APPENDIX C

COST FUNCTION
OPTIMIZATION

In this appendix we review a number of optimization schemes that have been
encountered throughout the book.

Let @ be an unknown parameter vector and J () the corresponding cost function
to be minimized. Function J () is assumed to be differentiable,

C.1 GRADIENT DESCENT ALGORITHM

The algorithm starts with an initial estimate 8(0) of the minimum point and the
subsequent algorithmic iterations are of the form

B(new) = 8(old) + AG (C.1)
aJ(e)
A= —p—F= (C.2)
bl #=0(old)

where u > 0. If a maximum is sought, the method is known as gradient ascent and
the minus sign in (C.2) is neglected.

Figure C.1 shows the geometric interpretation of the scheme. The new estimate
@ (new) is chosen in the direction that decreases J(#). The parameter y is very
important and it plays a crucial role in the convergence of the algorithm. If it is too
small, the corrections A# are small and the convergence to the optimum point is
very slow. On the other hand, if it is too large, the algorithm may oscillate around
the optimum value and convergence is not possible. However, if the parameter
is properly chosen, the algorithm converges to a stationary point of J (@), which
can be either, a local minimum (9?) or a global minimum (8°) or a saddle point
(9{2’). In other words, it converges to a point where the gradient becomes zero (see
Figure C.2). To which of the stationary points the algorithm will converge depends
on the position of the initial point, relative to the stationary points. Furthermore,
the convergence speed depends on the form of the cost J(8). Figure C.3 shows
the constant J(#) = ¢ curves, for two cases and for different values of ¢, in the
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FIGURE C.1: In the gradient descent scheme, the correction of the parameters
takes place in the direction that decreases the value of the cost function.

J(6)4

0

0
e, V] 6,

FIGURE C.2: Alocal minimum, a global minimum, and a saddle point of J(6).
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FIGURE C.3: Curves of constant cost values.

two-dimensional space, that is, § = [61,6>)7. The optimum 8 is located at the

center of the curves. Recall that the gradient a,;;e) is always vertical to the tangent

to the constant J curves. Indeed, if J(#) = c, then

aJ(H’ J ()
=0=—"—do=— 7 | 40 :
de . 29 L4 (C.3)

Hence, in the case of Figure C.3a the gradient, that is, the correction term, always
points to the optimum point. In principle, in such cases, convergence can be
achieved in a single step. The scenario is different for the case of Figure C.3b.
There, the gradient points to the center at onl y very few places. Thus, convergence

in this case can be quite slow and A@ can oscillate back and forth following a
zigzag path until it rests at the optimum.

® Quadratic surface: Let J(0) be of a quadratic form, that is,

g 1
J(ﬂ):b—-pf0+§9TR0 (C.4)

where R is assumed to be positive definite, in order (C.4) to have a (single)
minimum (why?). Then,

370

Thus, the optimum value is given by
RO® = p (C.6)
The tth iteration step in (C.1) then becomes

0(t) =0t — 1) — u (RO(z — 1) — p)
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Subtracting 8° from both sides and taking into account (C.6), (C.7) becomes
B(1)=0(t — 1) — uRO( — 1) = (I — uRY(r — ) (C.8)

where é(r) = 0(r) — 0°. Now let R be a symmetric matrix. Then, as we
know from Appendix B, it can be diagonalized, that is,

R=ad"Ad (C.9)

where @ is the orthogonal matrix with columns the orthonormal eigen-
vectors of R and A the diagonal matrix having the corresponding eigenvalues
on its diagonal. Incorporating (C.9) into (C.8) we obtain

0() = (I — uM)b(r — 1y (C.10)

where @(r) = (Dé(r). Matrix / — A is now diagonal, and (C.10) is equiva-
lent to

6i(t) = (1 — )bt — 1 (C.11)
where @E[_élﬁg, R {};i"r_ Considering (C.11) for successive iteration
steps we obtain

