CHAPTER 3_

LINEAR CLASSIFIERS

3.1 INTRODUCTION

Our major concern in Chapter 2 was to design classifiers based on probability
density or probability functions. In some cases, we saw that the resulting classifiers
were equivalent to a set of linear discriminant functions. In this chapter we will
focus on the design of linear classifiers, irrespective of the underlying distributions
describing the training data. The major advantage of linear classifiers is their
simplicity and computational attractiveness. The chapter starts with the assumption
that all feature vectors from the available classes can be classified correctly using
a linear classifier, and we will develop techniques for the computation of the
corresponding linear functions. In the sequel we will focus on a more general
problem, in which a linear classifier cannot classify correctly all vectors, yet we
will seek ways to design an optimal linear classifier by adopting an appropriate
optimality criterion.

32 LINEAR DISCRIMINANT FUNCTIONS
AND DECISION HYPERPLANES

Let us once more focus on the two-class case and consider linear discriminant
functions. Then the respective decision hypersurface in the /-dimensional feature
space is a hyperplane, that is

glx) = w'x + wy =0 (3.1)
where w = [wy, wa, ..., wy]” is known as the weight vector and wy as the thresh-
old. If xy, x2 are two points on the decision hyperplane, then the following is

valid

0=w"x + wo =w x, + wy =
wi(x] —x)=0
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FIGURE 3.1: Geometry for the decision line. On one side of the line it is
g(x) > 0(+) and on the other g(x) <0 (—).

Since the difference vector x| — x; obviously lies on the decision hyperplane (for
any x|, x7), it is apparent from Eq. (3.2) that the vector w is orthogonal to the
decision hyperplane.

Figure 3.1 shows the corresponding geometry (for w; > 0, wy > 0, wy < 0).
Recalling our high school math, it is easy to see that the quantities entering in the
figure are given by

d= & (3.3)

foa 2
wl—1—w2

and

g EAN (3.4)

) 2
wy + wh

In other words, |g(x)| is a measure of the Euclidean distance of the point x from
the decision hyperplane. On one side of the plane g(x) takes positive values and
on the other negative. In the special case that wo = 0 the hyperplane passes through
the origin.
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i the marginal probability densities (p(xy)) play their own part, since they enter
i implicitly into the game. However, in the case of logistic discrimination marginal
. densities contribute to C and do not affect the solution. Thus, if the Gaussian
by : assumption is a reasonable one for the problem at hand LDA is the natural approach
L since it exploits all available information. On the other hand, if this is not a good
) assumption then logistic discrimination seems to be a better candidate, since it

55) ! relies on fewer assumptions. However, in practice it has been reported [Hast 01]
| that there is little difference between the results obtained by the two methods.
! Generalizations of the logistic discrimination method to include nonlinear models
§ have also been suggested. See, for example, [Yee 96, Hast 01].
}
56) !
1 3.7 SUPPORT VECTOR MACHINES
3.7.1 Separable Classes
C ; In this section an alternative rationale for designing linear classifiers will be
57) T adopted. We will start with the two-class linearly separable task and then we
ity : will extend the method to more general cases where data are not separable.
Letx;,i = 1,2,..., N, be the feature vectors of the training set, X. These
belong to either of two classes, @, wy, which are assumed to be linearly separable.
2 The goal, once more, is to design a hyperplane
1)
gx)=wlx +wy=0 (3.69)
be
= that classifies correctly all the training vectors. As we have already discussed
e in Section 3.3, such a hyperplane is not unique. The perceptron algorithm may
. converge to any one of the possible solutions. Having gained in experience, this
nd ' time we will be more demanding. Figure 3.7 illustrates the classification task with
ize _ two possible hyperplane' solutions. Both hyperplanes do the job for the training
4t ’ set. However, which one of the two would any sensible engineer choose as the
classifier for operation in practice. where data outside the training set will be fed
to it? No doubt the answer is: the full-line one. The reason is that this hyperplane
leaves more “room” on either side, so that data in both classes can move a bit more
freely, with less risk of causing an error. Thus such a hyperplane can be trusted
more, when it is faced with the challenge of operating with unknown data. Here
. we have touched a very important issue in the classifier design stage. It is known
er. : as the generalization performance of the classifier. This refers to the capability of
er- the classifier, designed using the training data set, to operate satisfactorily with
188 data outside this set. We will come to this issue over and over again,
2rs

'We will refer to lines as hyperplanes to cover the general case.
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ES
FIGURE 3.7: An example of a linearly separable two class problem with two
possible linear classifiers.

After the above brief discussion, we are ready to accept that a very sensible
choice for the hyperplane classifier would be the one that leaves the maximum
margin from both classes. Later on, at the end of Chapter 5, we will see that this
sensible choice has a deeper justification, springing from the elegant mathematical
formulation that Vapnik and Chernovenkis have offered to us.

Let us now quantify the term “margin” that a hyperplane leaves from both
classes. Every hyperplane is characterized by its direction (determined by w)
and its exact position in space (determined by wyp). Since we want to give no
preference to either of the classes, then it is reasonable for each direction to select
that hyperplane which has the same distance from the respective nearest points in
w1 and wy. This is illustrated in Figure 3.8. The hyperplanes shown with dark lines
are the selected ones from the infinite set in the respective direction. The margin
for direction “1” is 2z; and the margin for direction “2” is 2z2. Our goal is to
search for the direction that gives the maximum possible margin. However, each
hyperplane is determined within a scaling factor. We will free ourselves from it,
by appropriate scaling of all the candidate hyperplanes. Recall from Section 3.2
that the distance of a point from a hyperplane is given by

lg(x)]
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2 direction 2

Ly

FIGURE 3.8: The margin for direction 2 is larger than the margin for direc-
tion 1.

