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IN 5520 – Support Vector
Machine Classifiers (SVM)
Anne Solberg (anne@ifi.uio.no)

21.10.20

• Linear classifiers with maximum margin for two-
class problems 

• The kernel trick – from linear to a high-
dimensional generalization

• Generation from 2 to M classes

• Practical issues/Parameter estimation



Mandatory 2 out now

• Deadline November 9

• Any questions??

• Remark: png-file converions will be updated

2
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Curriculum

• Lecture foils are most important!
• The lectures are based on selected sections from 

Pattern Recognition, Third Edition, by Theodoridis
and Koutroumbas:
– 3.1-3.2, 3.7 (but 3.7.3 is a SVM-variant that we will skip)
– 4.17
– These sections use optimization theory described in 

Appendic C. We only include enough mathematics to state 
the optimization problem, and you are not required to 
understand how this optimization is solved. 

– Another useful note: Andrew Ng’s note 
http://cs229.stanford.edu/notes/cs229-notes3.pdf



IN 5520 4

From last week: Case 1: Σj=σ2I
• An equivalent formulation of the discriminant functions:

• An equation for the decision boundary gi(x)=gj(x) can be written as

• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 

orthogonal to w. 

)(ln
2

1 and 1 where

)(

202

0

ii
t
iiii

i
t
ii

Pw

wg








μμμw

xwx

   ji2

ji

2

ji0

ji

0

-
)(
)(ln

-
-

2
1 and

- where
0)(

μμ
μμ

μμ

μμw
xxw

j

i

t

P
Px










IN 5520 5

Gaussian model with =I
Linear decision boundary

• We found that the discriminant
function (when Σj=σ2I) that defines the
border between class 1 and 2 in the
feature space is a straight line.

• The discriminant function intersects the
line connecting the two class means at 
the point c=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the
means. 

1

2

xi

c

Decision boundary

w
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Reminder: Linear algebra basics:
Inner product between two vectors.

• The inner product (or dot
product) between two vectors (of
length N)  a  and b or is given by 

• The angle between two vectors A 
and B is defined as: 

• If the inner product of two
vectors is zero, they are normal to 
each other.

• If two vectors are similar (small
angle), cos  will be close to 1 : 
the inner product measures
similarity
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Introduction to 
Support Vector Machine classifiers

• To understand Support Vector Machine (SVM) 
classifiers, we need to study the linear classification
problem in detail.

• We will need to see how classification using this (the
linear case on the previous slide) can be computed
using inner products. 

• We start with two linearly separable classes.
• Extension to two non-separable classes.
• Extension to M classes.
• The last step will be to use kernels to separate 

classes that cannot be separated in the input space. 
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A new view at linear Gaussian classification
using inner products

• We have two classes (+ and -) represented by the class means c+
and c-. 

• Let the feature vector be xi, and let yi be the class of feature 
vector i. 

• If we have m+ samples from class + and m- samples from class -, 
the class means are given by

• A new pattern x should be classified to the class with the closest
mean. 
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• Half way between the means lies the point
c=(c++c-)/2.

• If a point x is on the decision boundary
hyperplane, then wTx=0.
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• We can compute the class of a new
sample x by checking whether the vector
x-c (connecting x to c) encloses an angle 
smaller than /2 ( in terms of absolute
value) with the vector w=c+- c-.

• This angle is given by the inner product
between w and x-c: wT(x-c) 

• The angle between two vectors is 
computed by the inner product, which
changes sign as the angle passes through
/2 .
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Support Vector Machines 
Two linear separable classes

• Let xi, i=1,...N be all the l-dimensional feature vectors
in a training set with N samples.

• These belong to one of two classes, 1 and 2. 
• We assume that the classes are linearly separable.
• This means that a hyperplane 

g(x)=wTx+w0=0
correctly classifies all these training samples. 

• w=[w1,...wl] is called a weight vector, and w0 is the
threshold.



Introduction to linear SVM 

• Discriminant function: 
g(x) = wTx + w0

• Two-class problem, 
yi ϵ {-1,1}

• yi =
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x1

x2

-1

1

1, g(xi) > 0

-1, g(xi) < 0

g(x) = 0

Threshold/biasWeights/orientation

Class indicator for pattern i

Input patternClass prediction

g(x)
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Separable case: Many candidates
• Obviously we want the decision

boundary to separate the classes ..