6i(1) = (1 — ur;)'6;(0) (C.12)
which converges to
lim 6;(1) =0, = lim () =0, i=1.2 .. . .1 (C.13)
f—0oC =00

provided that [1 — ud;| < 1,i=1,2,... 1. Thus, we can conclude that

2
o — 0°, if u < -

ST

(C.14)

where A« is the maximum eigenvalue of R (which is positive since R
is positive definite). Thus, the convergence speed of the gradient descent
algorithm is controlled by the ratio Amin/Amax as (C.12) and (C.14) suggest,
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o Nonquadratic cost functions: 1f J(#) is not quadratic, we can mobilize
Taylor’s theorem and assume that at some step near a stationary point,
0, J(8) can be written approximately as

JO) =T+ 0 -0%Tg + %(9 — 0" H(®6 - 8 (C.15)

where g is the gradient at 8° and H is the corresponding Hessian matrix,
that is,

aJ (8 )
g = —-E-—} . H(@, j) = (
0 (g_p® 36,00, |g_g°

(C.16)

Thus, in the neighborhood of 0°, J(8) is given approximately by a quadratic

form and the convergence of the algorithm is controlled by the eigenvalues
of the Hessian matrix.

C.2 NEWTON’S ALGORITHM

The problems associated with the dependence of the convergence speed on the
eigenvalue spread can be overcome by using Newton’s iterative scheme, where
the correction in (C.2) is defined by

AB:—H_](ofdJB—gw—} (C.17)

0=0(o1a jl

where H (old) is the Hessian matrix computed at 8(old). Newton’s algorithm
converges much faster than the gradient descent method and, practically, its speed
is independent of the ei genvalue spread. Faster convergence can be demonstrated
by looking at the approximation in (C.15). Taking the gradient results in

3J0)  9J8)

_ _ g0
o) a(@) 9290+H{9 0 (C.18)

Thus, the gradient is a linear function of @ and hence the Hessian is constant, that
is H. Having assumed that ° is a stationary point, the first term on the right-hand
side becomes zero. Now let § — #(old). Then, according to Newton’s iteration

O(new) = 6(old) — H™'(H(0(old) — §°)) = §° (C.19)
Thus, the minimum is found in a single iteration. Of course, in practice, this is not

true, as the approximations are not exactly valid. It is true, however, for quadratic
costs.
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Following a more formal proof (e.g., [Luen 84]), it can be shown that the conver-
gence of Newton’s algorithm is quadratic (i.e., the error at one step is proportional
to the square of the previous step) while that of the gradient descent is linear.
This speedup in convergence is achieved at increased computational cost, since
Newton's algorithm requires the computation and then inversion of the Hessian

matrix. Furthermore, numerical issues concerning the invertibility of H arise.

C.3 CONJUGATE-GRADIENT METHOD

Discussing the gradient descent method, we saw that, in general, a zigzag path is
followed from the initial estimate to the optimum. This drawback is overcome by
the following scheme, which results in improved convergence speed with respect
to the gradient descent method. Compute the correction term according to the
tfollowing rule:

AO(H) = g(t) — B(OHAB(t — 1) (C.20)
where
a9.J(6)
glr) = W|9:._:9(:: (C.21)
and
By = — & WED _—
gTe—-Nge -1 %
or

.
g (1) (gt)—glt—1))

1) = —

R ghae—ga—1

The former is known as the Fletcher—Reeves and the latter as the Polak—Ribiere
formula.

For a more rigorous treatment of the topic the reader is referred to [Luen 84].
Finally, it must be stated that a number of variants of these schemes have appeared
in the literature.

(C23)

C.4 OPTIMIZATION FOR CONSTRAINED PROBLEMS
C.4.1 Equality Constraints

We will first focus on linear equality constraints and then generalize to the nonlinear
case. Although the philosophy for both cases is the same, it is easier to grasp the
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basics when linear constraints are involved. Thus the problem is cast as

minimize J(#)
subjectto Af = b

where A is an m x [ matrix and b,@arem x 1and! x | vectors, respectively. It is
assumed that the cost function J () is twice continuously differentiable and it is,
in general, a nonlinear function, Furthermore, we assume that the rows of A are
linearly independent, hence A has full row rank. This assumption is known as the
regularity assumption.