We can now scale w, wg so that the value of g(x), at the nearest points in w;, w,
(circled in Figure 3.8), is equal to 1 for e; and, thus, equal to —1 for w». This is
equivalent with

. : 1 |
I. Having a margin of wr ey = T
2. Requiring that
wa+wozl, Vx € w

wlx + wop = -1, Vxeaw

We have now reached the point where mathematics will take over. For each x;, we
denote the corresponding class indicator by y; (+1 for w;, —1 for w).) Our task
can now be summarized as: Compute the parameters w, wg of the hyperplane so
that to:

1
minimize J(w) = Euwn?' (3.70)
subjectto  yi(w x;+wg) =1, i=12,....N (3.71)

Obviously, minimizing the norm makes the margin maximum. This is a nonlin-
ear (quadratic) optimization task subject to a set of linear inequality constraints.
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The Karush-Kuhn-Tucker (KKT) conditions (Appendix C) that the minimizer of
(3.70), (3.71) has to satisfy are

_iﬁ:(w, wo, A) = 0 (3.72)
Jw
B
—L(w, wg, A) =0 (3.73)
dwy
A=0, i=1,2,..., N (3.74)
AlyviwTx; +wg) = 11=0, i=1,2,..., N (3.75)

where X is the vector of the Lagrange multipliers, A;, and L(w, wq, A) is the
Lagrangian function defined as

N
1 "
L(w, wg, A) = Ew? w— Y ilyi (' x; + wo) — 1] (3.76)

Tzl

Combining (3.76) with (3.72) and (3.73) results in

N
W= Z)L,-y,-.r; (37?)

N
D hiyi=0 (3.78)
fe=]

Remarks

o The Lagrange multipliers can be either zero or positive (Appendix C.) Thus,
the vector parameter w of the optimal solution is a linear combination of
Ny = N feature vectors which are associated with A; # 0. That is,

Ny
w=) hiyixi (3.79

f=el

These are known as support vectors and the optimum hyperplane classifier
as a support vector machine (SVM). As it is pointed out in Appendix C, a
nonzero Lagrange multiplier corresponds to a so called active constraint.
Hence, as the set of constraints in (3.75) suggest for A, # 0, the support
vectors lie on either of the two hyperplanes, i.e.,

w'x + wy = +1 (3.80)
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that is, they are the training vectors that are closest to the linear classifier,
and they constitute the critical elements of the training set. Feature vectors
corresponding to 4; = 0 can either lie outside the “class separation band,”
defined as the region between the two hyperplanes given in (3.80), or they
can also lie on one of these hyperplanes (degenerate case, Appendix C). The
resulting hyperplane classifier is insensitive to the number and position of
such feature vectors, provided they do not cross the class separation band.
Although w is explicitly given, wg can be implicitly obtained by any of the
(complementary slackness) conditions (3.75), satisfying strict complemen-
tarity (i.e., A; # 0, Appendix C). In practice, wy is computed as an average
value obtained using all conditions of this type.

o Thecost functionin (3.70)is astrict convex one (Appendix C), a property that

is guaranteed by the fact that the corresponding Hessian matrix is positive
definite [Flet 87]. Furthermore, the inequality constraints consist of linear
functions. As discussed in Appendix C, these two conditions guarantee that
any local minimum is also global and unique. This is most welcome. The
optimal hyperplane classifier of a support vector machine is unique.

Having stated all these very interesting properties of the optimal hyperplane of a
support vector machine, the next step is the computation of the involved param-
eters. From a computational point of view this is not always an easy task and a
number of algorithms exist, e.g., [Baza 79]. We will move to a path, which is
suggested to us by the special nature of our optimization task, given in (3.70) and
(3.71). It belongs to the convex programming family of problems, since the cost
function is convex and the set of constraints are linear and define a convex set
of feasible solutions. As we discuss in Appendix C, such problems can be solved
by considering the so called Lagrangian duality and the problem can be stated
equivalently by its Wolfe dual representation form, i.e.,

maximize L(w, wg, A) (3.81)
J\"
subject to = Z A ViX; (3.82)
N
N ki =0 (3.83)
A=0 (3.84)

The two equality constraints are the result of equating to zero the gradient of the
Lagrangian, with respectto w, wq. We have already gained something. The training
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feature vectors enter into the problem via equality constraints and not inequality
ones, which can be easier to handle. Substituting (3.82) and (3.83) into (3.81) and
after a bit of algebra we end up with the equivalent optimization task

N
1
mfx EA,‘ = E ;lfkj}’fij;rx}' (385)
N
subjectto  » “A;y; =0 (3.86)
i=l
A>0 (3.87)

Once the optimal Lagrange multipliers have been computed, by maximiz-
ing (3.85), the optimal hyperplane is obtained via (3.82), and wg via the
complementary slackness conditions, as before.

