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Literature

• Practical guidelines of classification – lecture foils
• Chap 5.6-5.7 Class separability and feature selection

(see undervisningsmateriale/lecturenotes)
• Chap 6.1-6.2 PCA  (see

undervisningsmateriale/lecturenotes)
Recommended reading about PCA, text from Chapter 
17 Principal Component Analysis (see
undervisningsmateriale/lecturenotes)
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Approaching a classification problem

• Collect and label data
• Get to know the data: exploratory data analysis
• Choose features
• Consider preprocessing/normalization
• Choose classifier

– Estimate classifier parameters on training data
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Is the accuracy in the range I want?
NOT?

Analyze errors to understand why not
Improve algorithm, repeat



Approaching a classification problem

• Collect and label data  
• Get to know the data: exploratory data analysis
• Choose features
• Consider preprocessing/normalization
• Choose classifier

– Estimate classifier parameters on training data

• Estimate hyperparameters on validation data
– Alternative: cross-validation on the training data set

• Compute the accuracy on test data
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Model fit and bias,variance
• f(x) unknown function
• Training samples x1,….xn

• Measurements yi = f(xi) + i (i :noise with zero mean and 
variance 

2 )

• Estimate

• Want to minimize the error E[(y- 2

• Bias : Difference between f(x) and - how well does the
model fit

• Variance of the estimate: ])2]
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Balancing the total error
• Total squared error

ଶ
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Balance the complexity of the
model by the training error
and validation error



Bias-Variance tradeoff
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Underfitting and overfitting
• Underfitting: the model is not able to capture the underlying pattern of

data
– High bias, low variance
– In our setting: high error rate on training data and validation data

• Overfitting: the model captures the noise with the underlying pattern of
data
– Low bias, high variance
– In our setting: low error rate on training data, high error on validation data
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Measures of classification accuary

• Average error rate
• Confusion matrices
• True/false positive/negatives
• Precision/recall and sensitivity/specificity
• ROC-curves
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Confusion matrices
• A matrix with the true class label versus the estimated 

class labels for each class
Estimated class labels

T
rue

 class la
b

els

Class 1 Class 2 Class 3 Total 
#sampl
es

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450
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True / False  positives / negatives

• True positive  (TP):
Patient has cancer 

and test result is positive.

• True negative (TN):
A healthy patient

and a negative test result.

• False positive (FP):
Healthy patient that gets a positive test result.

• False negative (FN):
Cancer patient that gets a negative test result.

• Good to have: TP & TN
• Bad to have: FP (but this will probably be detected)
• Worst to have: FN  (may go un-detected)

TP

F
N

TN

FP

E.g., testing for cancer
No cancer | Cancer
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Sensitivity and specificity, F1-score
• Precision:

• Precision = TP/(TP+FP)
• The probability that patient is really sick given that he is 

classified sick. 
• Sensitivity  (also called recall/true positive rate):

Sensitivity/TPR = TP/(TP+FN)
• The probability that the test is positive 

given that the patient is sick. 
• Higher sensitivity means that 

fewer desease cases go undetected.
• Specificity: (also called true negative rate)

Specificity = TN/(TN+FP)
• The probability that a test is negative 

given that the patient is not sick.
• Higher specificity means that 

fewer healthy patients  are labeled as sick.
• Combined score 

– F1= 2(precision*recall)/(precision+recall)

TP

F
N

TN

FP



Receiver Operating Characteristic(ROC)-curve

IN 5520 13

Corresponds to random guess

Used for binary classification
problems to set the detection
threshold.
Good performance: the curve
should be close to the upper left
corner
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Outliers and doubt

• In a classification problem, we might want to identify  
outliers and doubt samples

• We might want an ideal classifier to report
– ’this sample is from class l’ (usual case)
– ’this sample is not from any of the classes’ 

(outlier)
– ’this sample is too hard for me’ (doubt/reject)

• The two last cases should lead to 
a rejection of the sample!
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Outliers
• Heuristically defined as ”… samples which did not come from the

assumed population of samples” 
• The outliers can result from some breakdown in preprocessing.
• Outliers can also come from pixels from other classes than the

classes in the training data set.
– Example: K tree species classes, but a few road pixels divide the

forest regions.
• One way to deal with outliers is to model them as a separate class, 

e.g., a gaussian with very large variance, and estimate prior 
probability from the training data

• Another approach is to decide on some threshold on the aposteriori
probability– and if a sample falls below this threshold for all classes, 
then declare it an outlier. 

• Related to normalization: a max/min normalization will be sensitive 
to outliers
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Doubt samples

• Doubt samples are samples for which the class with
the highest probability is not significantly more 
probable than some of the other classes (e.g. two
classes have essentially equal probability).

