IN 5520 – Repetition Anne Solberg (anne@ifi.uio.no) 3.12.20

- Gaussian classifiers briefly
- Support vector machines
- Feature selection and transforms

Approaching a classification problem

- Collect and label data
- Get to know the data: exploratory data analysis
- Choose features
- Consider preprocessing/normalization
- Choose classifier
 - Estimate classifier parameters on training data
- Estimate hyperparameters on validation data
 - Alternative: cross-validation on the training data set
- Compute the accuracy on test data

The conditional density $p(\mathbf{x} | \omega_s)$

- Any probability density function can be used to model $p(\mathbf{x} | \omega_s)$
- A common model is the multivariate Gaussian density.
- The multivariate Gaussian density:

$$p(\mathbf{x} \mid \boldsymbol{\omega}_{s}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}_{s}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{s})^{t} \boldsymbol{\Sigma}_{s}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{s})\right]$$

• If we have d features, μ_s is a vector of length d and and Σ_s a d×d matrix (depends on class *s*)

$$\boldsymbol{\mu}_{S} = \begin{bmatrix} \mu_{1s} \\ \mu_{2s} \\ \\ \mu_{ns} \end{bmatrix} \qquad \boldsymbol{\Sigma}_{S} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdot & \cdot & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdot & \cdot & \cdot \\ \sigma_{31} & \sigma_{11} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \sigma_{n1} & \sigma_{n2} & \cdot & \sigma_{nn-1} & \sigma_{nn} \end{bmatrix} \qquad \begin{array}{c} \text{Symmetric d} \times \text{d matrix} \\ \sigma_{\text{ii}} \text{ is the variance of feature i} \\ \sigma_{\text{ij}} \text{ is the covariance between} \\ \text{feature i and feature j} \\ \text{Symmetric because } \sigma_{\text{ij}} = \sigma_{\text{ji}} \end{array}$$

• $|\Sigma_s|$ is the determinant of the matrix Σ_{s_r} and Σ_s^{-1} is the inverse

Discriminant functions for the normal density

• We saw last lecture that the minimum-error-rate classification can be computed using the discriminant functions

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

• With a multivariate Gaussian we get:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

• Let ut look at this expression for some special cases:

Case 1: $\Sigma_i = \sigma^2 I$

• The discriminant functions simplifies to **linear** functions using such a shape on the probability distributions

$$g_{j}(\mathbf{x}) = -\frac{1}{2(\sigma^{2}I)} (\mathbf{x} - \boldsymbol{\mu}_{j})^{T} (\mathbf{x} - \boldsymbol{\mu}_{j}) - \frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln |\sigma^{2}I| + \ln P(\omega_{j})$$
$$= -\frac{1}{2(\sigma^{2}I)} (\mathbf{x}^{T} \mathbf{x} - 2\boldsymbol{\mu}_{j}^{T} \mathbf{x} + \boldsymbol{\mu}_{j}^{T} \boldsymbol{\mu}_{j}) - \frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln |\sigma^{2}I| + \ln P(\omega_{j})$$

Common for all classes, no need to compute these terms Since $\mathbf{x}^T \mathbf{x}$ is common for all classes, an equivalent $g_j(\mathbf{x})$ is a linear function of \mathbf{x} :.

$$\frac{1}{(\sigma^2)}\boldsymbol{\mu}_j^T \mathbf{x} - \frac{1}{2(\sigma^2)}\boldsymbol{\mu}_j^T \boldsymbol{\mu}_j + \ln P(\boldsymbol{\omega}_j)$$

Case 2: Common covariance, $\Sigma_j = \Sigma$

• An equivalent formulation of the discriminant functions is

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w i_0$$

where $\mathbf{w}_i = \mathbf{\Sigma}^{-1} \mathbf{\mu}_i$
and $w i_0 = -\frac{1}{2} \mathbf{\mu}_i^t \mathbf{\Sigma}^{-1} \mathbf{\mu}_i + \ln P(\omega_i)$

- The decision boundaries are again hyperplanes.
- The decision boundary has the equation:

$$\mathbf{w}^{T}(\mathbf{x} - \mathbf{x}_{0}) = 0$$

$$\mathbf{w} = \Sigma^{-1}(\mu_{i} - \mu_{j})$$

$$x_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\ln[(P(\omega_{i})/(P(\omega_{j}))]}{(\mu_{i} - \mu_{j})^{T}\Sigma^{-1}(\mu_{i} - \mu_{j})}(\mu_{i} - \mu_{j})$$

• Because $\mathbf{w}_i = \mathbf{\Sigma}^{-1}(\mu_i - \mu_j)$ is not in the direction of $(\mu_i - \mu_j)$, the hyperplane will not be orthogonal to the line between the means.

