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Mandatory 2

• Available before next group session
• Implement your own classification algorithm
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The goal of supervised
classification
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Find a partition of multivariate feature space that we
believe will work well when classifying new data
A simple model is easier to interpret/explain



Classification in multivariate
feature space

• Goal: 

– Learn by concept
– Learn by mathematics
– Learn by geometry
– Learn by implementation
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Today’s focus

• Basics of probability theory
• Bayes rule
• From a l-dimensional feature vector x=[x1,….xs]T

• The multivariate Gaussian density
• Discriminant functions for the Gaussian density
• If time: a classification example
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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes.  is the class label for a 
pixel, and x is the observed feature vector).  

• We can use Bayes rule to find an expression for the class with
the highest probability:

• P(j) is the prior probability for class j. If we don't have special
knowledge that one of the classes occur more frequent than
other classes, we set them equal for all classes. (P(j)=1/J, 
j=1.,,,J).
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Probability theory

• Let x be a discrete random variable that can assume
any of a finite number of M different values (in our
case M classes). 

• The probability that x belongs to class m is
pm = Pr(x=m), m=1,...M

• A probability distribution must sum to 1 and 
probabilities must be positive so pm0 and 
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Expected values - definition
• The expected value or mean of a random variable x is: 

• The variance or second order moment 2 is: 
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Pairs of random variables - definitions

• Let x and y be two random variables. 
• The joint probability of observing a pair of values

(x=i,y=j) is pij.

• Alternatively we can define a joint probability
distribution function P(x,y) for which

• The marginal distributions for x and y (if we want to 
eliminate one of them) is: 

IN 5520 9

   
x y

yxPyxP 1),(    ,0,

 

 






x
y

y
x

yxPyP

yxPxP

,)(

,)(



Expected values of two variables

• Expected values of two variables:
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Feature 1

Feature 2

Can you sketch
approximately
x,y,?
Which is largest, 
x

2 or y
2?



Statistical independence - definitions

• Variables x and y are statistical independent if and only if

• In words: two variables are indepentent if the occurrence of one
does not affect the other. 

• If two variables are not independent, they are dependent. 
• If two variables are independent, they are also uncorrelated.
• For more than two variables: all pairs must be independent. 
• Two variables are uncorrelated if

• If Cov[X ,Y] = E[X Y] − E[X ]E[Y] =0, we must have             
E[X Y] = E[X ]E[Y]

• If two variables are uncorrelated, they can still be dependent. 
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Conditional probability
• If two variables are statistically dependent, knowing the value

of one of them lets us get a better estimate of the value of the
other one. We need to consider their covariance. 

• The conditional probability of x given y is defined: 

• Example: Draw two cards from a deck.  Drawing a king in the
first draw has probability 4/52. Drawing a king in the second 
draw (given that the first draw gave a king) is 3/51. 
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The conditional density p(x| s)
• Any probability density function can be used to model p(x| s) 
• A common model is the multivariate Gaussian density.
• The multivariate Gaussian density with features:

• If we have    features, s is a vector of length and and s a  
matrix (depends on class s)

• |s| is the determinant of the matrix s,  and s
-1 is the inverse
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Inspecting p(x|s)
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The mean vectors s for each class

• The mean vector for class s is defined as the expected value of
x:

• with features, the mean vector  will be of size
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Link to moments

• From lecture on moments:

• m00 was the number of pixels in the object

• If f=[x,y] is a sample from distribution p(x,y), the
mean is defined as 
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Remark – what is maximum likelihood
estimation

• The true value of  and  is unknown.
• A distribution has some unknown parameters
• Maximum likelihood estimation:

– These parameters are assumed unknown, but deterministic
(not random), meaning that they have a single true, uknown
value (and no uncertainty)

– Estimate by finding the value that maximize the likelihood
given the set of observed samples

• Bayesian estimation, on the other hand, assumes
that these parameters are random variables from 
some distribution. 
– A set of samples gives us the maximum aposteriori value of

the parameters. 
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Maximum likelihood estimation
• We assume the the feature vector x is distributed according to p(x|k) 

if it belongs to class k.

• In this case we assume p(x|k) is a Gaussian distribution with
unknown parameters  (k and k for the Gaussian distribution).

• Let X=[x1,…..xM] be M random samples drawn from p(x|k).
• If all samples are independent, 
• ܲ ܺ;	௞ ൌ ∏ ௠ெݔሺ݌

௠ୀଵ ; ௞)
• The Maximum likelihood method estimates  k as the value that

maximize the likelihood function: 

• ௞෢ ൌ
argmax

k

∏ ௠ெݔሺ݌
௠ୀଵ ; ௞) 	

• This is equivalent to maximizing the logarithm of this, called the log-
likelihood
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Estimating the mean vectors s

• If we have Ms training samples that we know belong to class s, 
we can estimate the mean vector as (Maximum likelihood
estimates given the observed samples):
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For a derivation of this, see e.g.:
https://towardsdatascience.com/maximum-likelihood-estimation-explained-normal-distribution-6207b322e47f
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The covariance matrix s for each class
• The covariance for class s is defined as the expected value of (x-)(x- )t:

• with l features, the covariance matrix s will be of size lxl.
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More on the covariance matrix s

• The covariance matrix s will always be symmetric and positive 
semidefinite. 