Remarks

e Besides the more attractive setting of the involved constraints in (3.85),
(3.86), there is another Important reason that makes this formulation popular.
The training vectors enter into the game in pairs, in the form of inner products.
This is most interesting. The cost function does not depend explicitly on
the dimensionality of the input space! This property allows for efficient
generalizations in the case of nonlinearly separable classes. We will return
to this at the end of Chapter 4.

e Although the resulting optimal hyperplane is unique, there is no guarantee
about the uniqueness of the associated Lagrange multipliers 5;. In words,
the expansion of w in terms of support vectors in (3.82) may not be unique,
although the final result is unique (Example 3.4).

3.7.2 Nonseparable Classes

In the case where the classes are not separable, the above setup is not valid any
more. Figure 3.9 illustrates the case. The two classes are not separable. Any attempt
to draw a hyperplane will never end up with a class separation band with no data
points inside it, as was the case in the linear] y separable task. Recall that the margin
is defined as the distance between the pair of parallel hyperplanes described by

wa+w0=:l:l
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FIGURE 3.9: In the nonseparable class case, points fall inside the class
separation band.

The training feature vectors now belong to one of the following three
categories:

e Vectors that fall outside the band and are correctly classified. These vectors
comply with the constraints in (3.71).

o Vectors falling inside the band and which are correctly classified. These
are the points placed in squares in Figure 3.9 and they satisfy the
inequality

0 < yi(w’x +wp) <1

e Vectors that are misclassified. They are enclosed by circles and obey the
inequality

yi(w'x +wo) <0
All three cases can be treated under a single type of constraints by introducing

a new set of variables, namely

yilw'x +wol = 1 =&
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The first category of data correspond to & = 0, the second to 0 < & < I, and the
third to §; > 1. The variables & are known as slack variables. The optimizing task
becomes more involved, yet it falls under the same rationale as before. The goal
now is to make the margin as large as possible but at the same time to keep the
number of points with £ > 0 as small as possible. In mathematical terms, this is
equivalent to adopting to minimize the cost function

An’

! 2
J(w, wo, §) = Zfjw|® +C Zl 1) (3.89)
where § is the vector of the parameters &; and
s | E,' = '[)
1) = {0 £ =0 (3.90)

The parameter C is a positive constant that controls the relative influence of the two
competing terms. However, optimization of the above is difficult since it involves a
discontinuous function / (-). As itis common in such cases, we choose to optimize
a closely related cost function, and the goal becomes

N
W | 2
minimize J (w, wo, §) = || +CZE,- (3.91)
subjectto  yi[w'x;+wyl=1—&, i=12..... N (3.92)
>0, i=12..., N (3.93)

The problem is again a convex programming one, and the corresponding
Lagrangian is given by

N N
;
Llw,wo, & p) = Swl® +CY & — ) ik

i=1 i=
N 4
" Z Milyiw”x; +wo) — 1 + &) (3.94)
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The corresponding Karush-Kuhn-Tucker conditions are

9L 0 i (3.95)
e or w= AL VIX| o P 15
Jw =
3L s
;UI_G =0 or Y Ayi=0 (3.96)
g i=1
aL
2Z =0 or C—pi—r=0, i=12,...,N (3.97)
(jgi
Alyiw x; +wo) —1+&1=0, i=12,....,N (3.98)
pi& =0, i=12,....,N (3.99)
w; >0, *>0 i=12,...,N (3.100)

The associated Wolfe dual representation now becomes
maximize L(w, wy, &, &, i)

N
subjectto  w = z AjYViXi

i=1

N
Z Aryi =0

i=1
C—pui—i =0, i = Loy N
Ai=0, 0 =0 i=1,2,...,1 N

Substituting the above equality constraints into the Lagrangian we end up with

JV
| i
max ZA, i ZA;J«.;_\;;}*JI;' X (3.101)
A i=l = e
subjectto 0=Xx =C, i= e L (3.102)
&
> Ay =0 (3.103)

=l

Note that the Lagrange multipliers corresponding to the points residing either
within the margin or on the wrong side of the classifier, i.e., § > 0, are all equal
to the maximum allowable value C. Indeed, at the solution, for & # 0 the KKT
conditions give ; = 0 leading to A; = C. In other words, these points have the
largest possible ““share” in the final solution w.
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Remarks

e Theonly difference with the previously considered case of linearly separable

classes is in the first of the two constraints, where the Lagrange multipliers
need to be bounded above by C. The linearly separable case corresponds to
C — oo. The slack variables, &, and their associated Lagrange multipliers,
#i, do not enter into the problem explicitly. Their presence is indirectly
reflected through C.
A major limitation of support vector machines is the high computational bur-
den required, both during training and in the test phase. For problems with a
relatively small number of training data, any general purpose optimization
algorithm can be used. However, for a large number of training points (of
the order of a few thousands), a special treatment is required. Training of
SVM s usually performed in batch mode. For large problems this sets high
demands on computer memory requirements. To attack such problems a
number of procedures have been devised. Their philosophy relies on the
decomposition, in one way or another, of the optimization problem into a
sequence of smaller ones, e.g., [Bose 92, Osun 97, Chan 00]. The main ratio-
nale behind such algorithms is to start with an arbitrary data subset (chunk
of data, working set) which can fit in the computer memory. Optimization
is, then, performed on this subset via a general optimizer. Support vectors
remain in the working set while others are replaced by new ones, outside
the current working set, that violate severely the KKT conditions. It can
be shown that this iterative procedure guarantees that the cost function is
decreasing at each iteration step. In [Plat 99, Matt 99] the idea of decom-
position is pushed to its extreme and each working set consists of only two
points. The great advantage of it is that the optimization can now be per-
formed analytically. In [Keer 01], a set of heuristics is used for the choice of
the pair of points that constitute the working set. To this end, it is suggested
that the use of two thresholded parameters can lead to considerable speed
ups. In [Joac 98] the working set is the result of a search for the steepest fea-
sible direction. More recently, [Dong 05] suggested a technique to quickly
remove most of the nonsupport vectors, using a parallel optimization step
and the original problem can be split into many subproblems which can be
solved more efficiently. Another sequential algorithm has been proposed in
[Navi O1], where an iterative reweighted least squares procedure is employed
and alternates weight optimization with constraint forcing. An advantage
of the latter technique is that it naturally leads to online and adaptive
implementations.