• Doubt pixels typically occurr on the border between
two classes (”mixels”)
– Close to the decision boundary the probabilities will be 

almost equal.

• Classification software can allow the user to specify
thresholds for doubt.
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The ”curse” of dimensionality
– In practice, the curse means that, for a given sample size, 

there is a maximum number of features one can add before
the classifier starts to degrade.

• For a finite training sample size, 
the correct classification rate 
initially increases when adding
new features, attains a maximum
and then begins to decrease.

• For a high dimensionality, 
we will need lots of training data 
to get the best performance.

• => ≈10 samples / feature / class.

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

of the two classes is assumed.



Use few, but good features
• To avoid the ”curse of dimensionality” we must take care in finding 

a set of relatively few features.
• A good feature has high within-class homogeneity, 

and should ideally have large between-class separation.
• In practise, one feature is not enough to separate all classes, 

but a good feature should:
– separate some of the classes well
– Isolate one class from the others. 

• If two features look very similar (or have high correlation), 
they are often redundant and we should use only one of them. 

• Class separation can be studied by:
– Visual inspection of the feature image overlaid the training mask
– Scatter plots 

• Evaluating features as done by training can be difficult to do automatically, 
so manual interaction is normally required. 
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How do we beat the ”curse of dimensionality”?

• Generate few, but informative features
– Careful feature design given the application

• Get as much labelled data as possible!
• Try a simple classifier first

– Do the features work? Do we need additional features?
– Iterate between feature extraction and classification

• Reducing the dimensionality
– Feature selection – select a subset of the original features
– Feature transforms – compute a new subset of features based on a 

linear combination of all features
• Example: Principal component transform

– Unsupervised, finds the combination that maximizes the
variance in the data. 

• When you are confident that the features are good, consider a 
more advanced classifier. 
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Linear feature transforms
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Signal representation vs classification

• Principal components analysis (PCA)
– - signal representation, unsupervised
– Minimize the mean square representation

error (unsupervised)
• Linear discriminant analysis (LDA)

– -classification, supervised
– Maximize the distance between

the classes (supervised)
Nice theory, but rarely used as

the number of selected features
must be less than the number
of classes

– Not covered in this course



Idea behind  (Principal Component Transform)

• Find a projection y=ATx of the
feature vector x

• Three interpretations of PCA:
– Find the projection that maximize the

variance along the selected projection
– Minimize the reconstruction error

(squared distance between original 
and transformed data)

– Find a transform that gives
uncorrelated features
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Definitions: Correlation matrix vs. 
covariance matrix

• x is the covariance matrix of x

• Rx is the correlation matrix of x

• Rx=x if x=0. 

   T
x xxE  

   T
x xxER 
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Principal component or
Karhunen-Loeve transform - motivation

• Features are often correlated, which might lead to 
redundancies.

• We now derive a transform which yields uncorrelated
features.

• We seek a linear transform y=ATx, and the yis should be 
uncorrelated. 

• The yis are uncorrelated if E[y(i)y(j)T]=0, ij.
• If we can express the information in x using uncorrelated

features, we might need fewer coefficients.
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Linear feature transforms I/II

Weights

New feature

Existing features
n is the number of features

From the original features to one new feature
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Linear feature transforms II/II

• Multiple output features by applying different 
weights for each one:

ଵ ௜ଵ ௜
௡ିଵ
௜ୀ଴ ,    ଶ ௜ଶ ௜

௡ିଵ
௜ୀ଴ ,    …      ௠ ௜௠ ௜

௡ିଵ
௜ୀ଴

• In matrix notation y = ATx,  A=[w1 w2 … wm]

• If y has fewer elements than x, we get a feature
reduction



The weights | Visualization and intuition
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1

x1

x2

𝒘𝟏x

y1/||w1||

A linear transform is a shift of basis vectors
by projecting the points on the the basis vectors



Variance of y1 as a function of direction of basis 
vector
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Variance along
directions from 0 to 
180 degrees



Variance of y1 cont.
• Assume mean of x is subtracted, so x has zero mean. 
• The mean of the projections will also be zero:
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Called σ2
w on some

slides

The sample covariance matrix / scatter matrix; R



Variance and projection residuals
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Projection onto w, assuming |w|=1
Single sample

w∙w=1

«yi»

«yi
2»



Residuals – sum over all samples
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Does not depend
on w

Sum all n samples
(not dimensions)

Minimizing MSE is 
equivalent to maximizing
this term 



Maximizing the variance
• The mean of a square is always equal to the square of the

mean plus the variance:

• But the projected data has zero mean, so this is equivalent to 
maximizing the variance.
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The mean of

Minimizing the squared errror is equivalent to maximizing
the variance in the projected component



Criterion function

• Goal: Find transform minimizing representation error

• We start with a single weight-vector, w, giving us a 
single feature, y1

• Let J(w) = wTRw = σw
2

• Now, let’s find

IN 5520 33

As we learned on the 
previous slide, 
maximizing this is 
equivalent to 
minimizing 
representation error

𝑠. 𝑡. 𝒘 = 1

Transform this problem into a unconstrained problem with a Lagrange multiplier
(we skip details here)



Maximizing variance of y1
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RR

R
The maximizing w is an 
eigenvector of R!