• If all components of x have non-zero variance, s will be positive 
definite. 

• ij is the covariance between features i and j. 
• If features xi and x j are uncorrelated, ij = 0.

• In the general case, s will have                different values.
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Estimating the covariance matrix s for each class

• If we have Ms training samples that we know belong to class s, we can estimate the
covariance matrix s . (The estimate of a random variable  f is denoted ) 

• The Maximum likelihood estimate of each term ij is computed as:
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The covariance matrix and ellipses
• In 2D, the Gaussian model can be 

thought of as approximating the classes in 
2D feature space with ellipses.

• The mean vector =[1, 2] defines the
the center point of the ellipses.

• 12, the covariance between the features 
defines the orientation of the ellipse.

• 11 and 22 defines the width of the
ellipse. 

• The ellipse defines points where the
probability density is equal

– Equal in the sense that the distance to the
mean as computed by the Mahalanobis
distance is equal.

– The Mahalanobis distance between a point
x and the class center  is:
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• Let us consider two features with mean 0, feature 1 
has variance 1

2 , feature 2 variance, 2
2 and  

feature 1 and 2 has covariance 0. 
• The curve of points with equal probability is given as 

for some constant C
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From lecture on moments: Object orientation

• Orientation is defined as the angle, relative to the X-axis, 
of an axis through the centre of mass 
that gives the lowest moment of inertia.

• Orientation θ relative to X-axis found by minimizing:

where the rotated coordinates are given by

• We found that object orientation was given by:
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Euclidean distance vs. 
Mahalanobis distance

• Euclidean distance
between point x and class
center :

• Mahalanobis distance
between x and :
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Points with equal
distance to  lie on a 
circle.

Points with equal
distance to  lie on an 
ellipse.



Back to the Gaussian: 

• We now have all the terms to compute
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Training a multivariate Gaussian classifier

• Training the classifier then consists of computing  s and s for 
all pixels with class label s in the mask file.

• For all pixels xi with label s in the training mask, compute
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How do to classification with a 
multiivariate Gaussian

• Decide on values for the prior probabilities, P(j). If we have no
prior information, assume that all classes are equally probable 
and P(j)=1/J. l is the number of features.

• Estimate j and j
2 based on training data based on the

formulae on the previous slide. (Training)
• For each pixel in a new image:

For class j=1,….J, compute the discriminant function

Assign pixel x to the class C with the highest value of P(j|x) by setting 
label_image(x,y)=  C

The result after classification is an image with class labels
corresponding to the most probable class for  each pixel.  
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How a Gaussian classifier
partions feature space
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Discriminant functions
for the normal density

• When finding the class with the highest probability, these functions
are equivalent:

• Let us now look at
• With a multivariate Gaussian we get:

• Let us look at this expression for some special cases: 
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Case 1: Σj=σ2I
• Σj

-1=I/σ2

• |Σj|= σ2n

• The discriminant functions can be expressed as: 

• Thus we model the probabilities as n-dimensional spheres because
points that have equal discriminant function will lie on a circle around
the mean i .
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Case 1: Σj=σ2I – simplifying the
expression

• The discriminant functions simplifies to linear functions using
such a shape on the probability distributions
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Case 1: Σj=σ2I
• Now we get an equivalent formulation of the discriminant functions:

• An equation for the decision boundary gi(x)=gj(x) can be written as

• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 

orthogonal to w. 
• If P(i)=P(j) the hyperplane will be located halfway between the

mean values.
• Proving this involves some algebra, see the proof at 

https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm
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Case 1: Σj=σ2I – Decision boundary

• The discriminant function (when
Σj=σ2I) that defines the border 
between class 1 and 2 in the feature 
space is a straight line.

• The discriminant function intersects the
line connecting the two class means at 
the point x0=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the
means. 

1

2

xi

x0

Decision boundary
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With l features, Σj=σ2I

• The distributions are spherical in l dimensions.
• The decision boundary is a generalized hyperplane of l-1 dimensions
• The decision boundary is perpendicular to the line separating the two

mean values
• This kind of a classifier is called a linear classifier, or a linear 

discriminant function
– Because the decision function is a linear function of x.

• If P(i)= P(i), the decision boundary will be half-way between i and 
j
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Minimum distance classification
• If all classes have equal diagonal covariance matrix and equal

prior probabilities, x0 will be the point halfway between the
mean vectors. 

• Classification will consist of assigning feature vector x to the
same class as the closest mean measured by Euclidean distance
||x-i||.

