 1}+2n{(1)} o [o o}
o o [ 3 e oL
it Quads” can handle "L 1Mo 1170 o
8-connected images: Lo ollo g i
o [ 0 1 9
Gray (1971) gave area and the perimeter as § fl 1% o
AG:%[H{ 1}+2n{ 2}+3n{ 3}+4n{ 4}+2”{QD}]9 PG:”{Q1}+’1{ 2}+”{ 3}+2n{ D} @ o allr o

More accurate formulas by Duda :
Aoy 10210, Tl e anl0, 3010, ), Pyl e nl0. e nl0 e 2000, )
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A comparison of methods

We have tested the methods on circles, R ={5,...,70}. §
Area estimator : =
— Duda is slightly better than Gray.
Perimeter estimator : o
— Kulpa is more accurate than Freeman. T At

Circularity :
— Kulpa’s perimeter and Gray’s area gave the best result.

RELATIVE ERRCR N PERIMETER
= & =] =}
e - 2 e
v ] = =]
—t

Errors and variability largest when R is small.

— Test this yourself on this image: li - 1] S r.”
Best area and perimeter not computed simultaneously.
Gray’s area can be computed using discrete Green'’s N
theorem, suggesting that the two estimators can be W e
computed simultaneously during contour following. B
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Object area from contour

The surface integral over S (having contour C) is given by Green’s theorem:

s:=0.0;
n:=n+1; A:jjdXdyZJXdy
pkt[n].x := pkt[1].x; S C
pkt[n].y := pkt[1].y;
for i:=2 step 1 until n do
begin

dy := pkt[i].y - pkt[i-1].y

s := s + (pkt[i].x + pkt[i-1].x)/2 * dy;
end;
area := if (s > 0) then s else -s;

The region can also be represented by n polygon vertices (see previous lecture)

R 1 N-1
where the sign of the sum reflects ) Z ( k yk+1 k+1 yk
the polygon orientation. k=0
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Compactness and circularity

e Compactness (very simple measure)
— vy = P2 /(4nA), where P = Perimeter, A = Area,
— For a circular disc, y is minimum and equals 1.

— Compactness attains high value for complex object shapes,
but also for very elongated simple objects,
like rectangles and ellipses where a/b ratio is high.

=> Compactness is not correlated with complexity!

Y=3.4
o G&W defines Circ=0.28
— Compactness = P2/A

— Circularity ratio = 4nA/P2 Y=10.1

Circ=0.09

F06 23.09.2020 IN5520
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Circularity and irregularity

Circularity may be defined by C = 4nA/P2,
C = 1 for a perfect continuous circle; betw. 0 and 1 for other shapes.

In digital domain, C takes its smallest value for a
— digital octagon in 8-connectivity perimeter calculation
— digital diamond in 4-connectivity perimeter calculation

Dispersion may be given as the major chord length to area
Irreqularity of an object of area A can be defined as:
o amax((x,~¥F +(,~5F)

A
— where the numerator is the area of the centered enclosing circle.

Alternatively, ratio of maximum and minimum centered circles:
max{(x, 3 +(v, -7 |
min((x, - ¥ + (5, -5 )
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Curvature

— In the continous case, curvature is the rate of change of slope.
d2z)?  [d2y]?

2 _ (4F @y
IR(8)| - [d82] _I_ [d82]

— In the discrete case, difficult because boundary is locally ragged.

— Use difference between slopes of adjacent boundary segments
to describe curvature at point of segment intersection.

_________________________________ 5
— Curvature can be calculated from chain code. 3
4
How to get from chain code to curvature, a simple example: 5
6

0020107600 ->0,2-2,1,-1,-1,-1,2,0
then square: 0,4,4,1,1,1,1,4,0
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Discrete computation of curvature

e Trace the boundary and insert vertices,

at a given distance (e.g. 3 pixels apart), ol
- . . o _
or by polygonization (previous lecture). i, s e
o “ay
e Compute local curvature ¢ v,;: edge segment i
as the difference between the directions  @".i: unit vectors of edge segments d, , and dt
of two edge segments joining a vertex: ¢;: local curvature at point
ci=d, —d,_,

e Curvature feature: sum all local curvature
measures along the border.

e More complex regions get higher curvature.
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Contour based features

e Diameter = Major axis (a)/

Longest distance of a line segment
connecting two points on the perimeter
e Minor axis (b) —
Computed along a direction perpendicular to the major

axis. Largest length possible between two border points in
the given direction.