Case 3:, Σ_i=arbitrary

• The discriminant functions will be quadratic:

$$g_{i}(\mathbf{x}) = \mathbf{x}^{t} \mathbf{W}_{i} \mathbf{x} + \mathbf{w}_{i}^{t} \mathbf{x} + w i_{0}$$

where $\mathbf{W}_{i} = -\frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1}$, $\mathbf{w}_{i} = \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i}$
and $w i_{0} = -\frac{1}{2} \boldsymbol{\mu}_{i}^{t} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i} - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{i}| + \ln P(\omega_{i})$

- The decision surfaces are hyperquadrics and can assume any of the general forms:
 - hyperplanes
 - hypershperes
 - pairs of hyperplanes
 - hyperellisoids,
 - Hyperparaboloids,..
- The next slides show examples of this.
- In this general case we cannot intuitively draw the decision boundaries just by looking at the mean and covariance.

Support Vector Machine classifiers

Cost function – nonseparable case

• The cost function to minimize is now

$$J(w, w_0, \xi) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} I(\xi_i)$$

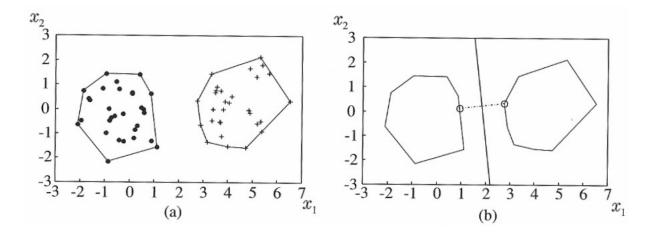
where $I(\xi_i) = \begin{cases} 1 & \xi_i > 0 \\ 0 & \xi_i = 0 \end{cases}$

and ξ is the vector of parameters ξ_i .

- C is a parameter that controls how much misclassified training samples is weighted.
- We skip the mathematics and present the alternative dual formulation: $\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j x_i^T x_j \right)$ subject to $\sum_{i=1}^{N} \lambda_i y_i = 0$ and $0 \le \lambda_i \le C \quad \forall i$
- All points between the two hyperplanes (ξ_i>0) can be shown to have λ_i=C.

SVM: A geometric view

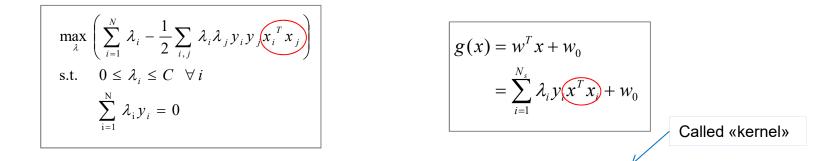
- SVMs can be related to the convex hull of the different classes. Consider a class that contains training samples $X = \{x_1, ..., x_N\}$.
- The convex hull of the set of points in X is given by all convex combinations of the N elements in X.
 - A region *R* is convex if and only if for any two points x_1, x_2 in *R*, the whole line segment between x_1 and x_2 is inside the *R*.
 - The convex hull of a region is the smalles convex region H which satisfies the conditions $R \subseteq H$.



- The convex hull for a class is the smallest convex set that contains all the points in the class (X).
- Searching for the hyperplane with the highest margin is equivalent to <u>searching for the two nearest points in the two</u> <u>convex sets.</u>
 - This can be proved, but we just take the result as an aid to get a better visual interpretation of the SVM hyperplane.