• .. however, there can be many
such hyperplanes.

• Which of these two candidates
would you prefer?  Why?
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Hyperplanes and margins
• If both classes are equally probable, 

the distance from the hyperplane
to the closest points in both
classes should be equal. This is called
the margin.

• SVM finds the decision boundary that
maximize the distance from the
closest points in both classes to the
boundary. 

Goal: Find w and w0
maximizing the margin!

How would you write a program finding 
this?  Not easy unless we state the 
objective function cleverly!



• Since w/||w|| is a unit vector in the direction w,

B=x-z*w/||w||
• Because B lies on the decision boundary, 

wTB+w0=0 

z is called the margin of the classifier

Distance to the decision boundary,z
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g(x) = 0

Distance from x to the 
decision boundary

B
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Hyperplanes and margins
• The margin for «direction 1» is 2z1, 

and for «direction 2» it is 2z2.
• g(x) = wTx+w0

• The distance from a point to the
separating hyperplane is  

Goal: Find w and w0
maximizing the margin!

How would you write a program finding 
this?  Not easy unless we state the 
objective function cleverly!
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Rescaling g(x)

• We can scale g(x) such that
g(x) will be equal to 1 or -1 at 
the closest points in the two
classes. This is equivalent to:

1. Have a margin of

2. Require that
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Remember our goal: Find w and w0
yielding the maximum margin
NOTE: in this figure, b is used instead
of w0
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Maximum-margin objective function

• The hyperplane with maximum margin can be found by solving
the optimization problem (w.r.t. w and w0): 

• Checkpoint: Do you understand the formulation?
• How is this criterion related to maximizing the margin?
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The ½ factor is for later convenience

Note! We are somewhat done -- Matlab 
(or similar software) can solve this now.

But we seek more insight!
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The optimization problem with margins

• This is a quadratic optimization task with a set of linear 
inequality contraints.

• It can be shown that the solution has the form:

• The i’s are called Lagrange multipliers.
• The i’s can be either 0 or positive. 
• We see that the solution w is a linear combination of NsN

feature vectors associated with a i>0.
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Solving the optimization problem 
• The optimization problem

has a dual representation with equality constraints:

• This is easier to solve and can be reformulated as: 
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• L is called the Lagrange multipliers
• They can be either 0 or positive. 
• The solution w can be expressed as a 

linear compination of Ns<N feature
vectors with i>0

• These are known as the support 
vectors of the problem
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Solving the optimization problem 

This is easier to solve and can be reformulated as: 

• Note that the training samples xi and xj occurr as inner products of pairs of feature 
vectors. The solution does not depend on the dimensionality of the feature 
vector, only on the scalar inner product.

• The computational complexity can be expected to depend on the number of pixels
in the training data set, N.  

• In this setting we just accept that the solution can be found in optimization theory.
• Matlab and python libraries are used.
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Support vectors
• The feature vectors xi with a corresponding

i>0 are called the support vectors for the
problem.

• The classifier defined by this hyperplane is 
called a Support Vector Machine.  

• Depending on yi (+1 or -1), the support vectors
will thus lie on either of the two hyperplanes 

wTx+w0=1

• The support vectors are the points in the
training set that are closest to the decision
hyperplane. 

• The optimization has a unique solution, only
one hyperplane satisfies the conditions. The support vectors for hyperplane 1

are the blue circles.
The support vectors for hyperplane 2
are the red circles.
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The nonseparable case
• If the two classes are nonseparable, 

a hyperplane satisfying the
conditions wTx-w0=1 cannot be 
found.

• The feature vectors in the training
set are now either:

1. Vectors that fall outside the band 
and are correctly classified.

2. Vectors that are inside the band 
and are correctly classified. They
satisfy 0yi(wTx+w0)<1

3. Vectors that are misclassified –
expressed as yi(wTx+w0)<0

Correctly classified

Erroneously classified
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• The three cases can be treated under a single type of contraints if
we introduce slack variables i:

– The first category (outside, correct classified) have i=0
– The second category (inside, correct classified) have 0 i 1
– The third category (inside, misclassified) have i >1

• The optimization goal is now to keep the margin as large as 
possible and the number of points with i >0 as small as possible.

i
T

i wxwy  1][ 0
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Cost function – nonseparable case
• The cost function to minimize is now

• C is a parameter that controls how much misclassified training
samples is weighted. 