For large problems, the test phase can also be quite demanding, if the
number of support vectors is excessively high. Methods that speed up
computations have also been suggested, e.g., [Burg 97].
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In all our discussions, so far, we have been involved with the two-class
classification task. In an M-class problem, a straightforward extension can
be to look at it as a set of M two-class problems. For each one of the classes,
we seek to design an optimal discriminant function, gi(x),i = 1,2, ..., M,
sothat g;(x) > g;(x), Vj # i,if x € w;. Adopting the SVM methodology,
we can design the discriminant functions so that g;(x) = 0 to be the optimal
hyperplane separating class w; from all the others, assuming of course that
this is possible. Thus, the resulting linear function will give g; (x) = 0O for
x € w; and g;(x) < 0 otherwise. Classification is then achieved according
to the following rule:

assign x inw; ifi =arg m}?x{g;‘(x)}

This technique, however, may lead to indeterminate regions, where more
than one g;(x) is positive (Problem 3.15).

Another approach is to extent the two class SVM mathematical formulation
to the M-class problem, see, for example, [Vapn 98]. Comparative studies
of the various methods for multiclass SVM classification can be found in
[Rifk 04, Hsu 02].

Example 3.4. Consider the two-class classification task that consists of the following
points:

a0, =1

wer T=1, 117 [=1;-11

Using the SVM approach, we will demonstrate that the optimal separating hyperplane (line)
is x| = 0 and that this is obtained via different sets of Lagrange multipliers.
The points lie on the corners of a square, as shown in Figure 3.10. The simple geometry of

the problem allows for a straightforward computation of the SVM linear classifier. Indeed,

a careful observation of Figure 3.10 suggests that the optimal line

glx) = wyx; +waxp +wy =0

is obtained for wyp = wg =0and wy =1, i.e,

o{x) = xp=10

Hence for this case, all four points become support vectors and the margin of the separating

line from both classes is equal to 1. For any other direction, e.g., gj (x) = 0, the margin 1s

smaller. It must be pointed out that, the same solution is obtained if one solves the associated
KKT conditions (Problem 3.16.)
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FIGURE 3.10: In this example all four points are support vectors. The margin

associated with g)(x) = 0 is smaller compared to the margin defined by the
optimal g(x) = 0.

Let us now consider the mathematical formulation of our problem. The linear inequality
constraints are

wy+wrs+wy—1=20
w)p—uw2+wy—1=0
wyp—wy—wyg—1=0

wytwy—wyp—1=>0

and the associated Lagrangian function becomes

t.uf—l—w2

Lwy. wy, wg, A) = —-2—3 —A(wy +uy +wy — 1)

—Aa(wy —wy 4+ wy — 1)
—Aa(wy) —wy —wy — 1)
—dalwy +wy —wy—1)
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The KKT conditions are given by

aL i ; 4

- =0 = w) = Ki + A2 + Az + A4 (3.104)

thJJI

oL

220 = wy=Ap A — A2 — A3 (3.105)

dug

L : :

—_— = 0 = ;'Ll + Ay —Ay— Ay = 0 (3.106)

g
Mo +wr+wy—1)=0 (3.107)
Aa{wyp —up +wp— 1) =0 (3.108)
}\S{w} — Wy —-Wp — =0 (3.109)
hglwy +uwy —wp—1 =0 (3.110)

Asro,hy kg =0 (3.111)

Since we know that the solution for w, wq is unigue, we can substitute the solution
wy = 1, wy = wy = 0 into the above equations. Then we are left with a linear system of
three equations with four unknowns, i.e.,

A+ ;‘L?. + 13 + Ay = | (3.112)
MAry—hr—i3=0 (3.113)
A +hy—hy—dg= 0 (3.114)

which has, obviously, more than one solution. However, all of them lead to the unique
optimal separating line.

Example 3.5. Figure 3.11 shows a set of training data points residing in the two-
dimensional space and divided into two nonseparable classes. The full line in Figure 3.11a
is the resulting hyperplane using Platt’s algorithm and corresponds to the value C = 0.2.
Dotted lines meet the conditions given in (3.80) and define the margin that separates the two
classes, for those points with & = 0. The setting in Figure 3.11b corresponds to C = 1000
and has been obtained with the same algorithm and the same set of rimming parameters
(e.g.. stopping criteria).

