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Multivariate classification
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Based on Chapter 2.1-2.4 in Pattern Recognition, 
Theodoridis and Koutroumbas



Mandatory 2

• Available before next group session
• Implement your own classification algorithm
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The goal of supervised
classification
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Find a partition of multivariate feature space that we
believe will work well when classifying new data
A simple model is easier to interpret/explain



Classification in multivariate
feature space

• Goal: 

– Learn by concept
– Learn by mathematics
– Learn by geometry
– Learn by implementation
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Today’s focus

• Basics of probability theory
• Bayes rule
• From a l-dimensional feature vector x=[x1,….xs]T

• The multivariate Gaussian density
• Discriminant functions for the Gaussian density
• If time: a classification example
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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes.  is the class label for a 
pixel, and x is the observed feature vector).  

• We can use Bayes rule to find an expression for the class with
the highest probability:

• P(j) is the prior probability for class j. If we don't have special
knowledge that one of the classes occur more frequent than
other classes, we set them equal for all classes. (P(j)=1/J, 
j=1.,,,J).
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Probability theory

• Let x be a discrete random variable that can assume
any of a finite number of M different values (in our
case M classes). 

• The probability that x belongs to class m is
pm = Pr(x=m), m=1,...M

• A probability distribution must sum to 1 and 
probabilities must be positive so pm0 and 
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Expected values - definition
• The expected value or mean of a random variable x is: 

• The variance or second order moment 2 is: 
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Pairs of random variables - definitions

• Let x and y be two random variables. 
• The joint probability of observing a pair of values

(x=i,y=j) is pij.

• Alternatively we can define a joint probability
distribution function P(x,y) for which

• The marginal distributions for x and y (if we want to 
eliminate one of them) is: 
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Expected values of two variables

• Expected values of two variables:
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Where (in this
course) have you
seen similar
formulas?

Variance of feature x

Variance of featureyx

Covariance of feature x and y
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Feature 1

Feature 2

Can you sketch
approximately
x,y,?
Which is largest, 
x

2 or y
2?



Statistical independence - definitions

• Variables x and y are statistical independent if and only if

• In words: two variables are indepentent if the occurrence of one
does not affect the other. 

• If two variables are not independent, they are dependent. 
• If two variables are independent, they are also uncorrelated.
• For more than two variables: all pairs must be independent. 
• Two variables are uncorrelated if

• If Cov[X ,Y] = E[X Y] − E[X ]E[Y] =0, we must have             
E[X Y] = E[X ]E[Y]

• If two variables are uncorrelated, they can still be dependent. 
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Conditional probability
• If two variables are statistically dependent, knowing the value

of one of them lets us get a better estimate of the value of the
other one. We need to consider their covariance. 

• The conditional probability of x given y is defined: 

• Example: Draw two cards from a deck.  Drawing a king in the
first draw has probability 4/52. Drawing a king in the second 
draw (given that the first draw gave a king) is 3/51. 
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The conditional density p(x| s)
• Any probability density function can be used to model p(x| s) 
• A common model is the multivariate Gaussian density.
• The multivariate Gaussian density with features:

• If we have    features, s is a vector of length and and s a  
matrix (depends on class s)

• |s| is the determinant of the matrix s,  and s
-1 is the inverse
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Inspecting p(x|s)
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The mean vectors s for each class

• The mean vector for class s is defined as the expected value of
x:

• with features, the mean vector  will be of size
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Link to moments

• From lecture on moments:

• m00 was the number of pixels in the object

• If f=[x,y] is a sample from distribution p(x,y), the
mean is defined as 
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Remark – what is maximum likelihood
estimation

• The true value of  and  is unknown.
• A distribution has some unknown parameters
• Maximum likelihood estimation:

– These parameters are assumed unknown, but deterministic
(not random), meaning that they have a single true, uknown
value (and no uncertainty)

– Estimate by finding the value that maximize the likelihood
given the set of observed samples

• Bayesian estimation, on the other hand, assumes
that these parameters are random variables from 
some distribution. 
– A set of samples gives us the maximum aposteriori value of

the parameters. 
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Maximum likelihood estimation
• We assume the the feature vector x is distributed according to p(x|k) 

if it belongs to class k.

• In this case we assume p(x|k) is a Gaussian distribution with
unknown parameters  (k and k for the Gaussian distribution).

• Let X=[x1,…..xM] be M random samples drawn from p(x|k).
• If all samples are independent, 
• ; 	 ∏ ;  )
• The Maximum likelihood method estimates  k as the value that

maximize the likelihood function: 

• 
argmax

k

∏ ;  ) 	

• This is equivalent to maximizing the logarithm of this, called the log-
likelihood
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Estimating the mean vectors s

• If we have Ms training samples that we know belong to class s, 
we can estimate the mean vector as (Maximum likelihood
estimates given the observed samples):
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s class  tobelonging samples  trainingallover  is sum  thewhere

,1ˆ
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 sM

m m
s

s M
xμ

For a derivation of this, see e.g.:
https://towardsdatascience.com/maximum-likelihood-estimation-explained-normal-distribution-6207b322e47f



The covariance matrix s for each class
• The covariance for class s is defined as the expected value of (x-)(x- )t:

• with l features, the covariance matrix s will be of size lxl.
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More on the covariance matrix s

• The covariance matrix s will always be symmetric and positive 
semidefinite. 