SVMs and kernels

 Note that in both the optimization problem and the evaluation function, g(x), the samples come into play as inner products only



- If we have a function evaluating inner products, K(x_i,x_j), we can ignore the samples themselves
- Let's say we have K(x_i,x_j) evaluating inner products in a higher dimensional space:
 - -> no need to do the mapping of our samples explicitly!

Useful kernels for classification

• Polynomial kernels

$$K(x,z) = \left(x^T z - 1\right)^q, \quad q > 0$$

• Radial basis function kernels (very commonly used!)

$$K(x,z) = \exp\left(-\frac{\|x-z\|^2}{\sigma^2}\right)$$
Note the we need to set the σ parameter
The «support» of each point is controlled by σ .

• Hyperbolic tangent kernels (often with $\beta=2$ and $\gamma=1$)

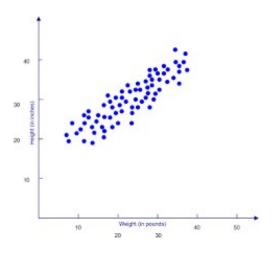
The inner product is related to the similarity of the two samples.

$$K(x,z) = \tanh\left(\beta x^T \ z + \gamma\right)$$

The kernel inputs need not be numeric, e.g. kernels for text strings are possible. The kernels give innerproduct evaluations in the, possibly infinitedimensional, transformed space.

Idea behind (Principal Component Transform)

- Find a projection y=A^Tx of the feature vector x
- Three interpretations of PCA:
 - Find the projection that maximize the variance along the selected projection
 - Minimize the reconstruction error (squared distance between original and transformed data)
 - Find a transform that gives uncorrelated features



Criterion function

- Goal: Find transform minimizing representation error
- We start with a single weight-vector, ${\bm w},$ giving us a single feature, ${\bm y}_1$

• Let
$$J(\mathbf{w}) = \mathbf{w}^T \mathbf{R} \mathbf{w} = \sigma_w^2$$

• Now let's find max $I(\mathbf{w})$

• Now, let's find $\max_{w} J(w)$ •s.t.||w|| = 1

•Transform this problem into a unconstrained problem with a Lagrange multiplier (we skip details here)

Maximizing variance of y₁

$$\mathcal{L}(\mathbf{w}, \lambda) \equiv \sigma_{\mathbf{w}}^{2} - \lambda(\mathbf{w}^{T}\mathbf{w} - 1)$$
for
the
$$\frac{\partial L}{\partial \lambda} = \mathbf{e} \mathbf{w}^{T}\mathbf{w} + \mathbf{I}$$

$$\frac{\partial L}{\partial \mathbf{w}} = 2\mathbf{e} \mathbf{R}\mathbf{v} - 2\lambda\mathbf{w}$$

$$\Downarrow \mathbf{e} \mathbf{I}$$

$$\mathbf{w}^{T}\mathbf{w} = 1$$

$$\mathbf{e} \mathbf{R}\mathbf{w} = \lambda\mathbf{w}$$
The matrix eigenvectors
$$\mathbf{w}^{T}\mathbf{w} = \mathbf{I}$$

•Lagrangian function for maximizing σ^2_w with the constraint $w^Tw=1$

The maximizing **w** is an

eigenvector of R!

And $\sigma_w^2 = \lambda!$

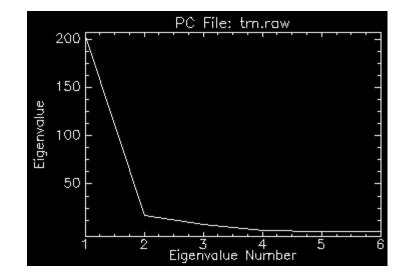
Principal component transform (PCA)

- Place the *m* «principle» eigenvectors (the ones with the largest eigenvalues) along the columns of A
 - They are given as the eigenvectors of the covariance matrix R
- Then the transform y = A^Tx gives you the *m* first principle components

Example cont: Inspecting the eigenvalues

•The mean-square representation error we get with m of the N PCAcomponents is given as

$$E\left[\|x - \hat{x}\|^{2}\right] = \sum_{i=1}^{N-1} \lambda_{i} - \sum_{i=1}^{m} \lambda_{i} = \sum_{i=m}^{N-1} \lambda_{i}$$



•Plotting? s will give indications on how many features are needed for representation