It is readily observed that the margin associated with the classifier corresponding (o
the larger value of C is smaller. This is because the second term in (3.89) has now more
influence in the cost, and the optimization process tries to satisfy this demand by reducing
the margin and consequently the number of points with & = 0. In other words, the width
of the margin does not depend entirely on the data distribution, as it was the case with the
separable class case, but is heavily affected by the choice of C. This is the reason SVM
classifiers, designed via (3.89), are also known as soft margin classifiers.
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FIGURE 3.11: An example of two nonseparable classes and the resulting SVM
linear classifier (full line) with the associated margin (dotted lines) for the values
(a) C = 0.2 and (b) C = 1000.

3.7.3 v-SVM

Example 3.5 demonstrated the close relation that exists between the parameter
C and the width of the margin obtained as a result of the optimization process.
However, since the margin is such an important entity in the design of SVM (after
all, the essence of the SVM methodology is to maximize it) a natural question that
arises is why not involve it in a more direct way in the cost function, instead of
leaving its control to a parameter (i.e., C) whose relation with the margin, although
strong, is not transparent to us. To this end, in [Scho (0] a variant of the soft margin
SVM was introduced. The margin is defined by the pair of hyperplanes

w'x +wy=+p (3.115)

and p > 0 is left as a free variable to be optimized. Under this new setting, the
primal problem given in (3.91)-(3.93) can now be cast as

—— 1, .4 1
Minimize J (w, wo. & p) = > |wll* —vp + ;;,- (3.116)
subject to y,—[wa,- F+upl=p—&, =12 N (3.117)
>0 i=12,....N (3.118)

p=0

(3.119)
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To understand the role of p, note that for & = 0 the constraints in (3.117) state that
the margin separating the two classes is equal to l—%g—l, . In the previous formulation,
also known as v-SVM, we simply count and average the number of points with
& > 0, whose number is now controlled by the margin variable p. The larger the
o the wider the margin and the higher the number of points within the margin, for
a specific direction w. The parameter v controls the influence of the second term
in the cost function, and its value lies in the range [0, 1] (we will come to this issue
later on).
The Lagrangian function associated with the task (3.116)~(3.119) is given by

N N
. 1 5 [ < oAl
L(w, wy, h, &, p.8) = ;ilwll'— vp+¥ E & — ) wibi

i=1 i=l
N
= Z}w [yf-(wa,- +wp) —p+ E{-] —8p  (3.120)

i=1

Adopting similar steps as in Section 3.7.2, the following KKT conditions result:

n’\ll
w=>) AiyXi (3.121)
i=1
N
Y hiyi =0 (3.122)
=l
I
Ju,—L)f-—-:E. = [, (3.123)
]NII
ZJL,'—(S::L‘ (3.124)
==l
A [_\‘i(wrx,'-i-w{})—p-’r EJ] =0, i=12,....N (3.125)
;L;Ef =[], Frem il Bonay N ("3[?.6)

(3.127)
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i =0, =0, §=0, i=1,2 N (3.128)

.......

The associated Wolfe dual representation is easily shown to be

Maximize L(w, wy. X, E. ;. 8) (3.129)
N
subject to w=> Ayxi (3.130)
F==1
N
D hiyi=0 (3.131)
i=1
1
“i+lf_§‘ 1= Loy N {3[32)
N
Z,x,._azv (3.133)
>0, 4;20,8>0, i=12..., N (3.134)

If we substitute the equality constraints (3.130)—(3.133) in the Lagrangian, the
dual problem becomes equivalent to (Problem 3.17)

1 )
max —EZAjAjyj_ijng (3.135)
A i
; |
subjectto 0 <i; < . i = T2 N (3.136)
l|l\n’
Y Aiyi=0 (3.137)
i=1
N
Z)L,- > (3.138)
i=1

Once more, only the Lagrange multipliers A enter into the problem explicitly and
the presence of p and of the slack variables, &, make their presence felt through
the bounds appearing in the constraints. Observe that in contrast to (3.101) the
cost function is now quadratically homogeneous and the linear term Z:\_r__l A is
not present. Also, the new formulation has an extra constraint.




o53)

30)

35)

i6)

i8)

nd
gh

he

- ——— gy =

Section 3.7: SUPPORT VECTOR MACHINES

Remarks

e In [Chan 01] it is shown that the v-SVM and the more standard SVM for-

mulation [(3.101)—(3.103)], sometimes referred to as C-SVM, lead to the
same solution for appropriate values of C and v. Also, it is shown that in
order for the optimization problem to be feasible the constant v must lie in
arange 0 < v <V = Vmax = 1.

e Although both SVM formulations result in the same solution, for appropriate

choices of v and C the v-SVM offers certain advantages to the designer. As
we will see in the next section, it leads to a geometric interpretation of the
SVM task for nonseparable classes. Furthermore, the constant v, controlled
by the designer, offers itself to serve two important bounds concerning (a) the
error rate and (b) the number of the resulting support vectors.