Let @, be a local minimizer of J(0) over the set {6: A® = b). Then it is
not difficult to show (e.g., [Nash 96]) that, at this point, the gradient of J(0) is

given by
a
2 0)]g_g = AT (C.24)
a6 *
where A = [, ..., 4,,]7. Taking into account that
P ’
— = AT 25
Y (A8) (C.25)

Eq. (C.24) states that, at a constrained minimum, the gradient of the cost function
is a linear combination of the gradients of the constraints. This is quite natural.
Let us take a simple example involving a single linear constraint, i.e.,

a’0=p
Equation (C.24) then becomes

0
@(1(9*)} = Aa

where the parameter A is now a scalar. Figure C.4 shows an example of isovalue
contours of J(#) = ¢ in the two-dimensional space (I = 2). The constrained
minimum coincides with the point where the straight line “meets” the isovalue
contours for the first time, as one moves from small to large values of ¢. This is
the point where the line is langent to an isovalue contour; hence at this point the
gradient of the cost function is in the direction of & (see Chapter 3).

Let us now define the function

LO,1)=J@0) 1T (A0 — b) (C.26)
i
=JO) = > rial0 - by) (C.27)
i=]
where a;.r. i=1,2,...,m,are the rows of A. L(#, 1) is known as the Lagrangian
Junction and the coefficients, A;, i =12

» 2y ..., m, asthe Lagrange multipliers. The
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FIGURE C.4: At the minimizer, the gradi

ent of the cost function is in the
direction of the gradient

of the constraint function.

optimality condition (C.24), together w

ith the constraints, which the minimizer
has to satisfy, can now be written

in a compact form as

VL@, x) =0 (C.28)
where V denotes the gradient operation with r

equating with zero the derivatives of the La
respectively,

espect to both @ and A. Indeed.
grangian with respect to @ and A gives,

3

— J (@) = AT

597 ©® Y
A0 = b

The above is a set of m + | unknowns, i.e., (4, .. .. O Ay ey hyy), withm +/
equations, whose solution provides the minimizer 6, and the corresponding

Lagrange multipliers. Similar arguments hold for nonlinear equation constraints.
Let us consider the problem

minimize J (@)
subjectto  f;(0) =0, =1, 2 o

I

ST —
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The minimizer is again a stationary point of the corresponding Lagrangian
m
LO,X)=J0)- 1 f(6)

i=1

and results from the solution of the set of m + / equations
VL@, L) =0

The regularity condition for nonlinear constraints requires the gradients of the

constraints a% (/i (8)) to be linearly independent.

C.4.2 Inequality Constraints

The general problem can be cast as follows:

minimize J (@)
subjectto  f;() =0, i=1,2,....m (C.29)

Each one of the constraints defines a region in R/. The intersection of all these
regions defines the area in which the constrained minimum, 0., must lie. This
is known as the feasible region and the points in it (candidate solutions) as fea-
sible points. The type of the constraints control the type of the feasible region,

i.e., whether it is convex or concave. At this point, it will not harm us to recall a
few definitions.

Convex functions. A function f(6)
FEERN —R
is called convex in S, if forevery @ and ' € §
FGO+ (1 —18) <Af @)+ (1 — 1) f(®6)

for every A €0, 1]. If strict inequality holds, we say that the function is strict
convex.

Concave functions. A function f(#) is called concave, if for every 8,0’ S
SO+ (1—2)8") = Af(0) + (1 — 1) ()

for every A€[0, 1]. For strict inequality, the function is known as strict
concave.
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FIGURE C.5: (a) A convex function, (b) a concave function, and (¢) a function
that is neither convex nor concave.
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FIGURE C.6: (a) A convex set and (b) a concave set of points.