Eccentricity: 4.7

e S0 called “Eccentricity” Eccentricity: 1.8

of the contour (a/b)
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Bounding box and CH features

Regular bounding box features:
— Width/height of bounding box

— Centre of mass position in box
Regular

(image oriented)
bounding box

If the object’s orientation is known,
a bounding box can also be oriented
along this direction. More meaningful!

Extent = Area/(Area of bounding box)
— But which type of bounding box?

Solidity = Area/(Area of Convex Hull)
(also termed “convexity”)

Object-oriented
bounding box
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Moments

e Borrows ideas from physics and statistics.

e For a given continuous intensity distribution g(x, y)
we define moments m,, by

O o>
Mpq = /_OO /_OO ’ylg(z,y)drdy

e For sampled (and bounded) intensity distributions f(x, y)
over a region R

mpg = Y _ > xzPylf(z,y)
Ty
e A moment m,, is said to be of orderp + q.
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Moments from binary images - area

e For binary images,

where
f (x,y) =1 = object
pixel
f(x,y) =0=
background pixel
e Area

moo = Y _»_ f(z,y)
Ty
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Centroid/center of mass from moments

e For binary images, where
f (x, y) = 1 = object pixel
f (x, y) = 0 = background pixel

e Center of mass /"tyngdepunkt”

mio =y Y zf(z,y) = Tmoo
T Y

mo1 = »_ Y _yf(z,y) = ymoo
Ty

gives the position of the object

F06 23.09.2020 IN5520
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Grayscale moments

e In gray scale images, we may regard 7(x,y)
as a discrete 2-D probability distribution over (x,y)

e For probability distributions, we should have

moo = »_ > f(z,y) =1
Ty

— And if this is not the case we can normalize by

F(x,y) = f(x,y)/moo

F06 23.09.2020 IN5520
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Example use of centroid of grayscale image

Ultrasound image of muscle fibers

Want to find the near-horisontal lines
using Radon-transform

(generalized Hough to grayscale images)

Find peaks in the Radon domain
How do we robustly find the location
of a «peak» in the marked areas?
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Central moments

e These are position invariant moments, defined by
ppg = > > (e —2)P(y—9)f(x,y)
T Y

e where mio

_ __ mo1
T = , Y= —
moo moo

e The total mass, and the center of mass coordinates are given by

oo = >_ > f(z,y), pio=po1 =0
z Y

e This corresponds to computing ordinary moments o
after having translated the object so that center of mass is in origo.

e Central moments are independent of position,
but are not scaling or rotation invariant.

e Q: Whatis gy, for a binary object?
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A simple example: center of mass

Yy
111
o1
moo = Y _>_ f(z,y) =6
T Y 1
1
X
mio=>% af(x,y) =Fmgg = zT=-10 =)
Ty Mmoo
mor =Y wf(z,y) = gmop = §=-—0t =2
Ty moo
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2D Central moments p,, from ordinary moments m,,

e Moments [y, (p + q < 3) are given by m,, by:

Pq(

Moo =Mygs Lo =0, tly; =0

g =My, — XNy,

Moy = Mgy — YNy,

My =My — ymy,

Hyy =3 —3X1m, +2X "y,

Hyy =1y, =23y, =X, +25°my,
foy =My, =23, = Yy, + 2% M,

Loy =Mz —3Xm, "‘2)_’ m,
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Generalization to 3D moments from Myq

The 3D Yy, are expressed by m,,

P 4 7’ y q 7
’UPQ” :ZJZJ 1[D ] Axp_s qu_t AZ”_” mstu
S u

=0 =0 u=0 !

where
D=(p+qg+r), d=(s+t+u)
and the binomial coefficients are given by

V) o v!
w)  wl (v—w)’ WY
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Moments of inertia or Variance

The two second order central moments measure the spread of points
around the y- and x-axis through the centre of mass
poo =3 (x — )2 f(z,y) ’
vy >
po2 =33 (y— 2 f(z,y)

Ty

From physics: moment of inertia about an axis:
how much energy is required to rotate the object about this axis:

— Statisticans like to call this variance.