At the solution, the points lying either within the margin or outside it but
on the wrong side of the separating hyperplane correspond to & > 0 and
hence to u; = 0 [Eq. (3.126)], forcing the respective Lagrange multipliers
to be 4; = ;{, [Eq. (3.123)]. Also, since at the solution, for p > 0,4 = 0
[Eg. (3.127)], it turns out that Z;\r:; Ai = v [Eq. (3.124)]. Combining these
and taking into account that all points that lie in the wrong side of the classifier
correspond to & > 0, the total number of errors can, at most, be equal to
Nv. Thus, the error rate, P,, on the training set is upper bounded as

P,

IA
=

(3.139)

Also, at the solution, from the constraints (3.124) and (3.123) we have that

N Ny Ny
4 : £ 1
t,,:;Ar. :Z;x,- hz;”_ (3.140)
8- = & —
or
Nv < N, (3.141)

Thus, the designer, by controlling the value of v, may have a feeling for
both the error rate on the training set and the number of the support vectors
to result from the optimization process. The number of the support vectors,
Ny, is very important for the performance of the classifier in practice. First,
as we have already commented, it directly affects the computational load,
since large N, means a large number of inner products to be computed
for classifying an unknown pattern. Second, as we will see at the end of
Section 5.9, alarge number of support vectors can limit the error performance
of the SVM classifier when it is fed with data outside the training set (this is
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also known as the generalization performance of the classifier). For more on
the v-SVM, the interested reader can consult [Scho 00, Chan 01, Chen 03],
where implementation issues are also discussed.

3.74  Support Vector Machines: A Geometric Viewpoint

In this section, we will close the circle around the SVM design task via a path that
is very close to what we call common sense. Figure 3.12a illustrates the case of
two separable data classes together with their respective convex hulls, The convex
hull of a data set X is denoted as conv{X} and is defined as the intersection of all
convex sets (see Appendix C.4) containing X. It can be shown (e.g., [Luen 69])

that conv{X} consists of all the convex combinations of the N elements of X.
That is,

N
conv{X}={y: y-—_Zk;x,- x; € X,

N
D u=10<xn<1,i=12,....N (3.142)

i:l

It turns out that solving the dual optimization problem in (3.85)—(3.87) for the lin-
early separable task results in the hyperplane that bisects the linear segment joining
two nearest points between the convex hulls of the data classes [Figure 3.12b].
In other words, searching for the maximum margin hyperplane is equivalent to
searching for two nearest points between the corresponding convex hulls! Let us
investigate this a bit further.

X, X,

3 = 73

2 2

I 1

0 0

| -1}

] 21

B O 01l 234567 BT oi a3 dis e
(a) % (b) x,

FIGURE 3.12: (a)Adata set for two separable classes with the respective convex
hulls. (b) The SVM optimal hyperplane bisects the segment joining the two nearest
points between the convex hulls,
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Denote the convex hull of the vectors in class w; as conv{X 1} and the convex
hull corresponding to class wy as conv{X ~}. Following our familiar notation,
any point in conv{X "}, being a convex combination of all the points in wy,
can be written as Zi:y,-:l Aix; and any point in conv{X "} as 2‘-%:_1 Aixi,
provided that }; fulfill the convexity constraints in (3.142). Searching for the
closest points, it suffices to find the specific values of 4;, i = 1,2,...N,
such that

m{n Y axi— Y haxill? (3.143)

iyi=1 ivi=—1
subject to Y m=1, Y N=i1 (3.144)
iryi=1 iyi=—1
Gl Fel B N (3.145)

Elaborating the norm in (3.143) and reshaping the constraints in (3.144), we end
up with the following equivalent formulation.

Minimize Z y;yl,-)b;ij?ﬂxj (3.146)
ij
N N
subject to Z yiri =0, Z}L; =2 (3.147)
i=1 1=1
A>0,i=1,2,...N (3.148)

It takes a few lines of algebra to show that the optimization task in (3.85)-
(3.87) results in the same solution as the task given in (3.146)—(3.148) ([Keer 00]
and Problem 3.18). Having established the geometric interpretation of the
SVM optimization task, any algorithm that has been developed to search
for nearest points between convex hulls (e.g., [Gilb 66, Mitc 74, Fran 03])
can now, in principle, be mobilized to compute the maximum margin linear
classifier.

It is now the turn of the nonseparable class problem to enter into the game,
which, now, becomes more exciting. Let us return to the v-SVM formulation and
reparameterize the primal problem in (3.116)—(3.119) by dividing the cost function

by ‘{« and the set of constraints by v ([Crisp 99]). Obviously, this has no effect on
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the solution. The optimization task now becomes

N
minimize J(w, wo, &, p) = |w|*> — 20+ p ZE,— (3.149)

i=l
subject to _v;[wa,- +uwpl=p—§&, i=12 ..., N (3.150)
=0, d=1:2:00:N (3.151)
p=0 (3.152)
where p = % and we have kept, for economy, the same notation, although
the parameters in (3.149)—(3.152) are scaled versions of those in (3.116)—(3.119),
That is, w — lﬂ wy — =L, p— % E — %L Hence, the solution obtained via

(3.149)—(3.152) is a scaled version of the solution resulting via (3.116)—(3.119).
The Wolfe dual representation of the primal problem in (3.149)-(3.152) is easily
shown to be equivalent to

minimize Zy,—y;)\,—)ul;x;frxj (3.153)
Lj
subject to Y wki=0, D k=2 (3.154)
i i
B2 e b=l B ¥ (3.155)

This set of relations is almost the same with those defining the nearest points
between the convex hulls in the separable class case, (3.146)—(3.148), with a
small, yet significant, difference. The Lagrange multipliers are bounded by 1 and
for u < 1 they are not permitted to span their entire allowable range (i.e., [0, 1]).

