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Introduction to classifiction
Anne Solberg (anne@ifi.uio.no)

• Introduction to classification
Based on handout from Pattern Recognition by 

Theodoridis



Lectures on zoom

• The lectures will be recorded
• Don’t let this stop you to ask questions!!!
• During recording – ask your questions in chat
• At intervals marked «Questions?» I will repeat and 

answer these
• We take a short break in recording at halftime

– This prevents the file to be too big
– Ask oral questions during the break

• We are also open for oral questions after the lecture
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Plan for this lecture:

• Introduction to machine learning/classification
• Explain the relation between thresholding and 

classification with 2 classes
• Background in probability theory
• Bayes rule
• K-nearest Neighbor classifier
• Classification with a Gaussian density and a single 

feature
– Linear boundaries in feature space

• Minimum distance classifier
• Briefly: training and testing a classifier
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Deep 
learning

Big data

Data science
Artificial
intelligence

Machine
learning

Introduction to machine learning

The term machine learning is today used broadly and cover 
linear regression, statistical classification, neural networks ++

Keyworks: approaces that learn from data



Introduction to classification

• Given a feature vector x computed from a data set
• We want to predict the value of an unkown variable y 

given x.
• If y is continuous, the simplest model could be linear 

regression.
• If y is categorical, we want to assign x into a set of

predefined classes c=1,…C, and y=c if x belongs to 
class c.

• A classification problem can be solved using
supervised, unsupervised or reinforcement learning.
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Unsupervised learning
• Our training set consists of input ܠ only:

• We do not have any labeled data. Our goal is to find an 
underlaying structure of the data. 

• Examples:
– Data clustering
– Anomality detection
– Signal generation
– Signal compression

Variational autoencoder (latent space ݖ)



Reinforcement learning

• Reinforcement Learning ~ Science of 
decision making

• In RL an agent learns from the 
experiences it gains by interacting with 
the environment. 

• The goal is to maximize an 
accumulated reward given by the 
environment.

• An agent interacts with the 
environment via states, actions and 
rewards.

• Example: games like chess or black 
jack.

RL Course by David Silver



Supervised learning
• Given a training set with input ܠ and desired 

output ݕ:

• The goal is to create a function ݂ that 
“approximates” this mapping:

• Hope that this generalizes well to unseen 
examples:

Examples:
– Classification, regression, object detection,
– Segmentation, image captioning.

Supervised learning is normally used for image 
classification and the coming lectures are about it. 



Scatter plots - reminder
• A 2D scatter plot is a plot of feature

values for two different features. Each
object’s feature values are plotted in 
the position given by the features
values, and with a class label telling its
object class. 

• A scatter plott visualize the space
spanned by 2 or more features: called
the feature space

• Matlab: gscatter(feature1, feature2, 
labelvector)

• Classification is done based on more 
than two features, but this is difficult
to visualize. 

• Features with good class separation
show clusters for each class, but
different clusters should ideally be 
separated. 

Feature 1: minor axis length

Feature 2: 
major axis

length
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Discriminating between classes in a scatter plot
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Concepts in classification
• In the following lectures we will cover these topics

related to classification:
– Training set
– Validation set
– Test set
– Classifier accuracy/confusion matrices.
– Computing the probability that an object belongs to a class.
– Bayes rule
– Discriminant functions/Decision boundaries
– Normal distribution, mean vector and covariance matrices
– kNN classification
– Support vector machines
– Unsupervised classification/clustering
– Dimensionality reduction
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Training data set

• A set of known objects from all classes for the
application. 

• Typically a high number of samples from each class.
– Approximately equal number of samples from each class if

possible

• Used to determine the parameters of the given 
classification algorithm.
– Example 1: fit a Gaussian density to the data
– Example 2: find a Support Vector Model that fits the data
– Example 3: find the weights in a neural net 
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Validation data set

• A set of known objects from all classes for the
application. 

• Typically a sufficiently high number of samples from 
each class. 

• Used to optimize hyperparameters, e.g.
– Compare feature selection algorithms
– Compare classifiers
– Compare network architectures
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Test data set

• A set of known objects from all classes for the
application. 

• Typically a high number of samples from each class. 
• Used ONCE to estimate the accuracy of a trained

model. 
• Should never optimize any parameters on the test 

data set. 
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Challenge: domain shift
• Training and test data from same distribution

Training and test data from different distributions

Generalization describes how well a classifiier is 
expected to perform on new data.

• Ohen ghoor!