• If all components of x have non-zero variance, s will be positive 
definite. 

• ij is the covariance between features i and j. 
• If features xi and x j are uncorrelated, ij = 0.

• In the general case, s will have                different values.
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Estimating the covariance matrix s for each class

• If we have Ms training samples that we know belong to class s, we can estimate the
covariance matrix s . (The estimate of a random variable  f is denoted ) 

• The Maximum likelihood estimate of each term ij is computed as:
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The covariance matrix and ellipses
• In 2D, the Gaussian model can be 

thought of as approximating the classes in 
2D feature space with ellipses.

• The mean vector =[1, 2] defines the
the center point of the ellipses.

• 12, the covariance between the features 
defines the orientation of the ellipse.

• 11 and 22 defines the width of the
ellipse. 

• The ellipse defines points where the
probability density is equal

– Equal in the sense that the distance to the
mean as computed by the Mahalanobis
distance is equal.

– The Mahalanobis distance between a point
x and the class center  is:
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      xxr T 12
The main axes of the ellipse 
is determined by the
eigenvectors of .
The eigenvalues of  gives
their length.



• Let us consider two features with mean 0, feature 1 
has variance 1

2 , feature 2 variance, 2
2 and  

feature 1 and 2 has covariance 0. 
• The curve of points with equal probability is given as 

for some constant C
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From lecture on moments: Object orientation

• Orientation is defined as the angle, relative to the X-axis, 
of an axis through the centre of mass 
that gives the lowest moment of inertia.

• Orientation θ relative to X-axis found by minimizing:

where the rotated coordinates are given by

• We found that object orientation was given by:
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Can we use this to find the orientation of the covariance matrix?
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Euclidean distance vs. 
Mahalanobis distance

• Euclidean distance
between point x and class
center :

• Mahalanobis distance
between x and :

    2  xxx T

      xxr T 12



Points with equal
distance to  lie on a 
circle.

Points with equal
distance to  lie on an 
ellipse.



Back to the Gaussian: 

• We now have all the terms to compute
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Training a multivariate Gaussian classifier

• Training the classifier then consists of computing  s and s for 
all pixels with class label s in the mask file.

• For all pixels xi with label s in the training mask, compute

IN 5520 29

  

s class  tobelonging samples  trainingallover  is sum  thewhere

ˆˆ1ˆ
1

t
sm

M

m sm
s

s
s

M
μxμx   

s class  tobelonging samples  trainingallover  is sum  thewhere

,1ˆ
1 

 sM

m m
s

s M
xμ



How do to classification with a 
multiivariate Gaussian

• Decide on values for the prior probabilities, P(j). If we have no
prior information, assume that all classes are equally probable 
and P(j)=1/J.

• Estimate j and j
2 based on training data based on the

formulae on the previous slide. (Training)
• For each pixel in a new image:

For class j=1,….J, compute the discriminant function

Assign pixel x to the class C with the highest value of P(j|x) by setting 
label_image(x,y)=  C

The result after classification is an image with class labels
corresponding to the most probable class for  each pixel.  
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How a Gaussian classifier
partions feature space
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Discriminant functions
for the normal density

• When finding the class with the highest probability, these functions
are equivalent:

• Let us now look at
• With a multivariate Gaussian we get:

• Let us look at this expression for some special cases: 
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Case 1: Σj=σ2I
• Σj

-1=I/σ2

• |Σj|= σ2n

• The discriminant functions can be expressed as: 

• Thus we model the probabilities as n-dimensional spheres because
points that have equal discriminant function will lie on a circle around
the mean i .
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Case 1: Σj=σ2I – simplifying the
expression

• The discriminant functions simplifies to linear functions using
such a shape on the probability distributions
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Case 1: Σj=σ2I
• Now we get an equivalent formulation of the discriminant functions:

• An equation for the decision boundary gi(x)=gj(x) can be written as

• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 

orthogonal to w. 
• If P(i)=P(j) the hyperplane will be located halfway between the

mean values.
• Proving this involves some algebra, see the proof at 

https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm
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Case 1: Σj=σ2I – Decision boundary

• The discriminant function (when
Σj=σ2I) that defines the border 
between class 1 and 2 in the feature 
space is a straight line.

• The discriminant function intersects the
line connecting the two class means at 
the point x0=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the
means. 

1

2

xi

x0

Decision boundary
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With l features, Σj=σ2I

• The distributions are spherical in l dimensions.
• The decision boundary is a generalized hyperplane of l-1 dimensions
• The decision boundary is perpendicular to the line separating the two

mean values
• This kind of a classifier is called a linear classifier, or a linear 

discriminant function
– Because the decision function is a linear function of x.

• If P(i)= P(i), the decision boundary will be half-way between i and 
j
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Minimum distance classification
• If all classes have equal diagonal covariance matrix and equal

prior probabilities, x0 will be the point halfway between the
mean vectors. 