3.7.5 Reduced Convex Hulls

The reduced convex hull (RCH) of a vector space, X, is denoted as R(X. ) and
is defined as the convex set

N
R(X,pn)= y:y:Z:\,—x; D x; eX,
=1
N
Zk,-:l,()gk;gu.izlj ..... N (3.156)
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FIGURE 3.13: (a) Example of a data set with two intersecting classes and
their respective convex hulls. (b) The convex hulls (indicated by full lines) and
the resulting reduced convex hulls (indicated by dotted lines) corresponding to
#t=0.4and p = 0.1, respectively, for each class. The smaller the value of w the
smaller the RCH size.

Itis apparent from the previous definition that R(X, 1) = conv{X} and that
R(X, i) € conv{X} (3.157)

Figure 3.13a shows the respective convex hulls for the case of two intersecting
data classes. In Figure 3.13b, full lines indicate the convex hulls, conv{X*} and
conv{X ™}, and the dotted lines the reduced convex hulls R(XT,w), R(X™, ),
for two different values of & = 0.4 and y = 0.1, respectively. It is readily apparent
that the smaller the value of  the smaller the size of the reduced convex hull. For
small enough values of u, one can make R(X ™, p)and R(X ™, ) nonintersecting.
Adopting a procedure similar to the one that led to (3. 146)—(3.148), it is not difficult
to see that finding two nearest points between R(X ™+, i) and R(X ™, w) results in
the v-SVM dual optimization task given in (3.153)(3. 155). Observe that the only
difference between the latter and the task for the separable case, defined in (3.146)—
(3.148), lies in the range in which the Lagrange multipliers are allowed to be. In
the separable class case, the constraints (3. 147) and (3.148) imply that 0 < 4; < 1,
which in its geometric interpretation means that the full convex hulls are searched
for the nearest points. In contrast, in the nonseparable class case a lower upper
bound (i.e., . < 1) is imposed for the Lagrange multipliers. From the geometry
point of view, this means that the search for the nearest points is limited within the
respective reduced convex hulls,
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4 5 @,

FIGURE 3.14: The optimal linear classifier resulting as the bisector of the seg-
ment joining the two closest points between the reduced convex hulls of the classes,
for the case of the data set shown in Figure 3.13 and for 1 = 0.1.

Having established the geometric interpretation of the v-SVM dual repre-
sentation form, let us follow pure geometric arguments to draw the separating
hyperplane. It is natural to choose it as the one bisecting the line segment joining
two nearest points between the reduced convex hulls. Let x* and x~ be two nearest
points, with x* € R(X™, u) and x~ € R(X~, ). Letalso A;, i = 1,2..... N,
be the optimal set of multipliers resulting from the optimization task. Then, as can
be deduced from Figure 3.14,

w=xt—x" = Z Kparpms Z AiXi (3.158)
1

fyi=1 iyi=—

N
= > hiim (3.159)
i=1

This is the same (within a scaling factor) as the w obtained from the KKT condi-
tions associated with the v-SVM task [Eq. (3.121)]. Thus, both approaches result
in a separating hyperplane pointing in the same direction (recall from Section 3.2
that w defines the direction of the hyperplane). However, it is early to say that
the two solutions are exactly the same. The hyperplane bisecting the line segment
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joining the nearest points crosses the middle of this segment; that is, the point
x*=1(x* +x7). Thus,

w‘rx" + wp = 0 (3160)
from which we get
1 = _
wo=—zw’ | D hixi+ 3 i (3.161)
yi=1 fiypeme]

This value for wy is, in general, different from the value resulting from the KKT
conditions in (3.125). In conclusion, the geometric approach in the case of the non-
separable problem is equivalent to the v-SVM formulation only to the extent that
both approaches result in hyperplanes pointing in the same direction. However,
note that the value in Eq. (3.125) can be obtained from that given in Eq. (3.161)
in a trivial way [Crisp 99].

Remarks

e The choice of p and consequently of v = ;_E—N must guarantee that the
feasible region is nonempty (i.e., a solution exists, Appendix C) and also
that the solution is a nontrivial one (i.e., w # 0). Let N7 be the number of
pointsin X T and N~ the number of pointsin X, where NT+N~ = N. Let
Niin = min{ N1, N7}. Then it is readily seen from the crucial constraint
0 < A < u and the fact that }°; &; = 1, in the definition of the reduced

convex hull, that & = fpip = ,\,—l This readily suggests that v cannot
“min
take any value but must be upper bounded as

T
> Nmin

N

I A

V = Vmax =

Also, if the respective reduced convex hulls intersect then the distance
between the closest points is zero, leading to the trivial solution (Problem
3.19). Thus, nonintersection is guaranteed for some value fmax such that
U< pmax =< 1, which leads to

2

v o —
pumax N

Tt =
- T ITHI

From the previous discussion it is easily deduced that for the feasible region
to be nonempty it is required that

R(XY, min) N RX™, hpin) =9
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IfNtT =N = % it is easily checked out that in this case each of the
reduced convex hulls is shrunk to a point, which is the centroid of the
. 3 ) , D

respective class (.., 7 D_;.,,—) Xi). [n other words, a solution is feasible
if the centroids of the two classes do not coincide. Most natural!

