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• Gaussian classifiers – briefly

• Support vector machines

• Feature selection and transforms



Approaching a classification problem

• Collect and label data
• Get to know the data: exploratory data analysis
• Choose features
• Consider preprocessing/normalization
• Choose classifier

– Estimate classifier parameters on training data

• Estimate hyperparameters on validation data
– Alternative: cross-validation on the training data set

• Compute the accuracy on test data
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The conditional density p(x| s)
• Any probability density function can be used to model p(x| s) 
• A common model is the multivariate Gaussian density.
• The multivariate Gaussian density:

• If we have d features, s is a vector of length d and and s a dd 
matrix (depends on class s)

• |s| is the determinant of the matrix s,  and s
-1 is the inverse
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Symmetric dd matrix
ii is the variance of feature i
ij is the covariance between

feature i and feature j 
Symmetric because ij = ji



Discriminant functions
for the normal density

• We saw last lecture that the minimum-error-rate classification 
can be computed using the discriminant functions 

• With a multivariate Gaussian we get:

• Let ut look at this expression for some special cases: 
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Case 1: Σj=σ2I
• The discriminant functions simplifies to linear functions using 

such a shape on the probability distributions
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Common for all classes, no need to compute these  terms
Since xTx is common for all classes, an equivalent gj(x) is  a linear 

function of x: .
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Case 2: Common covariance, Σj= Σ

• An equivalent formulation of the discriminant functions is

• The decision boundaries are again hyperplanes.
• The decision boundary has the equation:

• Because wi= Σ-1(i- j) is not in the direction of (i- j), the hyperplane 
will not be orthogonal to the line between the means.
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Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of 
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries 

just by looking at the mean and covariance. 
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Support Vector Machine classifiers
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Cost function – nonseparable case
• The cost function to minimize is now

• C is a parameter that controls how much misclassified training
samples is weighted. 

• We skip the mathematics and present the alternative dual 
formulation:

• All points between the two hyperplanes (i>0) can be shown to 
have i=C.
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SVM: A geometric view

• SVMs can be related to the convex hull of the
different classes. Consider a class that contains
training samples X={x1,...xN}. 

• The convex hull of the set of points in X is given by 
all convex combinations of the N elements in X. 

– A region R is convex if and only if for any two points x1,x2
in R, the whole line segment between x1 and x2 is inside
the R.

– The convex hull of a region is the smalles convex region H 
which satisfies the conditions RH.
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• The convex hull for a class is the smallest convex set that
contains all the points in the class (X).

• Searching for the hyperplane with the highest margin is 
equivalent to searching for the two nearest points in the two
convex sets.
– This can be proved, but we just take the result as an aid to get a 

better visual interpretation of the SVM hyperplane. 



• Note that in both the optimization problem and the evaluation
function, g(x), the samples come into play as inner products only

• If we have a function evaluating inner products, K(xi,xj), we can
ignore the samples themselves

• Let’s say we have K(xi,xj) evaluating inner products in a higher
dimensional space: 
->  no need to do the mapping of our samples explicitly!
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SVMs and kernels
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Useful kernels for classification
• Polynomial kernels

• Radial basis function kernels (very commonly used!)

• Hyperbolic tangent kernels (often with =2 and =1)
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Note the we 
need to set the 
 parameter

The kernels give inner-
product evaluations in 
the, possibly infinite-
dimensional, 
transformed space.  

The «support» 
of each point is 
controlled by .

The inner product is 
related to the
similarity of the two
samples. The kernel inputs need not be 

numeric, e.g. kernels for text
strings are possible.



Idea behind  (Principal Component Transform)

• Find a projection y=ATx of the
feature vector x

• Three interpretations of PCA:
– Find the projection that maximize the

variance along the selected projection
– Minimize the reconstruction error

(squared distance between original 
and transformed data)

– Find a transform that gives
uncorrelated features
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Criterion function

• Goal: Find transform minimizing representation error

• We start with a single weight-vector, w, giving us a 
single feature, y1

• Let J(w) = wTRw = σw
2

• Now, let’s find
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Maximizing this is 
equivalent to 
minimizing
representation error

•𝑠. 𝑡. 𝒘 = 1

•Transform this problem into a unconstrained problem with a Lagrange multiplier
(we skip details here)



Maximizing variance of y1
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•R•R

•R
The maximizing w is an 
eigenvector of R!

And σ2
w=λ! 

•Lagrangian function for 
maximizing σ2

w with the 
constraint wTw=1

•Equating zero

•- •|



Principal component transform (PCA)

• Place the m «principle» eigenvectors (the ones with the largest
eigenvalues) along the columns of A
– They are given as the eigenvectors of the covariance matrix R

• Then the transform y = ATx gives you the m first principle
components
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Example cont: Inspecting the eigenvalues
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•Plotting    s will 
give indications on
how many features 
are needed for 
representation
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•The mean-square 
representation error we get
with m of the N PCA-
components is given as