Figure C.5 shows three functions, one convex, one concave, and one which is
neither convex nor concave.

Convex sets. A set § € R! is called convex, if for every pair of points 8,8’ € S,
the line segment joining these points also belongs to the set. In other words, all
points 28 + (1 — A)@’, A € [0, 1] belong to the set. Figure C.6 shows two sets,
one convex and one nonconvex.

Remarks

e [If f(#) is convex then — f(#) is concave and vice versa. Furthermore, if
F), I =120 m, are convex, so is the sum Y '", &; f;i(#). 4; = 0.
Similarly, if f;(#) are concave, so is their summation,



1 function

6,

which is

1,0 € 8,
vords, all
two sets,

rmore, 1f

A= 0.
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e If a function f(#) is convex, it can be shown that a local minimum is also
a global one. This can be easily checked from the graph of Figure C.5.
Furthermore, if the function is strict convex then this minimum is unique. For
concave functions, the above also hold true but for points where a maximum
occurs.

e A direct consequence of the respective definitions is that if f(#) is convex
then the set

X =1{01f6) <b, beR)
is convex. Also, if f(#) is concave then the set
X=1{0|f(0)=b, becR)

is also convex.
e The intersection of convex sets is also a convex set.

From the above remarks one can easily conclude that, if each one of the functions in
the constraints in (C.29) is concave, then the feasible region is a convex one. This
is also valid if the constraints are linear, since a linear function can be considered
either as convex or concave. For more on these issues, the interested reader may
refer, for example, to [Baza 79].

The Karush-Kuhn-Tucker (KKT) Conditions

This is a set of necessary conditions, which a local minimizer 8., of the problem
given in (C.29) has to satisfy. If 8., is a point that satisfies the regularity condition,
then there exists a vector A of Lagrange multipliers so that the following are valid:

a
(1) ﬁﬁ(ﬁ*. L) =0

2) =0, i=12,....,m
3) rifi0)=0, i=12,....,m (C.30)

Actually, there is a fourth condition concerning the Hessian of the Lagrangian
function, which is not of interest to us. The above set of equations is also part
of the sufficiency conditions; however, in this case, there are a few subtle points
and the interested reader is referred to more specialized textbooks, e.g., [Baza 79,
Flet 87, Bert 95, Nash 96].

Conditions (3) in (C.30) are known as complementary slackness conditions.
They state that at least one of the terms in the products is zero. In the case where,
in each one of the equations, only one of the two terms is zero, i.e., either A; or
Ji(85), we talk about strict complementariry.
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Remarks

The first condition is most natural. It states that the minimum must be a
stationary point of the Lagrangian, with respect to .

A constraint, (f;(8.,)), is called inactive if the corresponding Lagrange mul-
tiplier is zero. This is because this constraint does not affect the problem. A
constrained minimizer @, can lie either in the interior of

on its boundary. In the former case, the
strained one. Indeed,
feasible region, then t

the feasible region or
problem is equivalent to an uncon-
if it happens that a minimum is located within the
he value of the cost function in a region around this
point will increase (or remain the same) as one moves away from this point.
Hence, this point will be a stationary point of the cost function J(@). Thus
in this case, the constraints are redundant and do not affect the problem.
In words, the constraints are inactive and this is equivalent to setting the
Lagrange multipliers equal to zero. The nontrivial constrained optimization

task is when the (unconstrained) minimum of the cost function is located

outside the feasible region. In this case. the constrained minimum will be

located on the boundary of the feasible region. In other words, in this non-

trivial case, there will be one or more of the constraints for which fi(8) =0.