The cross moment of intertia is given by
p11=> > (z—-z)ly—9)f(z,y)
xr Yy

— Statisticians call this covariance or correlation.

Orientation of the object can be derived from these moments.
— This implies that they are not invariant to rotation.
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A simple example

Image coordinates

1 _4,1_
poo = .Y (- )% f(z,y) =§ 1 32
xr Yy b
O
po2 =Y (y—9?f(x,y) =5 1 2,3
Ty
1 1.4
y - —

pr1=> > (@e—-)y-Pflz,y) =-5
z 'y

(Note that image coordinates are swapped)
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Object orientation - I

Orientation is defined as the angle, relative to the X-axis,
of an axis through the centre of mass Y
that gives the lowest moment of inertia. i

Orientation 8 relative to X-axis found by minimizing:

v

1(9)=Z§ﬁ2 fa.B) 0

where the rotated coordinates are given by

a=xcos@+ysinf, L=—xsinf+ycosl

The second order central moment of the object around the a-axis,
expressed in terms of X, y, and the orientation angle 8 of the object is:

I(Q)zzx:Z[ycosﬁ—xsinQ]z f(x,y)

We take the derivative of this expression with respect to the angle 6
Set derivative equal to zero, and find a simple expression for 0 :
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Object orientation - II

e Second order central moment around the a-axis:
I(@)zzx:Zbcosﬁ—xsinH]Z £(x,y)
e Derivative w.r.t. @ =0 =>

00

U p
D 21(x,) [xy(cos2 0 —sin’ 9)]:zz2f(x,y) [x2 —yz]sinﬁ cosé
U

i1(49)=Z:Z:2f()c,)/)[ycos@—xsin@][—ysin@—xcos@]:O Y

v

2;111(0052 0 —sin’ 0)2 24y — 14y, )sin O cos O
U
2u,, 2sin@cosf 2tan @

(11— 1) (cos*@—sin’ @) 1—tan’ @ an(20)

e So the object orientation is given by:

0 :ltan_1 24,
2 (/Uzo —Hp )

}, where 0 e [O, %]lf U, >0, Oe [%,ﬁ]if My, <0

F06 23.09.2020 IN5520
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A simple example

poo =D (z —z)°f(z,y) = 1 Image coordinate
xr Yy _ _
po2 =33 (w—0°f(z,y) =§ 1 4,1
Ty
. ® 32
1 2,3
pi1 = > @-2)(y-Nflzy) =_5
Ty 1,4

1 -1 2, :| . )
f=—tan | ———— |,  where 00,7, if u,, >0, @V, xlif ,, <0 = _
2 {(ﬂzo — itey) | 4] n M b 45degrees

(Note that image coordinates are swapped)
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Bounding box - again

Image-oriented bounding box:

— The smallest rectangle around the object,
having sides parallell to the edges of the image.

— Found by searching for min and max x and y
within the object (xmin, ymin, xmax, ymax)
Object-oriented bounding box:

— Smalles rectangle around the object, having one side
parallell to the orientation of the object (0).

— The transformation
a=xcos@+ysinfd, [ =ycosd—xsind
is applied to all pixels in the object (or its boundary).
— Then search for o, B % maxr Brax

F06 23.09.2020 IN5520

40



The best fitting ellipse

e Object ellipse is defined as the ellipse whose least and
greatest moments of inertia equal those of the object.

e Semi-major and semi-minor axes are given by
( [;) \/2[/”20 + T \/(/Uzo T Uy, )2 "'4/”121 }
a,b|=

Hoo
e Numerical eccentricity is given by
A2 72
a - —b

n2
a

e Orientation invariant object features.
e Gray scale or binary object.