Some theorems concerning properties of the reduced convex hulls, which are
important for the development of efficient geometric algorithms, are derived
in [Mavr 06].

Problems

3.1
3.2

33

34

v, 5

3.6

3.7

3.8

3.9
3.10

Explain why the perceptron cost function is a continuous piecewise linear function.
Show that if p; = p in the perceptron algorithm, the algorithm converges after
K= lw0)—aw™ | )
p=p(2—p)
Show that the reward and punishment form of the perceptron algorithm converges

in a finite number of iteration steps.

Consider a case in which class w; consists of the two feature vectors [0, 0]T and
10, 117 and class wy of [1, 017 and (1, 1 ]T, Use the perceptron algorithm in its reward
and punishment form, with p = 1 and w(0) = [0, 017 .10 design the line separating
the two classes.

Consider the two-class task of Problem 2.12 of the previous chapter with

steps, where o = ﬁ*_—l and p < 2.

i =0,11, ul =100 of=0]=02

Produce 50 vectors from each class, To guarantee linear separability of the classes,
disregard vectors with x| +x3 < | for the [1, 1] class and vectors with x| +x3 = |
for the [0, 0] class. In the sequel use these vectors to design a linear classifier using the
perceptron algorithm of (3.21). After convergence, draw the corresponding decision
line.

Consider once more the classification task of Problem 2.12. Produce 100 samples for
each of the classes. Use these data to design a linear classifier via the LMS algorithm.
Once all samples have been presented to the algorithm, draw the corresponding
hyperplane to which the algorithm has converged. Use o = p = 0.01.

Show, using Kesler's construction, that the rth iteration step of the reward and
punishment form of the perceptron algorithm (3.21), for an x ;) € w;, becomes

|4

w,—(r+|)zw‘-(r]+p.‘rm ifw;r(f).\f{f) w}T(I)I(”, JFEI

wir+ 1) =w;r) — px( ifw?(.f)xm = w}"(r)xm, JFEI
wi(t+ 1) =wplr), Vk#jandk # i

Show that the sum of error squares optimal weight vector tends asymptotically to
the MSE solution.

Repeat Problem 3.6 and design the classifier using the sum of error squares criterion.
Show that the design of an M class linear, sum of error squares optimal, classifier
reduces to M equivalent ones, with scalar desired responses.
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Show that, if x, y are jointly Gaussian, the regression of y on x is given by

ol
WoyX QO Ty HOxTy
Elylx] = - +jy — ——, where ¥ = L0 (3.162)
Oy Ox WOy Ty (o £73

Letan M class classifier be given in the form of parameterized functions g(x; wy).
The goal is to estimate the parameters wy so that the outputs of the classifier give
desired response values, depending on the class of x. Assume that as x varies ran-
domly in each class, the classifier outputs vary around the corresponding desired
response values, according to a Gaussian distribution of known variance, assumed
to be the same for all outputs. Show that in this case the sum of error squares criterion
and the ML estimation result in identical estimates.

Hint; Take N training data samples of known class labels. For each of them form
vi = glxiwy) — d,{,__ where d}; 15 the desired response for the kth class of the ith
sample, The y;’s are normally distributed with zero mean and variance o2. Form the
likelihood function using the v;’s.

In a two-class problem the Bayes optimal decision surface is given by g(x) =
P(wi|x) — P(wy]x) = 0. Show that if we train a decision surface f(x; w) in the
MSE so as to give +1(—1) for the two classes, respectively, this is equivalent to
approximating g(-) in terms of f(-; w), in the MSE optimal sense.

Consider a two-class classification task with jointly Gaussian distributed feature
vectors and with the same variance X in both classes. Design the linear MSE classifier
and show that in this case the Bayesian classifier (Problem 2.11) and the resulting
MSE one differ only in the threshold value. For simplicity, consider equiprobable
classes.

Hint: To compute the MSE hyperplane w’ x + wp = 0, increase the dimension of
X by one and show that the solution is provided by

R Elx] {w]_ Ly — po)
Elx]T 1 wo | 0

Then relate R with T and show that the MSE classifier takes the form

(n) — #2}’r>3"!(x - %(ﬂ: + Mz)) >0
In an M class classification task the classes can be linearly separated. Design M
hyperplanes, so that hyperplane g; (x) = 0 leaves class w; on its positive side and
the rest of the classes on its negative side. Demonstrate via an example, e.g., M = 3,
that the partition of the space using this rule creates indeterminate regions (where
no training data exist) for which more than one g; (x) is positive or all of them are
negative.
Obtain the optimal line for the task of Example 3.4, via the KKT conditions. Restrict
the search for the optimum among the lines crossing the origin.
Show thatif the equality constraints (3.130)—(3.133) are substituted in the Lagrangian
(3.120), the dual problem is described by the set of relations in (3.135)~(3.138).
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3.18 Show that for the case of two linearly separable classes the hyperplane obtained as
the SVM solution is the same with that bisecting the segment joining two closest
points between the convex hulls of the classes.

3.19 Show that if v in the v-SVM is chosen smaller than v,;, it leads to the trivial zero
solution.

3.20 Show that if the soft margin SVM cost function is chosen to be

N
Sl _Z%e,—
=
the task can be transformed into an instance of the class-separable case problem
[Frie 98].
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