And σ2
w=λ! 

Lagrangian function for 
maximizing σ2

w with the 
constraint wTw=1

Equating zero

Unfamiliar with Lagrangian
multipliers?  See 
http://biostat.mc.vanderbilt.edu/w
iki/pub/Main/CourseBios362/Lag
rangeMultipliers-Bishop-
PatternRecognitionMachineLear
ning.pdf

- |



w2, w3, ..  I/III

• w1 should be the eigenvector of Rx corresponding to 
the largest eigenvalue

• Ok, I’ve got the w1 giving me the transform (linear 
weights) that maximizes the variance / minimizes the
representation error ..

• .. Now I want another one that again maximizes the
variance / minimizes the representation error, but the
new feature should be uncorrelated with my previous
one ..

• .. Which w2 would give me this?
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Eigendecomposition of covariance matrices
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Real-valued, symmetric, 
«n-dimensional» 
covariance matrix

Eigenvector 
corresponding 
to λ1

Eigenvalue 
(let’s say 
largest)

Smallest eigenvalue

aT
iaj = 0 for i ≠ j

Remember: 
λi=variance of xTaiRemark: a’=aT



• What does uncorrelated mean?  Zero covariance.

• Covariance of y1 and y2:

• We already have that w1=a1

• From last slide, requiring w1’Rw2 = a1’Rw2 = 0 
means requiring w2’a1=0

w2, w3, ..  II/III
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• We want maxw w’Rw, s.t. |w|=1 and w’a1=0

• We can simply remove λ1a1a1‘ from R, creating 
Rnext = R- λ1a1a1‘, and again find maxw w’Rnextw
s.t. |w|=1

• Studying the decomposition of R (a few slides back), 
we see that the solution is the eigenvector 
corresponding to the second largest eigenvalue

• Similarly, the w3, w4 etc. are given by the following 
eigenvectors sorted according to their eigenvalues

w2, w3, ..  III/III
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w2, w3, ..  III+/III
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→    w=a1

→    w=a2

→    w=a3

… etc.

maxw w’Rw, s.t. |w|=1

Eigenvectors sorted by their
corresponding eigenvalues



Principal component transform (PCA)

• Place the m «principle» eigenvectors (the ones with the largest
eigenvalues) along the columns of A
– They are given as the eigenvectors of the covariance matrix R

• Then the transform y = ATx gives you the m first principle
components

• The m-dimensional y
– have uncorrelated elements
– retains as much variance as possible
– gives the best (in the mean-square sense) description of the

original data (through the «image»/projection/reconstruction Ay)
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PCA is also known 
as Karhunen-Loeve 
transform

Note: The eigenvectors 
themselves can often give 
interesting information
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Geometrical interpretation of 
principal components

• The eigenvector 
corresponding to the 
largest eigenvalue is the 
direction in n-dimensional 
space with highest 
variance.

• The next principal 
component is orthogonal 
to the first, and along the 
direction with the second 
largest variance.

Note that the direction with the highest variance is 
NOT related to separability between classes. 
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PCA and multiband images

• We can compute the principal component transform for an 
image with n bands

• Let X be an Nxn matrix having a row for each image sample

• Sample covariance matrix (after mean subtracted): 𝟏

𝑵
𝑻

• Place the (sorted) eigenvectors along the columns of A

• Y=XA will then contain the image samples, however most of
the variance is in the «bands» with the lowest index
(corresponding to the largest eigenvalues), and the new
features are uncorrelated



PCA example – original image
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• Satellite image from Kjeller
• 6 spectral bands with different

wavelengths

1 Blue 0.45-0.52 Max. penetration of 
water

2 Green 0.52-0.60 Vegetation and 
chlorophyll

3 Red 0.63-0.69 Vegetation type

4 Near-IR 0.76-0.90 Biomass

5 Mid-IR 1.55-1.75 Moisture/water content
in vegetation/soil

7 Mid-IR 2.08-2.35 Minerals



Example cont: Principal component images
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Principal component 1 Principal component 2 Principal component 3 

Principal component 4 Principal component 5 Principal component 6 



Example cont: Inspecting the eigenvalues
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Plotting    s will give
indications on how
many features are
needed for 
representation
(explaining the
variance)