These constitute the active constraints. The rest of the constraints will be

inactive with the corresponding Lagrange multipliers being zero,

Figure C.7 illustrates a simple case with the following constraints:

F10) =6, +20, —2 >0
f200)=0-6+2>90
[0)=—-6+2>0

The (unconstrained) minimum of the cost function is located outside the
feasible region. The dotted lines are the isovalue curves J(®) = ¢, with
€1 < €2 < c¢3. The constrained minimum coincides with the point where
an isovalue curve “touches” the boundary of the feasible region for the first
time (smallest value of c). This point may belong to more than one of the
constraints, e.g., it may be a corner point of the boundary.

The Lagrange multipliers of the active constraints are nonnegative. To under-
stand why this is so, let us consider for simplicity the case of linear constraints
A@ > b, where A includes the active constraints only. If @

lying on the active constraints, then any other feasible
as

+ 18 a minimizer
point can be written
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this non- FIGURE C.7: An example of the nontrivial case, where the unconstrained
0.) =0. minimum lies outside the feasible region.
s will be
its: since this guarantees that A@ > b. If the direction P points into the feasible
region (Figure C.7) then A p # 0, that is, some of its components are strictly
positive. Since 8. is a minimizer, from condition (1) in (C.30) we have
that
a
—J(0.,) =AT2r
20 (@)
tside the The change of the cost function along the direction of p is proportional to
: ¢, with
nt where r 0 T AT
@) =p A"A
r the first £ a6 G
ne of the and since 6, is a minimizer, this must be a direction of ascent at 8. Thus
Biind A must be nonnegative to guarantee that pTATL = 0 for any p pointing
o under-

: into the feasible region. An active constraint whose corresponding Lagrange
hatraints multiplier is zero is known as degenerate.
e It can be shown that, if the cost function is convex and the feasible region
is also convex, then a local minimum is also a global one. A little thought
(and a look at Figure C.7) suffices to see why this is so.

linimizer
e written

Having now discussed all these nice properties, the major question arises: how
€an one compute a constrained (local) minimum? Unfortunately, this is not always
an easy task. A straightforward approach would be to assume that some of the
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constraints are active and some inactive, and check if the resulting Lagrange
multipliers of the active constraints are nonnegative. If not, then choose another
combination of constraints and repeat the procedure until one ends up with non-
negative multipliers. However, in practice, this may require a prohibitive amount
of computation. Instead, a number of alternative approaches have been proposed.
In the sequel, we will review some basics from Game Theory and use these to

reformulate the KKT conditions. This new setup can be useful in a number of
cases in practice.

Min-Max Duality

Let us consider two players, namely X and Y, playing a game. Player X will choose
a strategy, say, x and simultaneously player ¥ will choose a strategy y. As a result,
X will pay to ¥ the amount F(x, y), which can also be negative, i.e., X wins.
Let us now follow their thinking, prior to their final choice of strategy, assuming
that the players are good professionals.

X: If Y knew that I was going to choose x, then, since he/she is a clever player,
he/she would choose y to make his/her profit maximum, i.e.,

FHx) = max F(x, y)

Thus, in order to make my worst-case payoff to Y minimum, I have to choose x
SO as to minimize F*(x), i.e.,

min F*(x)
X
This problem is known as the min-max problem since it seeks the value
min max F(x, y)
Fy

¥: X is a good player, so if he/she knew that [ am going to play y, he/she would
choose x so that to make his/her payoff minimum, i.e.,

Fi(y) = min F(x, y)

Thus, in order to make my worst-case profit maximum I must choose y that
maximizes F,(v), i.e.,

max Fa(v)

This is known as the max-min problem, since it seeks the value

max min F(x, y)
hi L8

B S —
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The two problems are said to be dual to each other. The first is known to be the
primal, whose objective is to minimize F*(x) and the second is the dual problem
with the objective to maximize F,(y).