&=
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Radius of gyration, K

e The radius of a circle where we could concentrate all the
mass of an object without altering the moment of inertia
about its center of mass.

e For arbitrary object having a mass [y and a moment of
inertia around the Z-axis, we may write

[:ﬂookz — K = 1z :\/]X+]Y :\/:u20+/102
Hoo Hoo Hoo

e This feature is obviously invariant to rotation.
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Radius of gyration, K

e For homogeneous objects, only determined by geometry.

e Thus, the squared radius of gyration may be tabulated for
simple object shapes:

/\ T / \’\Hx
T -\-\-\_\-\-\-
Rectangle: R =b"3 e b ~ % K

?_ﬁ 2 £ x}“;rwix_ = (a+b")/3
.+
Circular disk- K* =R*/4 '< ----nﬂ:{ f\ i R/) K =R
Ellipse: K =b"/4 k’{“: \ C H = (a*+b")/4
) N
f el oy
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What if we want scale-invariance?

e Changing the scale of f(x,y) by («,B) gives a new image:
['(x.y)=fx/a,y! p)

e The transformed central moments
r  _ _l+p pl+g
'upq = 'B fupq

e If a=p, scale-invariant central moments are given by the
normalization:

Hp, _ptq
s Y 5

+1, p+g=2
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Symmetry

To detect symmetry about center of mass, use central moments.

For invariance of scale, use scale-normalised central moments
= (N1 N20r Moz N2y N1z Nzor No3)-

Objects symmetric about either x or y axis will produce n;; = 0.

Objects symmetric about y axis will give n;, = 0 and n3o = 0.

Objects symmetric about x axis will give n,; = 0 and ny; = 0.

X axis symmetry: n,, =0forallp=0,2,4,..;9=1,3,5, ..

N11 | N20 | No2 | N21 | N12 | N30 | No3
‘M| O + |+ | -10]0 -
Cl] 0 + |+ 0+ |+ |0
‘Ol 0 + |+ 0] 0|00

F06 23.09.2020
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Rotation invariant moments

Method 1:

Find principal axes of object, rotate and compute moments.
This can break down if object has no unique principal axes.
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Rotation invariant moments

Method 2 : Hu moments
The method of absolute moment invariants:

This is a set of normalized central moment combinations,
which can be used for scale, position, and rotation invariant
pattern identification.

e For second order (p+q=2),
there are two invariants/Hu moments:

P; = Ny T+ No2 Py = (N30 - No2)? + 4N;442
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Third order Hu moments

For third order moments, (p+q=3), the invariants are:
®; = (N30 - 3N12)* + (3Nz1 - No3)?
P4 = (N30 + N12)* + (g1 + No3)?

@5 = (N30 - 3N12)(N30 + N12)[(N30 + N12)? - 3(N2y + Ng3)?]
+ (3Ny1 - No3)(N21 + No3)[3(N3g + N12)? - (N2 + Ng3)?]

®s = (N0 - No2)[(N30 + N12)? - (N21 + No3)?] + 4Ny1(N3p + N12)(N21 + Ng3)

@, = (3N,1 - No3)(N30 + N12)[(N30 + N12)? - 3(N21 + No3)?]
- (N30~ 3N12)(N21 + Ne3)[3(N3g + N12)% - (N1 + No3)?]

-, is skew invariant, and may help distinguish between mirror images.

These moments are not independent, and do not comprise a complete set.
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Hu’s moments; a bit simplified notation

For second order moments (p+qg=2), two invariants are used:

Py = Ny + No2
@, = (Ny - Ng2)? + 4Ny4°

For third order moments, (p+q=3), we can use
a = (N3 - 3N12), b = (3N, - No3),
C=(N3 + Ng), and d=(ny + Ng3)

and simplify the five last invariants of the set:
¢; = a2+ b?
¢, = c*+d?
¢ = ac[c? - 3d?] + bd[3c? - d?]
®s = (Nyo - Nop)[C? - d?] + 4ny;cd
¢, = bc[c? - 3d?] - ad[3c? - d?]

F06 23.09.2020 IN5520
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In the continuous case, the two first Hu moments of a binary
rectangular object of size 2a by 2b, are given by

1 (a b 1Y(a bY
_ — ——|-— , — - - —
g 12(19 aj 7 (12) (b aj
while the remaining five Hu moments are all zero.

Similarly, the two first Hu moments of a binary elliptic object with
semi-axes a and b, are given by

1 (a b 1 Y(a bY
ey BN vl )

while the remaining five Hu moments are all zero.