• A classifier based on the Euclidean distance is called a 
minimum distance classifier. 
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Case 2: Common covariance, Σj= Σ

• If we assume that all classes have the same shape of data 
clusters, an intuitive model is to assume that their probability 
distributions have the same shape

• By this assumption we can use all the data to estimate the 
covariance matrix

• This estimate is common for all classes, and this means that 
also in this case the discriminant functions become linear 
functions
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Case 2: Common covariance, Σj= Σ

• An equivalent formulation of the discriminant functions is

• The decision boundaries are again hyperplanes.
• Because wi= Σ-1(i- j) is not in the direction of (i- j), the

hyperplane will not be orthogonal to the line between the
means.
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Case 2 
• Do an eigenvector decomposition of Σ

• Project the data onto the eigenvectors by setting 
x’=Tx

• It can be shown that the contours with equal
probability in the transformed space is:

• The center of mass of the ellipses are a i, the
principal axes align with the eigenvalues and have 
length
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Case 2:, Σj= Σ

• The classes can be described by hyperellipsoides in l dimensions.
• All hyperellipsoids have the same orientation.
• The decision boundary will again be a hyperplane.
• Because w= Σ-1(i-j) is generally not in the direction of i-j, the

hyperplane will not be perpendicular to the line between the means. 
• Consider a point x0 on the line i-j. defined by the prior probabilities:

– If P(i)= P(i), x0 will be half way between the means.
– The separating hyperplane will intersect the line at x0
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Case 3:, Σj=arbitrary

• When all classes are modeled as having different
shapes, the discriminant functions cannot be 
simplified

• This means that the discriminant functions will be 
quadratic functions

• Decision boundaries will be hyperquadrics and 
assume any of the general forms:
– hyperplanes, pairs of hyperplanes, hyperspheres, 

hyperellisoides, hyperparaboloids, hyperhyperboloids...



IN 5520 47

Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries

just by looking at the mean and covariance. 
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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A multiclass example
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Is the Gaussian classifier 
the only choice?

• The Gaussian classifier gives linear or quadratic discriminant
function.

• Other classifiers can give arbitrary complex decision surfaces
(often piecewise-linear)
– Mixtures of Gaussians
– Other probability density functions (t-distribution, 

exponential distributions).
– Softmax-classifier
– Neural networks
– Support vector machines
– Ensembles of simple classifiers

ADAboost
Random forest/decision trees

– kNN (k-Nearest-Neighbor) classification
– Logistic classification



A classification example
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Landsat image with 6 spectral bands
The 6 bands will be the features
Training areas and test areas shown 
in mask

Upper part: RGB-false color image created from bands 
4,5 and 6 with training and test regions overlaid.

Lower part: image of training regions only
•

1

2
3

4



Visual inspection of feature 1 
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Class 2 (forest) seems to be well separated,
Maybe also class 1 (urban)

1

2 3

4



Visual inspection of feature 2 
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Class 2 (forest) seems to be well separated



Visual inspection of  feature 3 
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Class  2 (forest) seems to be well separated,
Class 1 (urban) seems to be well separated



Visual inspection of  feature 4 
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Class 1 (water) seems to be well separated,
Maybe also class 4 (agricultural)



Visual inspection of feature 5 
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Water and forest appears similar 
- but the variance might be 
different

Urban and agricultural appears 
similar – but the variance might 
be different



Visual inspection of feature 6 
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Seems similar to feature 5,
but with better contrast



Selected scatter plots (gscatter)
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Scatterplot between feature 1 and 4 Scatterplot between feature 5 and 6



Classified images
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The entire image classified to the most probable class
A color table is used to display the different classes.



Display the posterior probabilities
as images
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Posterior probability for class urban Posterior probability for class forest

Posterior probability for class water
Posterior probability for class agricultural

Dark values: 
Probabilities close to 0

Bright values:
Probabilities close to 1



Confusion matrix
for the training set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1340 2 0 310

Class 2 43 1253 0 2

Class 3 0 0 1738 0

Class 4 131 3 0 1266
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Accuracy per class:     Averaged over all classes: 91.7%
Class1: 81%
Class2: 96%
Class3: 100%
Class4: 90%



Confusion matrix
for the test set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1474 3 1 251

Class 2 513 2311 0 0

Class 3 14 0 1953 0

Class 4 213 2 0 1390
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Accuracy per class:      Averaged over all classes: 87.5%
Class1: 85%
Class2: 81%
Class3: 98%
Class4: 86%



Learning goals from this lecture

• Be able to use and implement Bayes rule with a l-
dimensional Gaussian distribution.

• Know how s and s are estimated. 
• Understand the 2-dimensional case where a 

covariance matrix is illustrated as an ellipse. 
• Be able to simplify the general discriminant function

for 3 cases.
• Be able to compute the discriminant function e.g. for 

case 1. 
• Have a geometric interpretation of classification with

2 features. 
• Be able to solve theoretical exercises on

classification. IN 5520 67
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