• Classification will consist of assigning feature vector x to the
same class as the closest mean measured by Euclidean distance
||x-i||.

• A classifier based on the Euclidean distance is called a 
minimum distance classifier. 
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Case 2: Common covariance, Σj= Σ

• If we assume that all classes have the same shape of data 
clusters, an intuitive model is to assume that their probability 
distributions have the same shape

• By this assumption we can use all the data to estimate the 
covariance matrix

• This estimate is common for all classes, and this means that 
also in this case the discriminant functions become linear 
functions
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Since xTx is common for all classes, gj(x) again reduces to 
a linear function of x.
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Case 2: Common covariance, Σj= Σ

• An equivalent formulation of the discriminant functions is

• The decision boundaries are again hyperplanes.
• Because wi= Σ-1(i- j) is not in the direction of (i- j), the

hyperplane will not be orthogonal to the line between the
means.
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Case 2 
• Do an eigenvector decomposition of Σ

• Project the data onto the eigenvectors by setting 
x’=Tx

• It can be shown that the contours with equal
probability in the transformed space is:

• The center of mass of the ellipses are a i, the
principal axes align with the eigenvalues and have 
length
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Case 2:, Σj= Σ

• The classes can be described by hyperellipsoides in l dimensions.
• All hyperellipsoids have the same orientation.
• The decision boundary will again be a hyperplane.
• Because w= Σ-1(i-j) is generally not in the direction of i-j, the

hyperplane will not be perpendicular to the line between the means. 
• Consider a point x0 on the line i-j. defined by the prior probabilities:

– If P(i)= P(i), x0 will be half way between the means.
– The separating hyperplane will intersect the line at x0
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Case 3:, Σj=arbitrary

• When all classes are modeled as having different
shapes, the discriminant functions cannot be 
simplified

• This means that the discriminant functions will be 
quadratic functions

• Decision boundaries will be hyperquadrics and 
assume any of the general forms:
– hyperplanes, pairs of hyperplanes, hyperspheres, 

hyperellisoides, hyperparaboloids, hyperhyperboloids...
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Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries

just by looking at the mean and covariance. 
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example



IN 5520 47

The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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A multiclass example
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Is the Gaussian classifier 
the only choice?

• The Gaussian classifier gives linear or quadratic discriminant
function.

• Other classifiers can give arbitrary complex decision surfaces
(often piecewise-linear)
– Mixtures of Gaussians
– Other probability density functions (t-distribution, 

exponential distributions).
– Softmax-classifier
– Neural networks
– Support vector machines
– Ensembles of simple classifiers

ADAboost
Random forest/decision trees

– kNN (k-Nearest-Neighbor) classification
– Logistic classification



A classification example
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Landsat image with 6 spectral bands
The 6 bands will be the features
Training areas and test areas shown 
in mask

Upper part: RGB-false color image created from bands 
4,5 and 6 with training and test regions overlaid.

Lower part: image of training regions only
•

1

2
3

4



Visual inspection of feature 1 
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Class 2 (forest) seems to be well separated,
Maybe also class 1 (urban)

1

2 3

4



Visual inspection of feature 2 
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Class 2 (forest) seems to be well separated



Visual inspection of  feature 3 
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Class  2 (forest) seems to be well separated,
Class 1 (urban) seems to be well separated



Visual inspection of  feature 4 
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Class 1 (water) seems to be well separated,
Maybe also class 4 (agricultural)



Visual inspection of feature 5 
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Water and forest appears similar 
- but the variance might be 
different

Urban and agricultural appears 
similar – but the variance might 
be different



Visual inspection of feature 6 
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Seems similar to feature 5,
but with better contrast



Selected scatter plots (gscatter)
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Scatterplot between feature 1 and 4 Scatterplot between feature 5 and 6



Classified images
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The entire image classified to the most probable class



Display the posterior probabilities
as images
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Posterior probability for class urban Posterior probability for class forest

Posterior probability for class water
Posterior probability for class agricultural

Dark values: 
Probabilities close to 0

Bright values:
Probabilities close to 1



Confusion matrix
for the training set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1340 2 0 310

Class 1 43 1253 0 2

Class 3 0 0 1738 0

Class 4 131 3 0 1266
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Accuracy per class:     Averaged over all classes: 91.7%
Class1: 81%
Class2: 96%
Class3: 100%
Class4: 90%



Confusion matrix
for the test set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1474 3 1 251

Class 1 513 2311 0 0

Class 3 14 0 1953 0

Class 4 213 2 0 1390
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Accuracy per class:      Averaged over all classes: 87.5%
Class1: 85%
Class2: 81%
Class3: 98%
Class4: 86%



Learning goals from this lecture

• Be able to use and implement Bayes rule with a l-
dimensional Gaussian distribution.

• Know how s and s are estimated. 
• Understand the 2-dimensional case where a 

covariance matrix is illustrated as an ellipse. 
• Be able to simplify the general discriminant function

for 3 cases.
• Be able to compute the discriminant function e.g. for 

case 1. 
• Have a geometric interpretation of classification with

2 features. 

IN 5520 63