Bias-Variance tradeoff
• Given a model we fit to the data, 

e.g Y=f(X)+e 
Y: true values, X: measurements, 
e: error
Estimate of Y: ݂ ෣ݔ

• Bias: the difference between the
average prediction and the correct
value ܧ ݂ ෣ݔ െ݂ ݔ

• Variance: The variance of the
predictions ݂ ෣ݔ
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Underfitting and overfitting
• Underfitting: the model is not able to capture the underlying pattern of

data
– High bias, low variance
– In our setting: high error rate on training data and validation data

• Overfitting: the model captures the noise with the underlying pattern of
data
– Low bias, high variance
– In our setting: low error rate on training data, high error on validation data
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Explaining the result

Always use the simplest model that can perform well on
your validation data!



Explaining the decisions

• Where we are currently using deep
learning:

• This is a cat

• Goal: 

• This is a cat (p=0.87)
• It has fur, whiskers, claws.
• Most characteristic feature:
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Thesholding as a binary
classification problem

Gray level of foreground and background pixels
modelled as probability density functions

22
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From INF2310: Thresholding (Gonzalez and 
Woods 10.3)

• Basic thresholding assigns all pixels in 
the image f(x,y) to one of 2 classes: 
foreground or background

• g(x,y) is the thresholded image
• This can be seen as a 2-class 

classification problem based on a single 
feature, the gray level. 

• The 2 classes are background and 
foreground, and the threshold T defines
the border between them.
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Classification error for thresholding

Background probability distribution

Foreground (text) probability distribution
Threshold t

In this region, foreground pixels 
are misclassified as background In this region, background pixels are

misclassified as foreground



Histograms

• h(i)=number of pixels with gray level i
• ∑ ݄ ݅ ൌ ே௫ெ݁݃ܽ݉݅	ܯݔܰ	ܽ	ݎ݋݂	ܯݔܰ

௜ୀ଴

• Normalized hisogram p(i)=h(i)/(NxM)
• For a normalized histogram
• ∑ ݌ ݅ ൌ 1ே௫ெ

௜ୀ଴
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Classification error for thresholding

• We assume that b(z) is the normalized histogram for background b(z)
and f(z) is the normalized histogram for foreground.

• The histograms are estimates of the probability distribution of the gray 
levels in the image. 

• Let F and B be the prior probabilities for background and 
foreground(B+F=1)

• The normalized histogram for the image is then given by

• The probability for misclassification given a treshold t is:
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Find T that minimizes the error

 


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Minimum error is achieved by setting T equal to the
point where the probabilities for foreground and 
background are equal.

The locations in feature space where the probabilities are
equal is called decision boundary in classification. 
The goal of classification is to find the boundaries.



Partitioning the feature space using
thresholding – 1 feature and 1 threshold
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Tresholding one feature gives a linear 
boundary separating the feature space



Partitioning the feature space using
thresholding – 2 features and 2 thresholds
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Tresholding two features independently
gives a rectangular boxes in feature space



Can we find a line with better separation?
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We cannot isolate all classes using straight 
lines. This problem is not linearly
separable



The goal of classification: partitioning the
feature space with smooth boundaries
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Types of classifiers

• Parametric probability distribution:
– Assume a type of probability distribution, fit the parameters 

of the distribution to the data.

• Non-parametric probability distribution:
– Estimate the distribution locally using e.g. Parzen windows
– K Nearest Neighbor classifier

• Minimize loss function e.g. separation between
classes
– Support Vector Machines: maximize the distance between

the closest points in two classes
– Multilayer feed-forward network: minimize the cross entropy

between the true labels and the estimated labels
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Distributions, standard deviation and variance

• A univariate (one feature) Gaussian distribution (normal 
distribution) is specified given the mean value  and the variance
2:

• Variance 2, standard deviation 

2

2

2

)(

2
1)( 










x

ezp



IN 5520 35

Two Gaussian distributions for 
thresholding a single feature

• Assume that b(z) and f(z) are Gaussian distributions, 
then

• B and F are the mean values for background and 
foreground.

• B
2 and F

2 are the variance for background and 
foreground.
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The 2-class classification problem summarized

• Given two Gaussian distributions b(z) and f(z).
• The classes have prior probabilities F and B.
• Every pixel should be assigned to the class that

minimizes the classification error.
• The classification error is minimized at the point 

where F f(z) = B b(z). 

• What we will do now is to generalize to K classes
and D features.
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The goal of classification

• We estimate the decision boundaries (equivalent to 
the threshold for multivariate data) based on training 
data. 

• Classification performance is always estimated on a 
separate ”test” data set. 
– We try to measure the generalization performance.

• The classifier should perform well when classifying
new samples
– Have lowest possible classification error.

• We often face a tradeoff between classification error
on the training set and generalization ability when
determining the complexity of the decision boundary.



Bayesian decision theory
• A fundamental statistical approach to 

pattern classification.
• Named after Thomas Bayes (1702-

1761), an english priest and 
matematician. 

• It combines prior knowledge about
the problem with a probability
distribution function. 