• We skip the mathematics and present the alternative dual 
formulation:

• All points between the two hyperplanes (i>0) can be shown to 
have i=C.
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Nonseparable vs. separable case
• Note that the slack variables i does not enter the

dual problem explicitly.
• The only difference between the linear separable and 

the non-separable case is that the Lagrange-
multipliers are bounded by C. 

• Training a SVM classifier consists of solving the
optimization problem.
– The problem is quite complex since it grows with the

number of training pixels. 
– It is computationally heavy.
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An example – the effect of C
• C is the misclassification cost.

• Selecting too high C will give a classifier that fits the training 
data perfect, but fails on different data set.

• The value of C should be selected on the validation set. 

C=0.2 C=100
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SVM: A geometric view

• SVMs can be related to the convex hull of the
different classes. Consider a class that contains
training samples X={x1,...xN}. 

• The convex hull of the set of points in X is given by 
all convex combinations of the N elements in X. 

– A region R is convex if and only if for any two points x1,x2
in R, the whole line segment between x1 and x2 is inside
the R.

– The convex hull of a region is the smalles convex region H 
which satisfies the conditions RH.
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• The convex hull for a class is the smallest convex set that
contains all the points in the class (X).

• Searching for the hyperplane with the highest margin is 
equivalent to searching for the two nearest points in the two
convex sets.
– This can be proved, but we just take the result as an aid to get a 

better visual interpretation of the SVM hyperplane. 
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Reduced convex hull
• To get a useable interpretation for nonseparable classes, we need

the reduced convex hull. 
• The convex set can be expressed as:

• The reduced convex hull is : 

•  is a scalar between 0 and 1.  = 1 gives the regular convex
hull.
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Reduced convex hull - example

• Data set with overlapping classes.

• For small enough values of , we can make the two reduced convex
hulls non-overlapping.

• A very rough explanation of the non-separable SVM problem is that a 
value of  that gives non-intersecting reduced convex hulls must be 
found. 

• Given a value of  that gives non-intersecting reduced convex hulls, 
the best hyperplane will bisect the line between the closest points in 
these two reduced convex hulls. 

=1
Regular
convex
hulls

.....: =0.4
----: =0.1
Reduced
convex
hulls
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Relating  and C

• Given a value of  that gives non-intersecting reduced convex hulls, 
find the hyperplane by finding the closest two points in the two sets.

• Several values of  can give nonintersecting reduced hulls.
•  is related to C, the cost of misclassifying training regions (see page

101). 
• A high C will give regions that just barely give nonintersecting regions.
• The most robust considering a validation data set is probably a smaller

value of C (and ). 
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Checkpoint
• What does this criterion mean:

• Which points are the support vectors in the linear case?
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SVMs: The nonlinear case intro.

• The training samples are l-dimensional vectors; we have until now 
tried to find a linear separation in this l-dimensional feature space

• This seems quite limiting

• What if we increase the dimensionality (map our samples to a 
higher dimensional space) before applying our SVM?

• Perhaps we can find a better linear decision boundary in that 
space? Even if the feature vectors are not linearly separable in the 
input space, they might be (close to) separable in a higher 
dimensional space
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An examle: from 2D to 3D
• Let x be a 2D vector x=[x1,x2].

• In the toy example on the right, the
two classes can not be linearly
separated in the original 2D space.

• Consider now the transformation

• Now, the transformed points in this
3D space can be separated by a 
plane. 