For any x and y, the following is valid:

Fe(y) =min F(x, y) < F(x, y) < max F(x, y) = F*(x) (C.31)
X y
which easily leads to
max min 7 (x, y) < minmax F(x, y) (C.32)
¥ X x ¥

Saddle Point Condition
Let F(x, y) be a function of two vector variables with x € X CRland y €
Y C R Ifa pair of points (x.,, y,), with x, € X, ¥y, € Y satisfies the condition

forevery x € X and y € ¥, we say that it satisfies the saddle point condition. It is
not difficult to show (e.g., [Nash 96]) that a pair (x, y,) satisfies the saddle point
conditions if and only if

: in F(x, y) = mi ,¥) = V. :
mj)ixmlln (x,y) n}lﬁmj;le(x ¥) = F(xe, y,) (C.34)

Lagrangian Duality

We will now use all the above in order to formulate our original cost function min-
imization problem as a min-max task of the corresponding Lagrangian function.
Under certain conditions, this formulation can lead to computational savings when
computing the constrained minimum. The optimization task of our interest is

minimize J(#)
subjectto  f;(8) =0, i=1,2 m

A Arye ey

The Lagrangian function is

LO,))=J@) — ZA,- £i(0) (C.35)

f==]

Let

LX) = mfx L6, 1)
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However, since A > 0 and fi(8) = 0, the maximum value of the Lagrangian
occurs if the summation in (C.35) is zero (either A; = Qor f;(8) =0or both) and

L*0) = J(8) (C.37)
Therefore our original problem is equivalent with
min J(#) = min max £(6, &) (C.38)
0 # L=0
As we already know, the dual problem of the above is
max min £(#, 1) (C.39)
A=0 @
Convex Programming
A large class of practical problems obeys the following two conditions:

(1) J(#) is convex (C.40)
(2) fi(®) are concave (C41)

This class of problems turns out to have a very useful and mathematically tractable
property.

Theorem. Let 0, be a minimizer of such a problem, which is also assumed to
satisfy the regularity condition. Let ., be the corresponding vector of Lagrange

multipliers. Then (0, X,) is a saddle point of the Lagrangian function, and as
we know this is equivalent to

L(#., Xy) = max min £(@, A) = min max £(#, }) (C.42)
A=0 @ ¢ A=0

Proof. Since f; () are concave, — f;(8) are convex, so the Lagrangian function

m

LOX)=JO)— ) 4 f:(0)

i=]

for 3; = 0, is also convex. Note, now, that for concave function constraints of the
form f; (@) > 0, the feasible region is convex (see remarks above). The function

|
|
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igrangian J(#) is also convex. Hence, as already stated in the remarks, every local minimum
both) and is also a global one; thus for any #

L0, h) < LB, 1) (C.43)
(C.37)
Furthermore, the complementary slackness conditions suggest that
(C.38) and for any L > 0
LOWN) =100 =) 1ifi0) < J(0.) = LB, A (C45)
i=1
Combining (C.43) and (C.45) we obtain
(C.39)
LO. L) = LB, xs) = LB, Xs) (C.46)
In other words, the solution (8, L.) is a saddle point.
This is a very important theorem and it states that the constrained minimum
of a convex programming problem can also be obtained as a maximization task
(C.40) applied on the Lagrangian. This leads us to the following very useful formulation
’ of the optimization task.
(C.41)
Wolfe Dual Representation
actably A convex programming problem is equivalent to
max L£(0, X) (C.47)
A=0
sumed to ]
qagrange Subjel:t to % C(G, l) =0 (C‘48)
1, and as . . .. . ;
The last equation guarantees that 8 is a minimum of the Lagrangian.
Example C.1. Consider the quadratic problem
(C.42) ;
minimize EGTf?
Fanption subjectto A = b
This is a convex programming problem; hence the Wolfe dual representation is valid;
1.
maximize 59? 0 — 21746 — b)
subjectto 6§ — ATr=0
its of the For this example, the equality constraint has an analytic solution (this is not, however,

function always possible). Solving with respect to 8, we can eliminate it from the maximizing
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function and the resulting dual problem involves only the Lagrange multipliers,
1 = =
max { —=2T 4473 4 17p
S 2
subjectto A = 0
This is also a quadratic problem but the set of constraints is now simpler.
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