• The most central concept (for us) is 
Bayes decision rule.
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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes. 
• j is the class label for a pixel, 

x is the observed gray level/feature vector.
– We can classify a single pixel, an object, or an entire image   

• We can use Bayes rule to find an expression for the class with the
highest probability:

• For thresholding, P(j) is the prior probability for background or 
foreground. If we don't have special knowledge that one of the classes
occur more frequent than other classes, we set them equal for all 
classes. (P(j)=1/J, j=1.,,,J).

• Small p means a probability distribution
• Capital P means a probability (scalar value between 0 and 1)
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Bayes rule explained

• p(x|j) is the probability density function that models the likelihood 
for observing gray level x if the pixel belongs to class j.  

– Typically we assume a type of distribution, e.g. Gaussian, and 
the mean and covariance of that distribution is fitted to some 
data that we know belong to that class. This fitting is called 
classifier training. 

• P(j|x) is the posterior probability that the pixel actually belongs to 
class j. We will soon se that the the classifier that achieves the 
minimum error is a classifier that assigns each pixel to the class j
that has the highest posterior probability.

• p(x) is just a scaling factor that assures that the probabilities sum 
to 1. 
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Probability of error 

• If we have 2 classes, we make an error either if we
decide 1 if the true class is 2 , and if we decide 2
if the true class is 1.

• If P(1|x) > P(2|x) we have more belief that x 
belongs to 1, and we decide 1.

• The probability of error is then:
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Back to classification error for thresholding

- Background - Foreground

In this region, foreground pixels 
are misclassified as background In this region, background pixels are

misclassified as foreground
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Minimizing the error

• When we derived the optimal threshold (INF 2310), 
we showed that the minimum error was achieved for 
placing the threshold (or decision boundary as we
will call it now) at the point where

P(1|x) = P(2|x)
• This is still valid. 
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Bayes classification with J classes
and D features

• How do we generalize:
– To more the one feature at a time
– To J classes
– To consider loss functions (that some errors are more costly

than others)
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Bayes rule with J classes and d features

• If we measure d features, x will be a d-dimensional
feature vector. 

• Let {1,....,J} be a set of J classes. 
• The posterior probability for class j is now computed

as 

• Still, we assign a pixel with feature vector x to the
class that has the highest posterior probability: 
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Feature space and decision regions

• The minimum error criterion (or a different classifier
criterion) partitions feature space into disjoint region 
Ri. 

• The decision surface separates the regions in 
multidimensional space. 

• For minimum error, the equation for the decision
surface is 
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Exactly where the threshold
was set in minimum error
thresholding!



Discriminant functions 

• The decision rule

can be written as assign x to 1 if

• The classifier computes J discriminant functions gi(x) 
and selects the class corresponding to the largest
value of the discriminant function. 

• Since classification consists of choosing the class that
has the largest value, a scaling of the discriminant
function gi(x) by f(gi(x)) will not effect the decision if
f is a monotonically increasing function.

• This can lead to simplifications as we will soon see.
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Equivalent discriminant functions

• The following choices of discriminant functions give 
equivalent decisions:

• The effect of the decision rules is to divide the feature space 
into c decision regions R1,......Rc.

• If gi(x)>gj(x) for all ji, then x is in region Ri.
• The regions are separated by decision boundaries, surfaces in 

features space where the discriminant functions for two classes 
are equal 

IN 5520 48

)(ln)|(ln)(
)()|()(

)(
)()|()|()(

iii

iii

ii
ii

Ppg
Ppg

p
PpPg











xx
xx

x
xxx



The Gaussian density -
univariate case (a single feature)

• To use a classifier we need to select a probability 
density function p(x|i).

• The most commonly used probability density is the 
normal (Gaussian) distribution: 
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Training data

• Collect image data with labels for each object type
– Is the object a pixel, region, or image ? This varies.

• Each object category is assigned a number, called
the class label.

• Example: Class 1: ‘dog’, class 2: ‘cat’, class 3: ‘bird’
• Integer (categorical) labels are used for 

implementation.
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Example: image and training masks for 
pixel-based classification
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The masks contain labels for the
training data. 
If label=1, then the pixel belongs
to class 1 (red), and so on. 
If a pixel is not part of the
training data, it will have label 0.
A pixel belonging to class k will
have value k in the mask image.
The mask is often visualized in 
pseudo-colors on top of the input 
image, where each class is 
assign a color. 
We should have a similar mask 
for the test data.



How do we make training masks?
• Use a program that allows us to draw different shapes on top of

an image, and save the result as a mask image
– Matlab: e.g. drawpolygon:

• pedestrian1 = imread('bike_001.png');
• imshow(pedestrian1);
• pedestrian1_ped=drawpolygon();
• ped1 = createMask(pedestrian1_ped);
• imwrite(ped1,"bike001_background.png");

• Depending on the task, we either draw:
– Regions within each class (avoiding boundaries) for general 

classification
– A larger Region-of-interest for region-based tasks like traffic sign 

segmentation
– A detailed boundary for segmentation tasks
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Training a univariate Gaussian classifier

• To be able to compute the value of the discriminant function, 
we need to have an estimate of j and j

2 for each class j. 
• Assume that we know the true class labels for some pixels and 

that this is given in a mask image.  The mask has Nk pixels for 
each class. 