Hu moments of simple objects

(See definitions of a, b, ¢ and d M11 | N20 | Moz | N21 | M12 | Nao

No3

and table of symmetry) M|l 0o |+ |+ | -]0]o0

\CI

‘0 0 + + 0 0 0
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®, and @, versus a/b

Only (1, @2) are useful for these simple objects.

Notice that even in the continuous case it may be

hard to distinguish between an ellipse and its
bounding rectangle using these two moments.

Relative difference in @, of ellipse and its object
oriented bounding rectangle is constant, 4.5%.

Relative difference in @, of ellipse and its object
oriented bounding rectangle is constant, 8.8%.

Relative differences given above are also true
when comparing an ellipse with a same-area
rectangle having the same a/b ratio, regardless
of the size and eccentricity of the ellipse.
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Moments as shape features

The central moments are seldom used directly
as shape descriptors.

Major and minor axis, radius of gyration, and eccentricity
are useful shape descriptors.

Object orientation is normally not used directly,
but to estimate rotation.

The set of 7 Hu moments can be used as shape features.
(Start with the first four,
as the last half are often zero for simple objects).
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Moments of inertia for simple shapes

e Rectangular object (2ax2b): 2b
I,,=4a’b/3 , I,,=4ab’/3

2a
e Square (axa):
Io=1,,=a%12

o Elliptical object, semi-axes (a,b):

120 — Tca3b/4 / IOZ= Tcab3/4 @
e Circular object, radius R:

I, = I,, = nR%/4
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Moments of an ellipse

e Assume that the ellipse has semimajor and semiminor axes (a,b), a>b.
An ellipse where major axis is along x-axis is given by

(x/a) +(y/b) =1 :y:ié\/az —x

a
The largest second order central moment (here called I,,) is given by

L, = ZIxzydx =2£jx2\/a2 —x’dx
—a a—a
_ ) .
L, =2é %(2)62 —a’ Na* —x* +%sinl(£ﬂ
a

a
A

C 4 Y
IZO=2é Rl R | A
al 812 2)| 4
- — b
Similary, the smallest moment of inertia is p Y
]min :za b3 ¥
4
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Grayscale contrast invariants

Abo-Zaid et al. have defined a normalization
that cancels both scaling and contrast. (p+q)

The normalization is given by | M, Ly, 2
Mpg =

Moo \ Moy T Hyy

This normalization also reduces the dynamic range of
the moment features, so that we may use higher order
moments without having to resort to logarithmic
representation.

Abo-Zaid’s normalization cancels the effect of changes
in contrast, but not the effect of changes in intensity:

[ (x,)=f(x,y)+b

In practice, we often experience a combination:

f(x,p)=¢f(x,y)+b
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From features to discrimination between objects

e The following slide introduces simple tools like
scatter plots to visualize how good a feature
(or combination of 2-3 features) is

in separating objects of different types/classes.

e To evaluate features, we use training data
consisting of objects with KNOWN CLASS.
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Scatter plots

1 A 2D Scatter p|0t |S a p|0t Of . FinoréxisLength vs. MajoraxisLength for Symbols 1-6 and outliers (11)

feature values for two different Feature2: | -

. ’ major axis z

features. Each object’s feature = lnan ®°f . Py ;

) " & . . )

values are plotted in the position o & e .

given by the features values, and A § 0
with a class label telling its object ) .

class. ol S Baa

e Matlab: gscatter(featurel,
feature2, labelvector)

e C(lassification is done based on 1y

20

more than two features, e
. . . . . . 1] = 10 15 20 25 30 35
but this is difficult to visualize.

e Features with good class
separation show clusters for each
class, and different clusters
should ideally be separated.

Feature 1: minor axis length
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The "curse-of-dimensionality”

Also called "peaking phenomenon”.

For a finite training sample size,

the correct classification rate initially
increases when adding new features,
attains a maximum and then begins
to decrease.

The implication is that:

For a high measurement complexity,
we will need large amounts of
training data in order to attain the
best classification performance.
=> 5-10 samples

per feature per class.