  









1

1

1

1

2ˆ
N

mi
i

m

i
i

N

i
ixxE 

The mean-square 
representation error we get with
m of the N PCA-components is 
given as



PCA and classification

• Reduce overfitting by detecting directions/components 
without any/very little variance

• Sometimes high variation means useful features for 
classification:

• .. and sometimes not:
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Exhaustive feature subset
selection

• If – for some reason – you know that you will use d 
out of D available features, an exhaustive search will 
involve a number of combinations to test:

• If we want to perform an exhaustive search through D 
features for the optimal subset of the d ≤ m “best 
features”, the number of combinations to test is 

• Impractical even for a moderate number of features!
d ≤ 5, D = 100  =>  n = 79.374.995

  !!

!

ddD

D
n



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 
 


m

d
ddD

D
n

1
!!

!

d!=1*2*..*d



Suboptimal feature selection 

• Select the best single features based on some quality 
criteria, e.g., estimated correct classification rate.
– A combination of the best single features will often imply 

correlated features and will therefore be suboptimal . 

• “Sequential forward selection” implies that when a 
feature is selected or removed, this decision is final. 

• “Stepwise forward-backward selection” overcomes this. 
– A special case of the “add - a, remove - r algorithm”. 

• Improved into “floating search” by making the number of 
forward and backward search steps data dependent. 
– “Adaptive floating search”
– “Oscillating search”.
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Distance measures used in feature 
selection

• In feature selection, each feature combination must be ranked 
based on a criterion function. 

• Criteria functions can either be distances between classes, or 
the classification accuracy on a validation test set. 

• If the criterion is based on e.g. the mean values/covariance 
matrices for the training data, distance computation is fast. 

• Better performance at the cost of higher computation time is 
found when the classification accuracy on a validation data set 
(different from training and testing) is used as criterion for 
ranking features. 
– This will be slower as classification of the validattion data needs to be done 

for every combination of features. 
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Distance measures between classes 

• How do we compute the distance between two classes:
– Distance between the closest two points?
– Maximum distance between two points?
– Distance between the class means?
– Average distance between points in the two classes?
– Which distance measure?

• Euclidean distance or Mahalanobis distance?

• Distance between K classes:
– How do we generalize to more than two classes?
– Average distance between the classes?
– Smallest distance between a pair of classes?
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Class separability measures

• How do we get an indication of the separability 
between two classes?
– Euclidean distance between class means |r- s|
– Bhattacharyya distance

• Can be defined for different distributions
• For Gaussian data, it is

– Mahalanobis distance between two classes:

   
 
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Examples of feature selection - Method 1 -
Individual feature selection

• Each feature is treated individually (no correlation/covariance 
between features is consideren)

• Select a criteria, e.g. a distance measure
• Rank the feature according to the value of the criteria C(k)
• Select the set of features with the best individual criteria value
• Multiclass situations:

– Average class separability or
– C(k) = min distance(i,j) - worst case 

• Advantage with individual selection: computation time
• Disadvantage: no correlation is utilized.

Often used
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Method 2 - Sequential backward selection

• Select l features out of d
• Example: 4 features x1,x2,x3,x4

• Choose a criterion C and compute it for the vector [x1,x2,x3,x4]T

• Eliminate one feature at a time by computing [x1,x2,x3]T, 
[x1,x2,x4]T, [x1,x3,x4]T and [x2,x3,x4]T

• Select the best combination, say [x1,x2,x3]T.

• From the selected 3-dimensional feature vector eliminate one 
more feature, and evaluate the criterion for [x1,x2]T, [x1,x3]T, 
[x2,x3]T and select the one with the best value.

• Number of combinations searched: 
1+1/2((d+1)d-l(l+1))
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Method 3: Sequential forward selection

• Compute the criterion value for each feature. Select the 
feature with the best value, say x1.

• Form all possible combinations of features x1 (the winner at 
the previous step) and a new feature, e.g. [x1,x2]T, [x1,x3]T, 
[x1,x4]T, etc. Compute the criterion and select the best one, 
say [x1,x3]T.

• Continue with adding a new feature.
• Number of combinations searched: ld-l(l-1)/2.

– Backwards selection is faster if l is closer to d than to 1. 



Learning goals for this lecture

• Understand how different measures of classification
accuracy work:
– Confusion matrix
– Sensitivity/specifity/TP/TN/FP/FN/ROC
– Average classification accuracy

• Be familiar with the curse of dimensionality and the
importance of selecting few, but good features

• Know simple forward and backward feature selection.
• Know how PCA works

– Max variance <-> min projection error
– Eigenvectors of sample cov.mat. / scatter matrix
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