• The separating plane in 3D maps
out an ellipse in the original 2D 
space
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Introducing the kernel trick
• A kernel can take the feature vectors into a higher dimensional

space where they are linearly separable.
• Consider a simple example with two points: 

– x = (x1,x2,x2)T and y=(y1,y2,y3)T

• If we want to add interactions between the points, we could
transform the data into 9-dimensional space: 
– (x) = (x1

2,x1x2,x1x3,x2x1,x2
2,x2x3,x3x1,x3x2,x3

2)T

– (y) = (y1
2,y1y2,y1y3,y2y1,y2

2,y2y3,y3y1,y3y2,y3
2)T

• The inner product in 9-dimensional space then gives us the
interactions: 

• ߮ ݔ ்߮ ݕ ൌ ∑ ௝ଷݕ௜ݕ௝ݔ௜ݔ
௜,௝ୀଵ

• If we use a kernel function, we can calculate this i 3-
dimensional space using kernels

• ݇ ,ݔ ݕ ൌ ሺݕ்ݔሻଶ= ∑ ௝ଷݕ௜ݕ௝ݔ௜ݔ
௜,௝ୀଵ
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• Note that in both the optimization problem and the evaluation
function, g(x), the samples come into play as inner products only

• If we have a function evaluating inner products, K(xi,xj), we can
ignore the samples themselves

• Let’s say we have K(xi,xj) evaluating inner products in a higher
dimensional space: 
->  no need to do the mapping of our samples explicitly!
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SVMs and kernels
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Useful kernels for classification
• Polynomial kernels

• Inner product measures similarity between x and z.
• If x has dimension d, the kernel takes the data into dxd-

dimensions

  0   ,1),(  qzxzxK qT
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Useful kernels for classification

• Radial basis function kernels (very commonly used!)

• This measures the similarity between x and z, scaled between 0 and 1
•  determines the size of the similarity regions
• If we rewrite the exponential term, we see that this expresses the inner

product in an infinite number of dimensions










 
 2

2

exp),(


zx
zxK

Note the we 
need to set the 
 parameter

The «support» 
of each point is 
controlled by .

The inner product is 
related to the
similarity of the two
samples.
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Useful kernels for classification

• Hyperbolic tangent kernels (often with =2 and =1)

   zxzxK Ttanh),(
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The kernel formulation of 
the objective function

• Given the appropriate kernel (e.g. «radial» with width ) and the cost of 
misclassification C, the optimization task is: 

• The resulting classifier is:
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Example of nonlinear decision boundary

• This illustrates how the nonlinear SVM might look in 
the original feature space

• RBF kernel used

Figure 4.23 in 
PR by Teodoridis et.al.
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From 2 to M classes

• All we have discussed up until now involves only
separating 2 classes. How do we extend the methods
to M classes?

• Two common approaches:
– One-against-all

• For each class m, find the hyperplane that best disciminates
this class from all other classes. Then classify a sample to the
class having the highest output. (To use this, we need the
VALUE of the inner product and not just the sign.)

– Compare all sets of pairwise classifiers
• Find a hyperplane for each pair of classes. This gives

M(M-1)/2 pairwise classifiers. For a given sample, use a 
voting scheme for selecting the most-winning class.
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How to use a SVM classifier
• Find a library with all the necessary SVM-functions 

– Matlab: for example fitcsvm
– Python: scikit-learn

• Read the introductory guides.
• Often a radial basis function kernel is a good starting point.
• Scale the data to the range [-1,1] (features with large values

will not dominate).

• Find the optimal values of C and  by performing a grid 
search on selected values and using a validation data 
set. 

• Retrain the classifier using the best value from the grid search.
• Test using a separate test set.  
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How to do a grid search

• Grid search: try pairs of (C,). Compute the accuracy
on the validation data set.

• Select the pair that gets the best classification
performance on the validation data set. 

• Use the following values of C and :
• C = 2-5, 2-3, ..., 215

•  = 2-15, 2-13, ...., 23
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Summary / Learning goals

• Understand enough of SVM classifiers to be able to 
use it for a classification application.
– Understand the basic linear separable problem and what the

meaning of the solution with the largest margin is.
• Geometrically and by using formulas

– Understand how SVMs work in the non-separable case using
a cost for misclassification. 

– Accept the kernel trick: that the original feature vectors can
be transformed into a higher dimensional space, and that
linear SVM is applied in this space without explicitly doing
the feature transform

– Know briefly how to extend from 2 to M classes.
– Know which parameters (C, etc.) the user must specify and 

how to perform a grid search for these.
– Be able to find a SVM library and use it correctly
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