Illustration from G.F. Hughes (1968).
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Fig, 3, Finite data set accurncy (pa = 3).
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Correct classification rate as
function of feature dimensionality,
for different amounts of training data.
Equal prior probabilities
of the two classes is assumed.
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Finding best feature subset

e The goal: to find the subset of observed features which

— best characterizes the differences between groups
— is similar within the groups
— Maximize the ratio of between-class and within-class variance.

e If we want to perform an exhaustive search through D
features for the optimal subset of the d < m “best
features”, the number of combinations to test is

_ZD d) d!

o Impractical even for a moderate number of features!
d<5 D=100 => n = 79.374.995

There exist several sub-optimal schemes to search for the best sub-set.
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A simulation study design

H. Schulerud and F.Albregtsen: "Many are called, but few are chosen.
Feature selection and error estimation in high dimensional spaces’,
Computer Methods and Programs in Biomedicine, 73, 91—99, 2004.
Monte Carlo study, averaging 100 simulations per setting
2 classes, normally distributed, common covariance

Up to 500 feature candidates

Only 5 features are different between the classes
For these 5, squared difference of class means = 8%/vV5; 82=0, 1, 4

the rest of the continuous distributions are EQUAL!
Stepwise forward-backward feature selection

20 - 1000 training samples

20 - 1000 test samples
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Probabilistic distance measures

If the class-conditional probability distributions are Gaussian:

plé1)=[eayz )" exp{—%(é AR )}
where ; and Z; are the mean vector and the

covariance matrix of the /th class distribution; [~
the Mahalanobis distance is 071
& =t = 14) = (st = 14y), if £, =%, =%
The Bhattacharyya distance may also be useful:
i 1| =4
1 T : 1 ‘2(21+22)
=— (e, — 1) |2, =2, (1, — ~1
J 4(ﬂ2 /11) [ 1 2] (/12 /11)"'2 n ‘Zluzz‘
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Samples from distributions

1

Nl 1]
0 N N ‘ |-|
Nt ot gt gt o o

nn an il

H

I

‘
o

¥

I

.o W
p¥

Nm B A W G h g B
\\\\\\\\\

Distribution of 2 independent sets
of 20 samples from standardized
normal distributions, 6° = 0.

Distribution of 2 independent sets of
200 samples from standardized
normal distributions, 6? = (.

e For small sample sets and small class distances,
observations may indicate a separation of classes,
while no real difference exists !!!
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Simulation results - Feature selection II

e The number of correctly selected

features increases with
— increasing # of training samples
— decreasing # of candidates
— (increasing class distance)

For small sample sizes

the number of candidates
features is of great importance :

— ForD =50and 6%2=1,
half of the 5 selected
features will be noise

if ng, = 100.

— For D =50, 0%2=1, n;, = 50,
609%0 of the selected
features will be noisel

— So, Be Careful !

()]
0]
e

No. of cogrectly selected featu

3

n

4,

D |

(S8 ]
T

0.5-

0

e
Y
’ — D=10 |
—~ D=50
/. ---D=200 p
. D=500
200 400 800 800 1000

No. of samples in training set

The average number of correctly selected features,
when the class Mahalanobis distance 5 = 1.
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Caveats of Cross Validation

A simple simulation may demonstrate the effect of performing feature
selection before a cross validation to estimate classification performance on
the same data.

If the classes are overlapping, the number of training samples is small,
and the number of feature candidates are high, the common approach of
performing feature selection before leave-one-out error estimation on the
same data results in a highly biased error estimate of the true error.

Performing feature selection and leave-one-out error estimation in one
process gives an unbiased error estimate, but with high variance.

See Figure 7 of

H Schulerud and F Albregtsen, "Many are called, but few are chosen.
Feature selection and error estimation in high dimensional spaces”,
Computer Methods and Programs in Biomedicine 73, 91—99, 2004.
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Learning goals — object description

Invariant topological features
Projections and signatures — use and limitations

Geometric features
— Area, perimeter and circularity/compactness
— Bounding boxes

Moments, binary and grayscale
¢ Ordinary moments and central moments

— Moments of objects, object orientation, and best fitting ellipse
e Focus on first- and second-order moments.

— Invariance may be important

Inspection of feature scatter plots
Select your feature set with great care ! Validate correctly!
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