• Training the classifier then consists of computing  j and j
2 for 

all pixels with class label j in the mask file.
• They are computed from training data as:
• For all pixels xi with label k in the training mask, compute

IN 5520 54

 )(1

      1

22
k

N

ii
i

k
k

N

ii
i

k
k

k

k

x
N

x
N



















Training a pixel-based classifier using masks

for i=1:N
for j=i:M

if mask(i,j)>==K
increment nof. Samples in class K
store the feature vector f(i,j) in a vector of training samples from class K

end
end
end 

For class k=1:K
compute mean(k) and sigma(k)
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How do to classification with a 
univariate Gaussian (1 feature)

• Decide on values for the prior probabilities, P(j). If we have no
prior information, assume that all classes are equally probable 
and P(j)=1/J.

• Estimate j and j
2 based on training data based on the

formulae on the previous slide. (Training)
• For each pixel in a new image:

For class j=1,….J, compute the discriminant function

Assign pixel x to the class C with the highest value of P(j|x) by setting 
label_image(x,y)=  C

The result after classification is an image with class labels
corresponding to the most probable class for  each pixel.  

We compute the classification error rate from an independent test 
mask. IN 5520 56
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Minimum distance classification

• As we will see next week, if we assume that all 
features are uncorrelated and have unit variance, the
Gaussian model reduces to 
– Assign the feature vector to the class with the closest mean

value measured by Euclidean distance. 
– Compute the distance to all class means and choose the

class with the closest mean.
– Euclidean distance for a feature vector of dimension F:

– ∑ ௙ݔ െ ௙,௄ߤ
ଶி

௙ୀଵ
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An alternative classifier - kNN

• Does not assume any particular probability density
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k-Nearest-Neighbor classification

• A very simple classifier.
• Classification of a new sample xi is done as follows: 

– Out of N training vectors, identify the k nearest neighbors 
(measured by Euclidean distance) in the training set, 
irrespectively of the class label.    

– Out of these k samples, identify the number of vectors ki
that belong to class i , i:1,2,....M (if we have M classes)

– Assign xi to the class i with the maximum number of ki
samples. 

• k should be odd, and must be selected a priori. 
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kNN-example 



If k=1, will be classified as

If k=5, will be classified as
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About kNN-classification
• If k=1 (1NN-classification), each sample is assigned to the same 

class as the closest sample in the training data set. 
• If the number of training samples is very high, 

this can be a good rule.
• If k->, this is theoretically a very good classifier.
• This classifier involves no ”training time”, but the time needed

to classify one pattern xi will depend on the number of training 
samples, as the distance to all points in the training set must be 
computed. 

• ”Practical” values for k: 3<=k<=9
• Classification performance should always be computed on the

test data set.
• Find the best value of k on a validation data set. 



Estimating classification error

• A simple measure of classification accuracy can be to 
count the percentage of correctly classified pixels
overall (averaged for all classes), or per. class. If a 
pixel has true class label k, it is correctly classified if
j=k.

• Estimate the classification error by classifying all 
pixels in the test set and count the percentage of
wrongly classified pixels. 
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Validating classifier performance
• Classification performance is evaluated on a different 

set of samples with known class - the test set.
• The training set and the test set must be 

independent!
• Normally, the set of ground truth pixels (with known

class) is partionioned into a sets for training, 
validation and test. 

• If the classifier has hyperparameters, we use a 
separate validation set to find the best value of them.

More on this in a later lecture.
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Confusion matrices
• A matrix with the true class label versus the estimated 

class labels for each class
Estimated class labels

True class labels

Class 1 Class 2 Class 3 Total 
#sampl
es

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450
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Confusion matrix - cont.

Class 
1

Class 
2

Class 
3

Total 
#sam
ples

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450

Alternatives: 
•Report nof. correctly classified 
pixels for each class.
•Report the percentage of 
correctly classified pixels for 
each class.
•Report the percentage of 
correctly classified pixels in 
total.

•Why is this not a good 
measure if the number of 
test pixels from each class 
varies between classes?



Using more than one feature

• The power of the computer lies in deciding based on
more than 1 feature at a time

• A simple trick to do this is to assume that features i 
and j and independent, then p(i,j|c)=p(i|c)p(j|c)

• The joint decision based on D independent features
is then:
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Upcoming lectures

• Multivariate Gaussian
• Classifier evaluation
• Support vector machine classification
• Feature selection/feature transforms
• Unsupervised classification
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Thanks! Any more questions?


